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Abstract Purpose: Gamma-ami-
nobutyric acid (GABA) is the major
inhibitory neurotransmitter through
activation of GABA receptors. Vola-
tile anesthetics activate type-A
(GABAA) receptors resulting in inhi-
bition of synaptic transmission. Lung
epithelial cells have been recently
found to express GABAA receptors
that exert anti-inflammatory proper-
ties. We hypothesized that the volatile
anesthetic sevoflurane (SEVO) atten-
uates lung inflammation through
activation of lung epithelial GABAA

receptors. Methods: Sprague–Daw-
ley rats were anesthetized with SEVO
or ketamine/xylazine (KX). Acute
lung inflammation was induced by
intratracheal instillation of endotoxin,
followed by mechanical ventilation
for 4 h at a tidal volume of 15 mL/kg
without positive end-expiratory

pressure (two-hit lung injury model).
To examine the specific effects of
GABA, healthy human lung epithelial
cells (BEAS-2B) were challenged
with endotoxin in the presence and
absence of GABA with and without
addition of the GABAA receptor
antagonist picrotoxin.
Results: Anesthesia with SEVO
improved oxygenation and reduced
pulmonary cytokine responses com-
pared to KX. This phenomenon was
associated with increased expression
of the p subunit of GABAA receptors
and glutamic acid decarboxylase
(GAD). The endotoxin-induced cyto-
kine release from BEAS-2B cells was
attenuated by the treatment with
GABA, which was reversed by the
administration of picrotoxin. Conclu-
sion: Anesthesia with SEVO
suppresses pulmonary inflammation
and thus protects the lung from the
two-hit injury. The anti-inflammatory
effect of SEVO is likely due to acti-
vation of pulmonary GABAA

signaling pathways.
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Introduction

Acute lung injury (ALI) is a major challenge in critical
illness that is associated with high mortality [1]. The
majority of patients suffering from ALI require mechan-
ical ventilation for life support [2, 3]. However,
mechanical ventilation per se bears the risk of inducing
and worsening pulmonary dysfunction described as ven-
tilator-induced lung injury (VILI) [4]. An important
approach to manage patients with ALI is to reduce pul-
monary and systemic inflammatory responses that may
have played an important role in inducing multiple distal
organ dysfunction [1, 2].

Low tidal volume ventilation has been considered as a
protective ventilator strategy [2], but it may not suit all
patients with respiratory failure [5]. Volatile anesthetics
have been recently shown to exert anti-inflammatory
effects in several experimental and clinical settings [6–8],
which may be beneficial in the context of VILI. The use
of sevoflurane (SEVO) can increase expression of IjB
while decreasing NF-jB nuclear translocation following
challenge with tumor necrosis factor a (TNF-a) in human
monocytes [8]. The administration of SEVO improved
gas exchange and attenuated lung injury after endotra-
cheal installation of endotoxin in rats [6]. Anesthesia with
SEVO has been shown to decrease the production of
inflammatory cytokines including TNF-a, interleukin-6
(IL-6), and IL-8 in lung lavage fluids and reduced post-
operative adverse events in patients under thoracic
surgery [7]. However, the mechanisms by which SEVO
exerts the anti-inflammatory effects remain unclear.

It is known that volatile anesthetics such as SEVO
activate type-A gamma-aminobutyric acid (GABAA)
receptors resulting in inhibition of synaptic transmission
in neurons [9, 10]. GABA synthesized from glutamate by
decarboxylation via the enzymatic activity of glutamic
acid decarboxylase (GAD) produces fast synaptic inhibi-
tion in neurons through activating GABAA receptors, a
GABA-gated anion channel. In addition to its conven-
tional role in synaptic transmission, GABAA receptors
also exert novel anti-inflammatory properties in the cen-
tral nervous system [11] and in peripheral immune cells
[12].

It is interesting that recent studies have demonstrated
that GABAA receptors are also expressed in lung airway
and alveolar epithelial cells [13–16]. However, their local
role in response to inhalation of SEVO remains to be
investigated in the context of ALI. We thus hypothesized
that anesthesia with SEVO attenuates pulmonary inflam-
matory response through activation of GABAA receptors
in lung epithelial cells. To test this hypothesis we exam-
ined the effects of SEVO on the expression of GABAA

receptors and cytokine responses in a rat model of ALI,
and the specific effects of GABA on cytokine responses in
vitro in human lung epithelial cells.

Materials and methods

Anesthesia and mechanical ventilation

The study was approved by the institutional Animal Care
Committee (ACC948) of St. Michael’s Hospital. Thirty-
four Sprague–Dawley rats (250–350 g) were randomly
assigned to receive anesthesia with either ketamine ?
xylazine (KX, n = 17) or sevoflurane (SEVO, n = 17).
In the KX group, anesthesia was induced using ketamine
at 80 mg/kg and xylazine at 8 mg/kg intraperitoneally,
followed by continuous intravenous (i.v.) infusion of
ketamine at 15 mg/kg/h and xylazine at 3 mg/kg/h. In the
SEVO group, anesthesia was induced by 3.5 vol % SEVO
in a closed chamber and maintained with 2.6 vol %.
These doses of anesthetics were chosen on the basis of
pilot experiments targeting similar mean arterial blood
pressure (MAP) and comparable depth of anesthesia
defined by no reaction to toe pinches prior to neuromus-
cular blockade. Tracheotomy was performed followed
by intratracheal intubation with a 14G angiocatheter.
Neuromuscular blockade was achieved by i.v. infusion of
pancuronium at 0.5 mg/kg/h.

The following initial settings were applied using a
rodent ventilator (Harvard 683): inspired oxygen fraction
(FIO2) of 0.40, positive end-expiratory pressure (PEEP) of
5 cmH2O, tidal volume (VT) of 6 mL/kg, and respiratory
rate (RR) adjusted to keep arterial partial pressure of CO2

(PaCO2) between 35 and 45 mmHg. The right carotid
artery was cannulated (0.58 mm ID polyethylene tube)
for continuous blood pressure monitoring. Intravenous
infusion of lactated Ringer’s solution at 3 mL/kg/h was
administered through the tail vein in all animals. Rectal
temperature was maintained at 37 ± 1 �C using a heating
blanket.

Two-hit model of ALI

All animals received intratracheal instillation of endo-
toxin at 5 mg/kg (LPS, Escherichia coli serotype 055:B5,
Sigma-Aldrich). Thirty minutes later, mechanical venti-
lation was switched to high VT at 15 mL/kg and
PEEP = 0 cmH2O for 4 h.

Measurements

Mean arterial blood pressure was monitored in a real-time
fashion. Arterial blood gases (PaO2, PaCO2) were recor-
ded hourly throughout the experiments.

Bronchoalveolar lavage (BAL) was performed in the
left lung by using cold normal saline upon completion of
the experiments. The BAL fluid was centrifuged at 4 �C
and 1,2009g for 10 min and the supernatant was stored at
-80 �C for further analysis.
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Lung wet/dry ratio (WD ratio) was obtained after
excision of the right lung and drying at 60 �C for 72 h.

The concentrations of glucose and lactate in blood
were measured (Radiometer ABL 700 blood gas ana-
lyzer) at the end of the study.

Levels of intercellular adhesion molecule 1 (ICAM-1)
and multiple cytokines including interleukin-1b (IL-1b),
IL-2, IL-4, IL-10, IL-12, keratinocyte chemoattractant
(KC), monocyte chemotactic protein-1 (MCP-1), macro-
phage inflammatory protein-1 alpha (MIP-1a), and tumor
necrosis factor-alpha (TNF-a) were measured using spe-
cies-specific multiplex cytokine assays (Bio-Rad) as
previously described [17].

Basal expression of GAD (GAD65/67 antibody, Abcam,
Inc., Cambridge, MA) and GABAA receptors (GABAA

receptor alpha 2 antibody, Abcam, Inc.) was detected by
immunohistochemistry in rats killed by cervical dislocation
without undergoing the experimental protocol to serve as
healthy controls. The methods have been previously
described by the authors [15]. GAD expression was also
assessed by Western blot (GAD65/67 antibody, Abcam,
Inc.) analysis as previously described [15].

Cell culture and treatment

Human bronchial epithelial cells (BEAS-2B, ATTC) were
cultured in full confluence and incubated with GABA
(100 nM) alone or GABA ? picrotoxin, a GABAA

receptor antagonist (PTX, 50 nM) for 10 min, followed
by stimulation with LPS at 100 ng/mL (Escherichia coli
serotype 055:B5, Sigma-Aldrich) for 4 h. This dose of
LPS has been previously used for induction of inflam-
matory responses [18].

Statistical analysis

Data are presented as mean and standard deviation. Stu-
dent’s t test for unpaired samples was used to compare
differences among groups at time zero and for post-
mortem analysis. Repeated measurements over time were
analyzed with two-way analysis of variance for repeated
measurements and adjusted with the Bonferroni post test.
Statistical significance was considered if p \ 0.05.

Results

Body weight was similar in all animals. The amount of
fluid infused was not different in both groups
(11.3 ± 0.7 mL in SEVO group vs. 12.5 ± 1.4 mL in
KX group). Although the glucose level was slightly
higher in the SEVO group than in the KX group
(8.59 ± 0.57 mmol/L vs. 7.83 ± 0.18 mmol/L) the dif-
ference did not reach statistical significance. However, a
lower level of lactate in blood was observed in the SEVO
group than the KX group (2.26 ± 0.23 mmol/L vs.
3.35 ± 0.45 mmol/L, p \ 0.05).

Hemodynamics and gas exchange

Mean arterial blood pressure and PaCO2 showed a similar
time course in all animals (Fig. 1a, b respectively). Partial
pressure of oxygen decreased significantly starting 2 h
after high VT ventilation in the KX group as compared to
the SEVO group (Fig. 1c). The decreased level of PaO2

Fig. 1 a Mean arterial blood
pressure (MAP), b arterial
partial pressure of carbon
dioxide (PaCO2), and c arterial
partial pressure of oxygen
(PaO2) in animals anesthetized
with ketamine/xylazine (KX) or
sevoflurane (SEVO) over time.
d Lung wet/dry weight ratio
was determined at the end of
4-h mechanical ventilation
started 30 min after LPS
administration. N = 17 per
group
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was associated with an increase in lung wet/dry ratio sug-
gesting greater lung permeability in the KX group (Fig. 1d).

Pulmonary inflammatory response

The total leukocyte count in BAL fluid was significantly
lower in the SEVO group compared to the KX group
(0.85 ± 0.04 9 106 vs. 1.03 ± 0.05 9 106, p \ 0.05).
Although there was a trend of decrease in the percentage
of polymorphonuclear cells over the total leukocytes
(55 ± 5 vs. 69 ± 6 %), the difference did not reach sta-
tistical significance. The cytokine profile in BAL fluid
showed lower levels of TNF-a, MIP-1a, IL-1b, KC,
MCP-1, and ICAM-1 under anesthesia with SEVO com-
pared to that under anesthesia with KX (Fig. 2).

Immunohistochemistry

Immunohistochemistry showed a basal expression of GAD
and GABAARa unit colocalized with lung epithelium
stained with surfactant protein C of healthy rats (Fig. 3a).
Western blot assay showed a higher protein level of GAD in
the SEVO group than in the KX group (Fig. 3b).

In vitro BEAS-2B cell experiments

To investigate the specific effects of GABA in lung
epithelial cells, human BEAS-2B cells were stimulated
with LPS followed by treatment with GABA, PTX, or
GABA ? PTX. We first confirmed that the dose of PTX
used did not induce cytotoxicity as reflected by a constant
LDH level before and after PTX administration [19]; thus,
cell viability was no affected (data not shown). Interleu-
kin-1b was significantly reduced with GABA and
GABA ? PTX compared to control and PTX alone group
(Fig. 4a). Interleukin-2 was significantly decreased with
GABA and PTX compared to GABA ? PTX (Fig. 4b).
The concentrations of IL-8 and IL-10 decreased signifi-
cantly with GABA, which was reversed by administration
of PTX (Fig. 4c, d respectively).

Discussion

We demonstrate that anesthesia with SEVO improves
oxygenation and reduced pulmonary cytokine responses
associated with increased expression of GABAA as
compared to anesthesia with KX. These results suggest
that the activation of GABAA receptors may play a role in
the lung-protective effect seen with SEVO.

An established two-hit model was chosen for its
clinical relevance in that primary lung inflammation/

injury was followed by mechanical ventilation as a
treatment [6]. Since the use of either ketamine or xylazine
alone is not recommended, a regime of the combination is
commonly used for animal anesthesia [20]. We examined
two regimes of anesthesia by choosing SEVO and KX in
the present study. To avoid possible interference and/or
crossover effects between the SEVO and KX, the same
anesthetic regime was used for both induction and
maintenance. Because the two anesthetic regimes func-
tion through distinct mechanisms of action, this would
help us understand the possible signaling pathways
responsible for their effects. SEVO acts mainly via ago-
nistic effects on GABAA receptors. Ketamine interacts
mainly with the NMDA-subtype glutamate receptor, but
at high, fully anesthetic level doses, it binds to opioid l
receptors and sigma receptors [21–23].

In comparison with SEVO, ketamine has minor effects
by selectively acting on a6 and d subunits of GABA
receptors [22]. The majority of literature suggested that
ketamine exerts antagonistic action at the GABAA

receptor complex [24–26]. In particular, ketamine has
been reported to decrease the GAD67 isoform [27]. Our
results are in agreement with these previous studies [25–
27]. It is noted that subanesthetic doses of ketamine
reportedly inhibit tonic convulsions induced by the
GABAA receptor antagonist bicuculline, and the latter
antagonized ketamine anesthesia [28]. However, the
suggested agonistic effects of ketamine on GABAA are
yet to be examined specifically under in vitro and in vivo
conditions. Xylazine is a clonidine analogue acting on
presynaptic and postsynaptic receptors of the central and
peripheral nervous systems as an a2-adrenergic agonist
that is used primarily for sedation, anesthesia, analgesia,
and muscle relaxation in animal models [29]. Similar
drugs such as clonidine and dexmedetomidine are
increasingly used in clinical anesthesia and critical care
[30]. The different pharmacological actions of the anes-
thetics used in this study may explain their distinct anti-
inflammatory properties. In addition, paralysis was
applied by administration of a given dose of pancuronium
in all animals to achieve animal–ventilator synchrony in
order to minimize signal to noise ratio and to enhance
reproducibility of the experiments. It is therefore evident
that the paralysis was part of the anesthesia regimes used
in the present study.

Various inflammatory mediators including the cyto-
kines TNF-a and IL-1b, chemokines, and ICAM-1 have
been shown to act as effector molecules in the disruption
of the epithelial and endothelial barrier during mechanical
ventilation [31, 32]. We observe that the administration of
SEVO attenuated the production of the inflammatory
mediators in the lung and thus reduced lung permeability.
Our results are in agreement with other studies showing
anti-inflammatory effects of volatile anesthetics in a
variety of in vivo and in vitro models. In an ischemia–
reperfusion model of acute kidney injury, Lee et al. [33]
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reported direct anti-inflammatory and antinecrotic effects
of SEVO by activation of prosurvival kinases and
increase in de novo synthesis of heat shock protein 70.
Boost et al. [8] demonstrated that isoflurane, acting also
on GABAA receptors [34], attenuates the release of IL-8
and heme oxygenase 1 in human monocytic THP-1 cells
in vitro through a mechanism by which the volatile
anesthetic stabilizes the NF-jB inhibitory pathway.

Interleukin-10 was originally discovered as the cyto-
kine synthesis inhibiting factor on the basis of its
biological activity. It downregulates the expression of
pro-inflammatory cytokines such as IL-1b, MHC class II
antigens, and co-stimulatory molecules by upregulation of
itself. In the present study, the administration of GABA

attenuated the LPS-induced production of IL-1b and
IL-10 in BEAS-2B cells. This phenomenon is consistent
with previous reports showing that concentrations of
IL-1b and IL-10 increased in response to LPS challenge
to counterbalance the pro- and anti-inflammatory
responses [35, 36].

A recent study by Faller and colleagues [37] reported
that the administration of the volatile anesthetic isoflurane
resulted in a reduction in lung damage, inflammation, and
stress protein expression in a mouse model of VILI using
a tidal volume of 12 mL/kg for 6 h. Our data are con-
sistent with their observation despite that we use a two-hit
model of ALI followed mechanical ventilation under the
anesthesia with SEVO. Taken together, our results and the

Fig. 2 Cytokine and ICAM-1
responses in animals
anesthetized with ketamine/
xylazine (KX) or sevoflurane
(SEVO). Bronchoalveolar
lavage (BAL) fluid was
obtained at the end of 4-h
mechanical ventilation started
30 min after LPS intratracheal
administration. a Tumor
necrosis factor-alpha (TNF-a),
b macrophage inflammatory
protein-1 alpha (MIP-1a),
c interleukin-1 beta (IL-1b),
d keratinocyte growth factor
(KC), e monocyte chemotactic
protein-1 (MCP-1), and
f intracellular adhesion
molecule-1 (ICAM-1).
N = 17 per group
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previous study [37] support the concept that volatile
anesthetics exert anti-inflammatory effects protecting the
lung from injury.

Volatile anesthetics produce anesthetic action pri-
marily by binding to GABAA receptors in neurons of the
central nervous system (CNS) [15]. Specifically, SEVO
activates GABAA receptors in the CNS resulting in an

inhibition of neuronal activities [9, 15]. We have previ-
ously discovered the existence of GAD and GABA
receptors in human airway epithelial cells [15], and other
investigators identified GABA receptors in alveolar epi-
thelial type II cells [14]. In an ongoing study, we observed
that volatile anesthetics including SEVO also enhance
GABAA receptor-mediated anion current in pulmonary

Fig. 3 Lung expression of GAD and GABAAR receptor. a Immu-
nohistochemistry staining for the epithelial marker surfactant
protein C (SPC; green), and GAD (red), GABAAR (red) and their
overlay (orange) in healthy rat lungs. b Western blot for detection

of GAD in animals anesthetized with KX or SEVO at the end of 4-h
mechanical ventilation started 30 min after LPS intratracheal
administration. Average expression of GAD over b-actin was from
five experiments

Fig. 4 Cytokine responses in
BEAS-2B cells. Concentration
of a interleukin-1b,
b interleukin-2, c interleukin-8,
and c interleukin-10 measured
in cell culture supernatants of
human bronchial epithelial cells
(BEAS-2B) stimulated with
LPS (control) followed by
incubation with gamma-
aminobutyric acid (GABA),
picrotoxin (PTX), or
GABA ? PTX for 8 h. N = 5
experiments per group
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epithelial cells. In the present study, we further confirmed
the presence of GAD and GABAA receptors both in rat
airway and alveolar epithelial cells. We also demonstrate
that anesthesia with SEVO results in an increase in
expression of GAD and GABAA receptors in the lung
compared with KX. We speculate that an increase in
GAD expression after SEVO administration may be due
to a positive feedback mechanism as a result of the
binding between SEVO and GABAA receptors.

The concentrations of cytokines were lower and the
GAD expression was higher in the SEVO group than in
the KX group under in vivo conditions. These observa-
tions suggest that SEVO exerts anti-inflammatory
properties partially by upregulation of GABA receptors.
This concept was further supported by the in vitro lung
epithelial cell studies where LPS-induced cytokine
responses were attenuated in the presence of GABA,
which was reversed by the administration of picrotoxin.
Furthermore, it has been reported that an increase in
surface levels of GABAA receptors requires the activity of
phosphoinositide 3-kinase (PI3K) and protein kinase C
[38]. This is in accord with a recent study reporting that a
mechanism by which isoflurane reduced VILI was
through increasing phosphorylation of Akt protein, since
the inhibition of phosphoinositide 3-kinase/Akt signaling
prior to mechanical ventilation completely reversed the
lung-protective effects of isoflurane in mice [37].

It is noteworthy that anesthesia with SEVO or KX may
result in hyperglycemia in rats [39, 40]. Clinical and
experimental data suggest that hyperglycemia is protec-
tive against the development of ALI/ARDS [41]. We
observe that the blood glucose level was higher in the
SEVO group than in the KX group although the differ-
ence did not reach statistical significance. However,
whether a different effect on glycemia between SEVO

and KX might provide an additional pathway by which
SEVO exerts a protective effect remains to be further
investigated.

There are several limitations in the study. (1) The
experimental double-hit model used may not reflect the
complex clinical scenario seen in patients with ALI/
ARDS. (2) The involvement of GABAA receptors was the
focus of the study; whether other mechanisms are also
responsible for the protective effects of SEVO remains to
be elucidated. (3) As the study design compares the
modulation of pulmonary inflammatory responses during
mechanical ventilation by two different anesthesia regi-
mens, it is impossible to conclude whether the difference
is due to the protective effects of one or the detrimental
effects of the other single agent. (4) We focused the
investigation on SEVO in the present study; further
studies using other volatile (e.g. desflurane or isoflurane)
or intravenous (i.e. propofol or midazolam) anesthetics
are warranted.

In summary, we demonstrate that anesthesia with
sevoflurane can improve oxygenation and reduce pul-
monary cytokine responses as compared to ketamine/
xylazine. The protective effects of sevoflurane appear to
be associated with its agonistic effects at GABAA

receptors.
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