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Abstract As a by-product of heme
catabolism by the heme oxygenase
system, carbon monoxide (CO) has
been neglected for many years,
and only recently has its role as an
essential signaling molecule been ap-
preciated. In the past decade, the use
of CO gas in pre-clinical experimental
models of disease has produced some
remarkable data indicating that its
therapeutic delivery to mammals
could alleviate inflammatory pro-
cesses and cardiovascular disorders.
However, the inherent toxic nature of
CO cannot be ignored, knowing that
inhalation of uncontrolled amounts of
this gas can ultimately lead to serious
systemic complications and neuronal
derangements. From a clinical per-
spective, a key question is whether

a safe and therapeutically effective
threshold of CO can be reached
locally in organs and tissues without
delivering potentially toxic amounts
through the lung. The advent of
CO-releasing molecules (CO-RMs),
a group of compounds capable of
carrying and liberating controlled
quantities of CO in cellular systems,
appears a plausible alternative in the
attempt to overcome the limitations
of CO gas. Although in its infancy
and far from being used for clinical
applications, the CO-RMs technolo-
gy is supported by very encouraging
biological results and reflected by the
chemical versatility of these com-
pounds and their endless potential
to be transformed into CO-based
pharmaceuticals.

Introduction

Because of its bad reputation as an odorless, colorless and
silent killer, carbon monoxide (CO) eluded for decades
investigation by scientists, who thought that no biological
relevance could emerge from exploring the physiological
effects of such a toxic gas. This is because CO binds
very strongly to the iron atoms in hemoglobin and can
significantly reduce the oxygen-carrying capacity of
this protein after inhalation at relevant doses and for
prolonged periods of time, consequently leading to tissue
hypoxia [1]. The affinity between CO and hemoglobin
is, indeed, approximately 220 times stronger than the
affinity of hemoglobin for oxygen, and the preferential
binding of CO to heme iron with the subsequent formation
of carbonmonoxy-hemoglobin (HbCO) may lead to CO
poisoning in humans [2]. However, the perception that CO

can exert only negative effects is challenged by studies
corroborating cytoprotective and anti-oxidant activities
of inducible heme oxygenase-1 (HO-1), the enzyme that
produces CO in the body [3]. In this context, increased
generation of endogenous CO in stressful conditions
may reflect a dynamic and active involvement of this
by-product in the protective response [4]. This notion
dovetails with the fact that in the majority of experimental
models where a beneficial participation of HO-1 has been
demonstrated, CO “at appropriate doses” exerts a com-
parable protective effect on its own, even when heme
oxygenase activity is totally abolished [4, 5]. The tissues
of most mammals, including humans, have the ability to
generate CO locally as cells express both inducible (HO-1)
and constitutive (HO-2) heme oxygenase isoforms [3].
These enzymes, which utilize heme as substrate for the
concomitant production of CO, iron and biliverdin, are
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present in all tissues examined so far, with high abundance
in the brain (HO-2), liver (HO-2 and HO-1), spleen
(HO-1), vascular endothelial cells and smooth muscle
tissues (HO-1 and HO-2). Because a comprehensive
report on the regulation and biological roles of heme
oxygenase enzymes in response to stress can be found
in this issue as part of a “Mini-series on Basic Research
and Intensive Care Medicine” (see Bauer M. et al., “The
heme oxygenase–carbon monoxide system: regulation
and role in stress response and organ failure”; DOI
10.1007/s00134-008-1010-2), this article will focus on
the bioactive and potential therapeutic properties of CO.
Specifically, in the following sections we will: (1) review
the pathophysiological effects and the signaling properties
of CO in mammals; (2) assess the role of CO as a marker
of disease in humans; (3) examine the therapeutic potential
of CO gas inhalation; and (4) propose an alternative way
of delivering CO to cells and tissues based on a new class
of CO-releasing molecules (CO-RMs). The beneficial
effects of CO will be analyzed with the perspective of
using CO as a pharmaceutical for the treatment of diverse
pathological conditions, with a particular emphasis on
lung disease, systemic inflammation and cardiovascular
disorders.

Carbon monoxide: toxic effects versus signaling
actions

To reiterate the toxic effects of CO, an increase in the lev-
els of HbCO in humans is generally perceived as an indi-
cation of impaired oxygen delivery to tissue. However, and
contrary to what one would intuitively expect, we need to
realize that CO poisoning is a poorly defined pathophysi-
ological event, and the assessment of its injurious effects
cannot rely solely on the levels of blood HbCO [2]. The
data in the literature on this subject are difficult to inter-
pret, as the quality of health outcomes in CO-poisoned pa-
tients usually does not correlate with HbCO levels, there is
a lack of proper control groups in the studies, and the re-
sults are often confounded by different times of exposure
to CO, the presence of anesthesia and the auto-regulatory
mechanisms that may differ significantly among individu-
als [2]. For instance, persistent functional deficits or neu-
ropsychiatric sequelae are experienced by 11–30% of pa-
tients who have had CO poisoning but this strictly depends
on whether the event was acute (short exposure to high
levels of CO) or chronic (long exposure to low levels of
CO) [6]. The percentage of HbCO in blood still remains
at present the best predictive marker for extrapolating the
amount of CO present in the body. Based on this, the data
reported so far in the literature indicate that a 15–20% pro-
portion of HbCO is, in the majority of cases, not detrimen-
tal and can be considered the “biological threshold” for CO
tolerance in humans beyond which severe CO-mediated in-
jury is likely to occur.

Most studies conducted so far suggest that endoge-
nously generated CO and exogenous CO gas, inhaled
at doses whereby the oxygen-carrying capacity of
hemoglobin is not severely compromised (HbCO < 20%),
elicits protection and beneficial outcomes, covering a vast
array of responses against multiple organ injury, inflam-
mation, apoptosis, cell proliferation, vasoconstriction
and both systemic and pulmonary hypertension [4, 7–9].
The initial evidence supporting a beneficial action of CO
originated from studies on lung injury in animals [10]
and was reproduced later in almost all tissues exam-
ined, including heart, liver, kidney, intestine and the
reticulo-endothelial system [4, 7]. Although this scenario
emphasizes the pleiotropic activities of CO and offers
a wide range of practical applications to explore, it also
indicates a complicated CO-dependent signaling network
that varies in response to a specific stimulus and the type
of tissue being considered. Research aimed at understand-
ing the mechanisms and signaling pathways involved in
CO-mediated activities is still in its infancy, and the mech-
anisms proposed explain only partially the physiological
action of CO. It is possible that a concerted action of
several crucial pathways mediate the cellular activities of
CO in diverse conditions. For example, guanylate cyclase
activation is a likely target of CO-mediated regulation
of vessel tone and blood pressure [11, 12]. Similarly,
mitogen-activated protein kinases (MAPKs), especially
the P38 protein, phosphatidylinositol 3-kinase (PI3-K)
and NFkB signaling pathways, have been implicated
in the anti-apoptotic and anti-inflammatory function of
CO [4, 7, 8], although the precise “molecular switch”
responsible for this activation remains to be identified.
Hence, the actions mediated by CO seem to invoke,
directly or indirectly, different signaling mechanisms in
different cell types and tissues.

Thus, the findings on cellular and animal models re-
flect favorably on the potential use of “small amounts” of
CO gas as a therapeutic agent in stressful conditions, but at
the same time the multiplicity of CO effects and its versa-
tile action make its specific target(s) difficult to decipher.
With the recent development of controlled methods for CO
delivery (CO-releasing molecules or “CO-RMs”) to tar-
get different pathological conditions, [13–15], the prospect
that CO could become a therapeutic option in the near fu-
ture is feasible (see below).

Measurements of endogenous CO production
in humans: role of CO as a marker of disease

With the recognized importance of the heme oxygenase
system in protection against oxidative stress, scientists be-
gan to measure CO levels in different models of tissue in-
jury in animal species. Generally, CO levels are found to
correlate either with the degree of stress or with increased
survival. Although still limited in number, human clini-
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cal trials report similar responses inasmuch as critically
ill patients produce higher amounts of CO than healthy
controls [16]. Scharte and colleagues examined in a recent
study whether endogenous CO production correlated with
the severity of disease in intensive care patients who were
mechanically ventilated [17]. Interestingly, critically ill pa-
tients suffering cardiac disease and those subjected to dial-
ysis exhibited higher amounts of CO than other critically
ill patients. The levels of CO correlated also with serum
bilirubin, the other catabolite of heme degradation by heme
oxygenase, and with serum creatinine, in accordance with
the severe renal failure developed by these patients [17].
The production of CO is also higher in septic patients than
in control subjects and, importantly, the levels of CO mea-
sured at 1 day were more elevated in the survivors of sep-
sis than in non-survivors [18]. Another investigation found
no correlation between exhaled CO and severity of illness
or degree of inflammation, but observed a strong trend of
higher levels of exhaled CO in the survivors group than
in non-survivors [19]. A significant correlation between
HbCO levels and increased leukocyte counts in intensive
care patients was reported by Hunter and co-workers [20].
In particular, these authors noted that an increase in the
white blood cell count is associated with an increase in the
severity of illness and suggest that CO may play a direct
role in the pathogenesis of the disease. Similar results have
also been reported in the pediatric age group. Shi et al. [21]
suggested that CO might be a mediator in the pathogene-
sis of neonatal sepsis after observing significantly higher
levels of exhaled CO in full-term septic infants admitted
to neonatal ICU than in healthy neonates. An interesting
correlation between cGMP and HbCO levels in pre-term
infants with respiratory distress syndrome has also been
described, sustaining the possibility that CO-mediated in-
crease in cGMP contributes to systemic vasodilatation and
hypotension in pre-term infants [22].

Collectively, the studies highlighted above point to im-
portant issues and raise more questions on the significance
of CO levels in a clinical setting. Can CO levels serve
as a marker of disease progression or severity? Could
CO measurements possess potentially useful prognostic
value? Is increased CO production an indication of the
involvement of the gas in the pathogenesis of disease,
or is it a sign of augmented heme oxygenase activity in
response to stress conditions? These points have special
relevance to acute pathological conditions, where a fluc-
tuation of CO production would be expected to occur
during the course of the disease. Based on the evidence
accumulated so far, we speculate that measurement of
CO levels at the early stages of pathological states might
be crucial in understanding and predicting outcomes
such as survival in intensive care cases. There may also
be specific diseases where measurements of CO levels
provide important insights into the evolution of the disease
state, in which case an effort is required to identify the
clinical settings where detection of CO would be most

useful. In this respect, the scientific literature indicates
preferential pathologies to explore, such as hemato-
logical diseases characterized by hemolysis. A recent
study showed that exhaled CO levels, measured with
a commercially available end-tidal CO (ETCO) monitor,
were higher in children with sickle cell disease than
in controls and pointed to the use of the technique as
a reliable method to monitor hemolysis in children [23].
Furthermore, the use of CO as a marker of inflammation
may be appropriate in several inflammatory conditions
of the respiratory tract and other systems, since exhaled
CO levels reflect the severity of pulmonary inflammation
in asthmatic patients (responding also to steroid ther-
apy) [24], nasal CO levels are elevated in patients with
seasonal allergic rhinitis [25], and CO levels measured
in the lumen of the human colon increase in patients in
the active stage of ulcerative colitis [26]. Exhaled CO
is also higher than normal in prematurely born infants
who develop bronchopulmonary dysplasia [27] and in
patients with cystic fibrosis [28]. Most recently Tran
and colleagues reported that HbCO levels is increased in
cirrhotic patients, but no correlation was found with the
severity of the disease [29]. In contrast, elevated arterial
HbCO was found in critically ill patients, arguing that
there might be an optimal therapeutic range for HO-1
induction [30].

Therapeutic potentials of CO gas inhalation

Effects of CO gas on lung disease

The fact that increased expression of stress-induced
HO-1 was observed in broncho-alveolar epithelial and
macrophage cells after acute lung injury such as hyper-
oxia [10], ischemia [31] and acute respiratory distress
syndrome (ARDS) [32] suggests a contribution of the
HO-1 pathway to pulmonary function during pathological
states. Higher levels of exhaled CO were also reported
in experimental ARDS [33] and after acute lung injury
induced by extracorporeal circulation [34], indicating the
actual availability of substrate for sustaining increased
heme oxygenase activity in pulmonary tissue. Studies
performed in lung epithelial cells [35] and fibroblasts [36]
confirmed that HO-1 overexpression and/or CO gas
treatment conferred resistance to oxidative damage,
TNF-α-mediated apoptosis and ischemic lung injury [37].
Although not strictly the focus of this review, it should
be mentioned that the other by-products of HO-1 ac-
tivity (biliverdin and bilirubin) also exhibit significant
cytoprotective and anti-oxidative effects both in the
lung and cardiovascular system [38]; a key difference
between biliverdin/bilirubin and CO might originate
in the unique signaling (and ubiquitous) action of CO,
compared to the direct oxidant-scavenging activity of the
biliverdin/bilirubin couple.
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CO gas administration was initially shown to provide
protection of the lung against hyperoxic injury [10]
in rats. The study is of particular importance because:
(1) it was the first to consider inhalation of CO at low
concentrations as a therapeutic strategy to combat acute
diseases; and (2) it proposed anti-inflammatory and anti-
apoptotic actions of CO as likely mechanisms involved
in the observed protection. The beneficial properties of
CO were then confirmed in models in vitro and in vivo,
showing that CO reduces the inflammation associated
with allergen-induced asthma in mice [39], protects
against orthotopic lung transplantation [40] and lung
injury caused by oxidants [41], and reverses established
pulmonary hypertension [9]. Mitogen-activated protein
kinases (p38, MKK3) [41], caspase-3 [37] and cGMP-
dependent mechanisms [42] appear to mediate some of
the cytoprotective effects elicited by CO gas in the lung.
Furthermore, there is evidence that CO inhalation is effec-
tive against ischemic lung injury by attenuating deposition
of fibrin in the microvasculature [31, 42], a crucial factor
in the pathophysiology of this condition, and by reducing
TNF-α production and neutrophil recruitment to alveoli
in ventilator-induced injury [43]. Conversely, the positive
view emerging from the use of CO inhalation as a potential
therapeutic approach in lung disease has been challenged
by Clayton and co-workers, who reported no significant
benefit of CO treatment on hyperoxic acute lung injury
and observed neurotoxicity at relatively low levels of CO
exposure (200 and 500 ppm) [44].

CO gas and systemic inflammation

The anti-inflammatory action of CO is perhaps the most
intriguing and potentially useful for the future therapeutic
application of CO, inflammation being the underlying
cause of a variety of chronic pathologies, including
cardiovascular disease, diabetes, cancer and obesity, as
well as representing an innate body response in acute
conditions such as bacterial infection. In several in vitro
cell culture models CO gas reduces the production of pro-
inflammatory cytokines (TNF-α, IL-1β) induced by LPS
and stimulates the release of IL-10, an anti-inflammatory
molecule [8]. A similar effect, sometimes involving dif-
ferent cytokines (e.g. IL-2 or IL-6), is observed in animal
experiments where inflammation is caused by LPS [8, 45],
ischemia–reperfusion and organ transplantation [46] or by
aeroallergens such as ovalbumin [39].

It is often stated that this beneficial outcome of CO
mimics the anti-inflammatory activity of HO-1, which was
originally identified as a key factor in the resolution of
inflammation in carrageenan-mediated acute pleurisy [47]
and was subsequently demonstrated to play a major
role in counteracting inflammation in many animal mod-
els [7, 48] and in human HO-1 deficiency [49]. This view is
also partially supported by experiments showing that in

the absence of HO-1 (HO-1-deficient mice and cells,
or inhibition of heme oxygenase activity), exogenously
administered CO provides full protection by itself [48].
However, it is highly unlikely that the amount of CO
synthesized following induction of HO-1 can reach the
high levels used in studies employing CO gas, suggesting
that the mimicking action between the HO-1/CO system
and CO gas is questionable. This point is well exempli-
fied by a study in which HbCO levels were measured
following either HO-1 up-regulation or CO inhalation
in a model of lung transplant in mice. Minamoto and
colleagues [42] reported that treatment of mice with
cobalt protoporphyrin (5 mg/kg), which significantly
raised tissue HO-1 expression, resulted in HbCO levels
of 0.4% (from a baseline of ~0.2%), while exposure to
250 ppm CO caused an increase in HbCO to 17%. Both
enhanced HO-1 protein and exogenous CO reduced to
a similar extent the production of inflammatory cytokines
and airway luminal occlusion after transplantation, but it
could be argued that different cellular mechanisms were
involved in the protection achieved by the two treatments,
since the HbCO levels were so different. Looking at this
issue from another angle, we predict that administration
of a very small amount of CO gas that increases HbCO
from 0.2% to 0.4% would probably not elicit any ben-
eficial effect. Nevertheless, the ability of CO to exert
therapeutic activities per se should continue to be explored
regardless of whether it mimics HO-1 induction or not;
the recent observations that CO inhalation (500 ppm for
1 h) at various time points after injection of a lethal dose
of endotoxin rescues 20–90% of mice from fulminant
hepatitis [50] emphasize the potential importance of CO
therapy in an intensive care setting. However, it should
be noted that inhalation of CO (500 ppm) in a pilot trial
on human volunteers could not reduce the inflammatory
response elicited by experimental endotoxemia [51],
even though HbCO levels significantly increased to 7%.
These results are in contrast to those of animal studies, in
which even lower doses of CO (250 ppm) could decrease
LPS-induced inflammation [52], underlining the need for
a better characterization of CO action in humans.

CO gas and the cardiovascular system

A recent report demonstrated that chronic inhalation of CO
gas in rats for 72 weeks at doses found in tobacco smoke
(200 ppm), which results in a steady-state level of 14%
HbCO, is associated with myocardial hypertrophy but is
not responsible for the respiratory pathology, atherogene-
sis, weight loss and tumor development that often typify
cigarette smoking [53]. It has to be noted that the majority
of studies conducted in animal experimental models of
disease used acute rather than chronic CO gas inhalation
(250–500 ppm for 1–24 h) showing that this approach can
reduce significantly ischemia–reperfusion injury in most
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of the vital organs, including the heart [46, 54, 55]. CO
has been demonstrated to diminish ischemia–reperfusion
injury associated with cardiac rejection after transplan-
tation [5]. These protective effects of CO are related
not only to its anti-apoptotic, anti-inflammatory and
vasodilatory functions but also to its ability to suppress
platelet aggregation and fibrinolysis. Furthermore, a newly
identified role for CO in promoting cardiac mitochon-
drial biogenesis [56] indicates that the gas may regulate
intracellular utilization of energy and participate in those
pathologies characterized by mitochondrial dysfunction.
This is consistent with the finding that CO inhalation
improves cardiac energetics, thereby protecting the heart
against ischemic injury in pigs [57]. Positive findings on
the effects of CO inhalation on myocardial function in
humans are scarce as the data once again derive primarily
from subjects affected by CO poisoning, who inevitably
show symptoms of cardiotoxicity such as arrhythmia,
angina pectoris and tachycardia [6]. However, in this
context two studies should be mentioned in which patients
were transplanted using hearts from non-conventional
donors such as those who died of CO poisoning [58]. The
retrieval and use of non-conventional donors in the setting
of transplantation is important because of the growing
imbalance between the supply of and demand for donor
organs. The studies showed that the transplanted patients
had an overall satisfactory recovery, indicating that CO-
poisoned hearts and possibly other CO-poisoned organs
can be used for intrathoracic transplantation [58]. These
data are also in line with the recent findings showing that
ex-vivo treatment of different organs with cold preserva-
tion solutions containing CO-releasing agents (see section
below) can improve their function at reperfusion [59].

The CO-mediated protection of the heart and other
organs may be a reflection of the positive effects of this gas
on vascular activities. A direct pharmacological action of
CO in the cardiovascular system is, indeed, apparent when
considering the modulation of vascular tone. Although
NO plays a major role in controlling vessel contractility
in normal conditions, a lesser role for endogenous CO is
also present and may become more relevant when NO
signaling pathways are disrupted [12]. The vasodilatory
action of CO is associated with guanylate cyclase (sGC)
activation and consequent production of cGMP as well as
stimulation of various potassium channels [60], but other
unidentified mechanisms might be involved. Interestingly,
CO caused vasoconstriction rather than dilatation in gra-
cilis muscle arterioles [61], suggesting that CO-mediated
vascular responses are tissue-dependent. In general,
however, CO elicits vasodilatation in all other vessels
investigated, including the aorta and vessel of the cerebral
circulation [60, 62]. By administering CO via intravenous
injection of different doses of CO-saturated saline so-
lutions, Hangai-Hoger and colleagues showed that CO
produced vasodilatation and improved microvascular
hemodynamics (vessel diameter, red blood cell velocity

and functional capillary density) in the hamster window
chamber model [63]. The possibility of developing CO
as a true pharmaceutical is, however, exemplified by the
development of CO-releasing molecules.

Carbon monoxide-releasing molecules:
a crucial step towards the development
of CO-based pharmaceuticals

At the time our group started to appreciate that transition
metal carbonyl complexes commonly used in catalysis
and synthetic chemistry can release CO under appropriate
experimental conditions [64], the first indications of
the cytoprotective effects of CO gas inhalation were
published [10]. These notions, combined with the tan-
gible prospect of chemically modifying transition metal
carbonyls for pharmaceutical purposes, motivated us to in-
vestigate the biological action of this class of compounds.
Three consequential steps led us to ascertain the feasi-
bility of exploiting CO-releasing molecules (CO-RMs)
for therapeutic purposes. First of all, two commercially
available transition metal carbonyls, subsequently termed
CORM-1 (Mn2CO10) and CORM-2 [Ru(CO)3Cl2-dimer],
proved unequivocally to liberate CO when stimulated
under appropriate physiological conditions and promoted
vasodilatation and hypotension in vivo [65]. Notably,
these two compounds are lipid-soluble and were tested
using dimethylsulfoxide (DMSO) as both a solvent and
a vehicle for our biological experiments [65]. Secondly,
we succeeded in synthesizing the first prototypic example
of a water-soluble transition metal carbonyl (CORM-3),
which is stable in aqueous solutions but rapidly releases
CO (t1/2 < 1 min) once in contact with biological fluids
and cellular components [66]. At the same time, we
discovered that boranocarbonate (CORM-A1), which does
not contain a transition metal carbonyl but a carboxylic
group that is converted to CO through hydrolysis, can
slowly liberate CO (t1/2 = 21 min) under physiological
conditions [67]. This compound causes gradual vasodila-
tory and hypotensive effects that are strictly controlled
by pH and can be amplified with the concomitant use of
guanylate cyclase sensitizers [67]. The third indication for
a potential use of CO-RMs as pharmaceuticals originates
from their multiple bioactivities, which are being progres-
sively identified since more scientists now utilize CO-RMs
as a mean to deliver CO in in vitro, ex vivo and in vivo
experimental models of disease [13]. Table 1 summarizes
the chemical properties and pharmacological activities of
the most commonly studied CO-RMs. The protective and
beneficial effects of CO-RMs reported to date include:
cardioprotection against both ischemia and myocardial
infarction [66, 68]; reduction of cardiac graft rejection and
positive inotropic effects on the heart [66, 69]; attenuation
of the acute inflammatory response both in vitro and in
vivo and amelioration of neuro-inflammatory responses
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Table 1 Chemical structure and bioactive properties of CO-releasing molecules (CO-RMs)

Compound Chemical structure CO release kinetic and properties Pharmacological action References

CORM-1 Fast (t1/2 < 1 min) Vasodilator; [65, 77, 92]
CO release is light-dependent Reno-protective
Soluble in ethanol and DMSO

CORM-2 Fast (t1/2 ≈ 1 min) Vasodilator; Reno-protective; [65, 70, 74,
CO release induced by ligand Anti-inflammatory; Anti-carcinogenic 79–81, 83,
substitution Pro-angiogenic; Anti-apoptotic 85, 87, 89,
Soluble in ethanol and DMSO Inhibitor of cell proliferation 93, 94]

CORM-3 Fast (t1/2 ≈ 1 min at pH = 7.4, 37 ◦C) Vasodilator; Reno-protective [59, 66,
CO release induced by ligand Cardioprotective; Anti-inflammatory 68–72,
substitution Anti-ischemic 76, 82, 95]
Water-soluble Inhibitor of platelet aggregation

CORM-A1 Slow Vasodilator; Reno-protective; [59, 67,
(t1/2 ≈ 21 min at pH = 7.4, 37 ◦C) Anti-ischemic; Anti-apoptotic 78, 90]
CO release is strictly pH-dependent;
Water-soluble

in microglia [70–74]; reduction of immunological his-
tamine release from guinea pig mast cells and human
neutrophils [75]; anti-hypertensive effects and inhibition
of platelet aggregation [65, 67, 76]; vasodilatation and
anti-apoptotic effects in the cerebral circulation [77–79];
alleviation of hepatic leukocyte sequestration and systemic
inflammatory response during severe burn injury [80];
mitigation of photocarcinogenesis in the skin [81];
improved kidney function following cold ischemia oc-
curring during organ preservation and protection against
cisplatin-induced nephrotoxicity [59, 82] The advent of
CO-RMs has also provided a tool to explore the interac-
tion of CO with various cellular targets and investigate
its mechanism(s) of action [14, 83, 84]. In fact, the
liberation of CO from CO-RMs affects the activity and
function of several heme- and metal-dependent proteins
that are crucially involved in processes controlling cellular
homeostasis [14]. Among these are the production of
reactive oxygen species, cell proliferation, angiogenesis
and mitochondrial respiration [56, 83, 85–87]. Notably,
in human airway smooth muscle cells and neutrophils
CO liberated from CO-RMs inhibits the activity of
NADPH-oxidase, a heme-dependent enzyme responsible
for the production of superoxide anion and a major player
in triggering and propagating oxidative stress [75, 83].
Other metal-containing proteins present in cells may have
a preferential affinity for CO, and this is an area for future
studies needed to identify the most likely targets that
transduce the CO signals into beneficial effects.

CO as therapeutic agent: the challenges
after the promises

A key question that arises primarily among clinicians
is whether CO gas inhalation or CO-RMs will ever be
utilized as therapeutic strategic approaches. CO gas
inhalation as therapy in diseases has been discussed in
a comprehensive article published elsewhere [4, 7, 88].
Although the use of small amounts of CO gas in medicine
is feasible, one could intuitively argue that gaseous com-
pounds in general are difficult to manipulate and to deliver
directly to living cells or organism in an accurate, safe
and measurable fashion. Thus, can CO-RMs overcome
these obstacles? A conclusive answer to this question
cannot be formulated at present since the assessment of
a specific therapeutic role for a given CO-RM is still
under scrutiny; however, the premise is that CO-RMs
represent a good alternative to CO gas both from a phar-
maceutical perspective and in terms of specificity of
action. First of all, CO liberated from CO-RMs can be
precisely controlled and delivered at given concentrations
through all possible routes of administration, unlike
CO gas, which can be delivered effectively only by
inhalation. Secondly, not only should administration of
CO-RMs mitigate the overall adverse systemic effects
of CO inhalation but their use as specific CO carriers
is likely to bypass more effectively the biological trap
represented by deoxyhemoglobin, which is inevitably
and rapidly converted to HbCO in the lung following
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CO gas inhalation (see Fig. 1). Published data indicate
that HbCO does not increase to “dangerous” levels (less
than 10%) when CORM-3 and CORM-A1 are used at
doses that are pharmacologically effective in reducing
myocardial infarction and improving renal hemodynamics
after acute renal failure, respectively [68, 89, 90]. This
optimistic view on the use of CO carriers is also based
on the chemical versatility represented by transition metal
carbonyls and boranocarbonate-containing CO-RMs [15].
The results reported in the literature also confirm how
the kinetics of CO release can be tuned by modifying the
ligand coordinated to the metal center or by changing

Fig. 1 Carbon monoxide-releasing molecules (CO-RMs), which
carry one or more CO groups, travel in the bloodstream, where they
transport and release CO to tissue. CO (or CO-RMs) can then enter
cells and trigger mechanisms that prevent or attenuate hypertension,
inflammation and ischemic events. The advantage of this approach
is twofold, as: (1) CO-RMs directly bypass the pulmonary system,
where CO would mainly bind to haemoglobin, thereby reducing
the oxygen supply to tissue, and (2) CO-RMs can be chemically
engineered to trigger the specific delivery of small amounts of CO
into tissues, providing pharmacological actions during a disease
state

the pH [67, 91]. Moreover, from a medicinal chemistry
perspective, working with metallo-based compounds in
drug development offers a unique advantage due to their
great adaptability and because the method of their syn-
thesis is usually very reliable and the ligand substitution
to the metal center as well as their redox potentials can
be finely adjusted to a specific need. Major progress in
the development of pharmaceuticals based on CO-RMs
technology will rely primarily on formulating compounds
that are rather stable in vivo and can be triggered to release
CO locally when needed or used to precisely channel CO
to the site of injury. In addition, the product after CO
release should be non-toxic or of low and known toxicity
and, ideally, biologically relevant. Pharmacokinetics,
efficacy profiles and other essential aspects of CO-RMs
will have to be addressed, but the possibilities are endless
for CO-RMs to become a new class of pharmaceuticals.

Conclusions

Despite its well-known toxic effects when inhaled at
high concentrations, unexpected but consistent beneficial
effects of CO gas are being reported, with the proposition
of using CO therapy in the clinical setting. However, the
administration route for gaseous compounds is restricted
to inhalation through the lung, with difficulties in con-
trolling the absorption, distribution and specificity of CO.
The characterization and implementation of CO carriers
(CO-RMs) that deliver CO in a more controlled and
effective fashion has opened a concrete opportunity for the
design of CO-based pharmaceuticals for future therapeutic
applications. The success of the CO-RMs technology
will depend crucially on the synergism between chemists,
biologists and pharmacologists in their combined efforts
to generate novel molecules that can mimic more closely
the biological action of the heme oxygenase/CO system.
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