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Abstract The extracellular matrix
(ECM) plays an important role in the
biomechanical behaviour of the lung
parenchyma. The ECM is composed
of a three-dimensional fibre mesh
filled with different macromolecules,
including the glycosaminogly-
cans and the proteoglycans, which
have important functions in many
lung pathophysiological processes:
(1) regulating the hydration and water
homeostasis, (2) maintaining the
structure and function, (3) modulat-
ing the inflammatory response, and
(4) influencing tissue repair and re-
modelling. Ventilator-induced lung
injury is the result of a complex inter-
play among various mechanical forces
acting on lung structures such as the
epithelial and endothelial cells, the ex-
tracellular matrix, and the peripheral

airways during mechanical ventila-
tion. Although excellent reviews have
synthesized our current knowledge of
the role of repeated cyclic stretch and
high tidal volume ventilation on al-
veolar and endothelial cells, few have
addressed the effects of mechanical
ventilation on the ECM. The present
review focused on the organization of
the ECM, mechanotransduction and
ECM interactions, and the effects of
mechanical ventilation on the ECM.
The study of the ECM may be useful
to improve our understanding of the
pathophysiology of lung damage
induced by mechanical ventilation.
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Introduction

Mechanical ventilation may worsen pre-existing lung
disease due to inhomogeneous distribution of insufflated
air, resulting in regional overdistension (volutrauma
and barotrauma) and derecruitment, which leads to
repeated opening and closing of collapsed alveoli (atelec-
trauma) [1, 2]. Ventilator-induced lung injury (VILI) is
the result of a complex interplay among various mech-
anical forces acting on lung structures during mechanical
ventilation [2]. Critical physical forces contributing to
VILI have been defined as “stress” (force per unit of area)
or “strain” (force along longitudinal axis) [3], and their
primary possible targets include: (1) the epithelial [4]
and (2) endothelial [5] cells, (3) the extracellular matrix
(ECM) [6, 7], and (4) the peripheral airways [8, 9].

Although excellent reviews have synthesized our cur-
rent knowledge of the role of repeated cyclic stretch and
high tidal volume ventilation on alveolar and endothelial
cells, few have addressed the effects of mechanical venti-
lation on the ECM.

In this review, we will discuss: (a) the organization of
the ECM; (b) mechanotransduction and ECM interactions;
and (c) the effects of mechanical ventilation on the ECM.

Extracellular matrix organization

The ECM is not only a scaffold, having a mechanical
role in supporting and maintaining tissue structure, but is
also a complex and dynamic meshwork influencing many
biological cell functions such as lung development, cell
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migration, and proliferation. The macromolecules that
constitute the ECM are: (1) fibrous proteins (collagen and
elastin); (2) structural or adhesive proteins (fibronectin
and laminin); and (3) proteoglycans and glycosamino-
glycans (Fig. 1). In addition, matrix metalloproteinases
play a relevant role at maintaining the turnover of ECM
molecules.

Collagen

Collagen fibre constitutes the main component of ECM.
The most important collagen fibres are: types I, II, III (fib-
rillar) and IV, V, VI (non-fibrillar). The turnover of colla-
gen fibres is a dynamic process, necessary for the main-
tenance of the normal lung architecture [10]. The amount
of collagen deposition depends on the extent of the alveo-
lar injury and the intensity of inflammatory mediator re-
lease in the lung parenchyma [11]. Type III collagen fibre,
which is more flexible and susceptible to breakdown, pre-
dominates early in the course of lung injury, whereas type I
collagen (comprised of thicker and cross-linked fibrils) is
more prevalent in the late phase [12, 13].

Elastin

Elastic fibres comprise three components defined accord-
ing to their amount of elastin and fibril orientation: (1) oxy-
talan, composed of a bundle of microfibrils; (2) elaunin,

Fig. 1 Extracellular matrix
components in lung paren-
chyma. Note the predomi-
nance of versican in the
pulmonary interstitium,
perlecan in the vascular
basement membrane, and
decorin in the interstitium
and in the epithelial base-
ment membrane linked with
collagen fibrils, syndecan,
and glypican on the cell
surface. CS, Chondroitin
sulphate; HS, heparan
sulphate; DS, dermatan
sulphate

composed of microfibrils and a small amount of elastin;
and (3) fully developed elastic fibres, composed of micro-
fibrils and abundant elastin [10]. Chondroblasts, myo-
fibroblasts, and smooth muscle cells synthesize these
fibres. Due to their mechanical properties, elastic fibres
provide recoil tension to restore the parenchyma to its
previous configuration after the stimulus for inspiration
has ceased. In normal alveolar septa, a subepithelial layer
of elastic fibres composed mainly of fully mature elastic
fibres confers great elasticity to the alveolar tissue in
normal situations [10]. The elastic component of the ECM
represents one of the structures potentially involved in
alveolar remodelling as well as in the consequent loss of
pulmonary compliance observed in ARDS [11].

Glycosaminoglycans and proteoglycans

In the connective tissue, proteoglycans (PGs) form a gelati-
nous and hydrated substance embedding the fibrous pro-
teins. Proteoglycans are constituted of a central protein
bound to one or more polysaccharides, denominated glyco-
saminoglycans (GAGs).

Glycosaminoglycans

GAGs are long, linear, and heterogeneous polysaccharides
that consist of repeating disaccharide units. There are two
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main types of GAGs: (1) non-sulphated GAG (hyaluronic
acid) and (2) sulphated GAGs (heparan sulphate and hep-
arin, chondroitin sulphate, dermatan sulphate, and keratan
sulphate). With the exception of hyaluronic acid, GAGs
are usually covalently attached to a protein core, forming
an overall structure referred to as proteoglycan [14].

Non sulphated glycosaminoglycan (hyaluronic acid):
Hyaluronic acid is the most abundant and the largest non-
sulphated GAG in the ECM. It is primarily synthesized
by mesenchymal cells, being a necessary molecule for the
assembly of a connective tissue matrix and an important
stabilizing constituent of the loose connective tissue.
Hyaluronic acid is an important determinant of tissue hy-
dration [15] and is also involved in tissue repair [16] and in
protection against infections and proteolytic granulocyte
enzymes [17].

Sulphated glycosaminoglycans: These other GAGs are
synthesized intracellularly, sulphated, secreted, and usu-
ally covalently bound to a protein core to form the pro-
teoglycans. The most important sulphated GAGs are chon-
droitin sulphate, heparan sulphate, and dermatan sulphate.
The polyanionic nature of GAGs is the main determinant
of the physical properties of proteoglycan molecules, al-
lowing them to resist compressive forces and to simultane-
ously maintain tissue hydration [18].

Proteoglycans

In the lung, the main proteoglycan families may be
distinguished based on GAGs’ composition, molecular
weight, and function: chondroitin-sulphate-containing
proteoglycan (versican), heparan-sulphate-containing
proteoglycans (perlecan and glypican), chondroitin- and
heparan-sulphate-containing proteoglycan (syndecan),
and dermatan-sulphate-containing proteoglycan (decorin).
They are localized in different areas of the ECM: versican
in the pulmonary interstitium; perlecan in the vascular
basement membrane; decorin in the interstitium and in
the epithelial basement membrane linked with collagen
fibrils; syndecan and glypican at the cell surface [19]
(Fig. 1).

Proteoglycans have a number of different biological
functions. Versican, due to the high ionic charge of its mul-
tiple GAG side-chains, plays a critical role in determining
the water content or turgor of extracellular matrices,
influencing tissue viscoelastic behaviour as well as cell
migration and proliferation. Additionally, perlecan acts as
a filtration barrier [20] and syndecan functions primarily
as a cell surface receptor for matrix ligands [21]. Decorin
and biglycan bind to collagen and affect fibrinogenesis and
matrix assembly [22]. Proteoglycans also bind various
growth factors, such as transforming growth factor
(TGF)-β and fibroblast growth factor (FGF), and modulate
their effect on cell proliferation and matrix deposition by
influencing their bioavailability [23].

Basal lamina molecules

The basal lamina of pulmonary cells is composed of
different molecules, including like laminin, nidogen, and
perlecan [24]: (1) Laminin is a long sword-shaped
trimer [25]. The end of the “sword” can bind cell recep-
tors, and the crosspieces allow laminin to bind to other
laminin molecules. Other sites for nidogen and perlecan
binding are also present in the molecule. (2) Nidogen, also
known as entactin, bridges between the laminin and colla-
gen layers and perlecan in the basal lamina. (3) Perlecan is
the predominant proteoglycan in the basal lamina. It binds
collagen, laminin, itself, and nidogen [26] (Fig. 1).

On one side of the cell membrane, the basal lamina is
linked to the cell by means of integrins [27, 28], while on
the other side it is liked to the ECM through links to col-
lagen type IV. Integrins are adhesive membrane receptors
that exist as heterodimers. They exhibit a “Velcro” effect:
they have strength in numbers, but are individually easy to
disrupt. They require Ca2+ or Mg2+ to bind, and their job
is to link the ECM to the cytoskeleton. Fibronectin rein-
forces the connections between the basal lamina with both
the cell membrane and the other ECM components.

Extracellular matrix metalloproteinases

Matrix metalloproteinases (MMPs) are a family of en-
zymes that degrade components of the ECM, including
collagens, fibronectin, laminin, proteoglycans, entactins,
and elastin [29]. In particular, they are very important
in: (a) the breakdown of ECM and basement membrane,
(b) tissue remodelling and angiogenesis, and (c) the restor-
ation of functional connective tissue in the wound-healing
process.

The 72-kDa gelatinase A (MMP-2), is the most widely
distributed of all the MMPs and is expressed constitutively
by a number of cells, including endothelial and epithelial
cells. The 92-kDa gelatinase B (MMP-9) is produced by
several types of inflammatory cells, including PMNs and
alveolar macrophages, as well as stimulated connective tis-
sue cells. Gelatinase A, along with gelatinase B, plays an
important role in pericellular basement membrane turnover
by degrading type IV collagen, a main component of the
basement membrane [30].

Because MMPs may cause significant host damage,
their proteolytic activity is tightly regulated. Thus, MMPs
are rarely stored, but require gene transcription before
secretion, with the exception of neutrophil MMP-9. In
fact, these are either secreted as pro-enzymes that require
proteolytic cleavage or are activated intracellularly by
pro-protein convertases such as furin. Specific inhibitors
of MMPs, the tissue inhibitors of metalloproteinases
(TIMPs), which bind MMPs in a 1:1 manner, are secreted
to prevent enzymatic activity; as a result, the balance
between MMPs and TIMPs determines matrix turnover,
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where either an excess of MMPs or a deficit of TIMPs
may result in excess ECM degradation [30].

The majority of MMPs are not expressed in normal
healthy tissues, but are expressed in diseased tissues that
are inflamed or undergoing repair and remodelling [31].
MMP expression may be upregulated by exogenous stim-
uli, cytokines, and cell–cell contact. Conversely, cytokines
such as interferon-γ and interleukins (IL)-4 and -10 may
downregulate MMP expression. Both inflammatory and
stromal cells can express MMPs, although the profile is
both cell and stimulus specific.

Mechanotransduction and the ECM

Mechanotransduction is the conversion of mechanical
stimuli into biochemical and biomolecular signals [32, 33].
The mechanosensor is defined as the system that detects
the mechanical stimuli on the cell and converts it into
a biological signal [34]. While much has been elucidated
regarding the ability of pulmonary cells to sense and
integrate information from mechanical distortion, little is
known about how this information alters the ECM and
affects outcome in patients on mechanical ventilation.

Living cells often need to integrate biochemical
signals with mechanical information from their microenvi-
ronment [35]. This mechanotransduction is powerful,
eliciting proliferation, differentiation, or apoptosis in
a manner dependent upon the extent of physical de-
formation. The cell’s internal “pre-stressed” structure
and its “hardwired” interaction with the ECM appear
to confer the ability to filter biochemical signals and
decide between divergent cell functions influenced by
the nature of signals from the mechanical environment.
In some instances mechanical signalling through the
tissue microenvironment has been shown to be dominant
over genomic signals. Indeed, mechanical interactions
between cells and the matrix are known to modulate cell
contractility and myosin light chain phosphorylation [36],
cell rheology [37], and focal adhesion assembly [38], all
of which are critical for the control of cell adhesion, mi-
gration, growth, contractility, and viability. Additionally,
the mechanical properties of the ECM may influence an-
giogenesis [39], as well as connective tissue homeostasis
itself [40]. The direct interaction between the ECM and
cellular biochemistry also has important implications for
the biomechanical properties of the connective tissues.
Consequently, when we discuss the pathological effects of
mechanical force on the ECM, it is also fundamental that
we keep in mind the “normal” and beneficial role of cyclic
stretch on lung form and function.

Mechanosensing by the ECM

Virtually all organs and tissues are organized as pre-
stressed structural hierarchies that exhibit immediate

mechanical responsiveness and increase their stiffness in
direct proportion to the applied mechanical stress [27]. In
the lung, the residual filling pressure that remains after
expiration is responsible for: (1) tensing and stiffening
the ECMs (basement membranes, collagen, elastin) that
surround each alveolus, and (2) resisting surface tension
forces acting on the epithelium [41]. Lung expiration and
inspiration influence this force balance and produce com-
plex micromechanical responses in the lung parenchyma,
including lengthening and shortening (and tension and
compression) of alveolar walls depending on the direction
of the applied stress [42, 43]. This is accompanied by
extension and linearization of some collagen fibres on
inspiration, as well as buckling of the same fibres on
expiration. Breathing also causes the lateral intercellular
spaces between epithelial cells to reversibly shrink and
expand without compromising the structural integrity of
the tissue. This form of reversible mechanical deformation
might activate intracellular signalling within surrounding
alveolar cells by altering the local concentration of soluble
ligands for epidermal growth factor receptors [28]. Other
systems have developed alternative mechanosensing
strategies that differ markedly from the ones presumed
to be functional in the lung. In cartilage, for example,
changes in ion concentrations in the surrounding intersti-
tium can influence whole tissue mechanics by altering the
swelling of proteoglycans and consequently the pressure
in the cartilage [44].

Mechanotransduction and integrins

The leading hypothesis regarding how the ECM senses
mechanical force has been proposed by Ingber [45].
Based on the tensegrity model, the proposal is that the
interstitium senses mechanical forces via the integrin
adhesion receptors that connect the cytoskeleton to the
ECM. Cells sense distortion of the ECM, or an associated
increase in its rigidity, as a tug on these adhesion recep-
tors. Integrins connect to the cytoskeleton through focal
adhesions that contain multiple actin-associated proteins
such as talin, vinculin, paxillin, and zyxin (Fig. 2). The
cytoskeleton, in turn, responds mechanically to forces
transferred over the ECM and channelled through inte-
grins by rearranging its interlinked actin microfilaments,
microtubules, and intermediate filaments, as well as
associated organelles (e. g., mitochondria) and nuclei,
thereby strengthening the whole cell against the poten-
tial deleterious effects of mechanical distortion [27].
The ability to channel mechanical forces over discrete
molecular paths to sites deep inside the cytoplasm and
nucleus explains how cell distortion or mechanical stress
application to ECM and bound cell surface integrins
result in predictable and focused changes in nuclear
activity and, hence, biomolecular changes in cell form and
function.
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Fig. 2 Organization of matrix
components and receptors
that mediate mechanical
signalling coming from the
outside in alveolar epithelial
cells. Stretching deflects
matrix fibres that transduce
signals via dystroglycan
on the surface of alveolar
epithelial cells

Mechanotransduction and laminin

In addition to collagen, integrin receptors can also anchor
to other ECM molecules such as fibronectin or laminin.
Recently, Jones and colleagues [25] demonstrated a novel
mechanism for mechanotransduction in type II alveolar
cells. These cells secrete ECM rich in anastomosing fibres
composed of the α3 laminin subunits (i. e. laminin 6),
and perlecan. Using an in vitro model, cyclic stretch (30
cycles/min, 10% strain) induced activation of mitogen-
activated protein kinase (MAPK) that could not be
inhibited by treatment with an antagonist to the α3 laminin
subunit (function-inhibiting antibody) (Fig. 2). In contrast,
when dystroglycan is knocked down using short hairpin
RNA, MAPK activation is inhibited. These results sup-
port the hypothesis that, in addition to integrins, signals
generated by mechanical stretch could be internalized by
laminin-6, via interaction with dystroglycan. Stretching
deflects matrix fibres that transduce signals via dystro-
glycan on the surface of alveolar epithelial cells. Further
studies are required to determine whether the choice of
different mechanisms represent a cell- or dose-specific
response and how this can be integrated at tissue level.

Mechanotransduction and proteoglycans

Collagen and elastin are thought to dominate the elasticity
of the connective tissue, including lung parenchyma. The

GAGs or the proteoglycans may also play a role because
osmolarity of interstitial fluid can alter the repulsive forces
on the negatively charged GAGs, allowing them to collapse
or inflate, which can affect the stretching and folding pat-
tern of the fibres. Hence, the elasticity of lung has been
hypothesized to arise primarily from: (1) the topology of
the collagen–elastin network and (2) the mechanical inter-
action between proteoglycans and fibres. More recently, it
has also been suggested that proteoglycans may play a fun-
damental role in stabilizing the collagen–elastin network
of connective tissue and contributing to lung elasticity and
alveolar stability at medium lung volumes [46].

Further studies are required to understand how signals
generated by proteoglycan swelling may lead to this pro-
cess and the pathophysiology of VILI.

Impact of mechanical ventilation on ECM

Mechanical forces can modify the gene expression of
several molecules related to the inflammatory [47–49] and
remodelling [6, 50–53] processes. These forces induce di-
rect secretion of various growth factors, such as TGF-β and
connective tissue growth factor (CTGF), which accelerate
the remodelling of the matrix and extracellular protein
release, respectively [28, 54–56]. Because large amounts
of TGF-β are present in both the alveoli and airways of
healthy adults, much of the regulation of TGF-β occurs at
the level of activation of stored latent complexes. In the
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alveoli, much of this activation appears to be controlled
through spatially restricted activation by the integrin
α-v-β-6, but the mechanisms regulating TGF-β activity in
the conducting airways remain to be determined [56]. In-
tegrin expressed on the luminal surface can present active
TGF-β to luminal macrophages, thereby inhibiting pro-
tease secretion and maintaining alveolar homeostasis.
Integrin on the basal surface can present active TGF-β to
fibroblasts, which in excess contributes to the development
of pulmonary fibrosis and also to endothelial cells, which
regulate pulmonary vascular permeability. Integrin on
the lateral surface can present active TGF-β to adjacent
epithelial cells, increasing epithelial permeability and
decreasing the reabsorption of salt, and therefore water,
from the alveolar space. TGF-β directly increases the
permeability of both pulmonary endothelial and alveolar
epithelial monolayers [57]. Furthermore, TGF-β leads
to a dramatic reduction in the expression of the sodium
channel ENaC on the apical surface of alveolar epithelial
cells [58], thereby impairing the removal of salt and water
from the alveolar lumen. Thus, it appears that activation
of TGF-β by the α-v-β-6 integrin plays an essential role
in adjusting the set point for the amount of active TGF-β
at specific sites in the lung parenchyma, limiting damage
caused by unrestricted inflammation as well as promoting
alveolar repair.

High-volume ventilation initiates ECM remodelling
in patients [59] and experimental models [6, 50, 52, 53,
60]. This event depends on an airway pressure gradi-
ent [6, 60] and a transpleural pressure gradient. Berg
and colleagues [60] observed higher levels of mRNA for
α1 [III] and α2 [IV] procollagen, fibronectin, FGF, and
TGF-β1 in lungs ventilated with high PEEP levels. In this
regard, Parker and colleagues [6] found that ventilation
with high peak airway pressures and low perfusion pres-
sures led to greater type III procollagen mRNA expression
than in unperfused lungs. Type III procollagen is the
first collagen to be remodelled in the evolution of lung
fibrogenesis and has been used as an early marker of
lung parenchyma remodelling [6, 50, 52, 53]. Garcia and
colleagues [50] demonstrated that the increase in the tissue
stress induced by oscillation force, but not amplitude,
increases procollagen type III mRNA expression in rat
lung parenchymal strips. In addition, they observed that
there is a threshold stress above which lung cells express
mRNA for type III procollagen. Furthermore, Farias and
colleagues [53] showed that even a short period (40 s) of
lung mechanical stretch (40 cmH2O of continuous positive
airway pressure) increased type III procollagen mRNA
expression. Along these lines, De Carvalho and colleagues
reported that type III procollagen expression was higher
in non-dependent regions and in ventilatory strategies that
caused overdistension, and this response was partially
attenuated by prone positioning [52]. In fact, in healthy rat
lungs submitted to injurious ventilation either with high
or low tidal volume (VT), ECM reacted with an increased

synthesis of mRNA for procollagen type III, which
was more pronounced in non-dependent regions of the
lungs [61]. This suggests an effect of regional transpleural
forces that emerged due to lung heterogeneity in the
context of VILI. Furthermore, high VT leads to an increase
in expression and release of gelatinases from epithelial
and endothelial cells in the lung due to the mechanical
stress on these cells. There is increasing evidence that
cyclic mechanical stress affects the release and activation
of MMPs and plays an important role in the regulation
of ECM remodelling. Cyclic mechanical stress causes
the activation of human alveolar macrophages in vitro
and their release of gelatinase B [62]. Moreover, Foda
and colleagues, in an in vivo rat model of high-volume
ventilation, observed that MMPs play an important role in
the development of VILI [63].

Mechanical strain also leads to modifications in proteo-
glycans and GAGs. Al Jamal et al. showed in a model
of high VT ventilation in healthy rats [7] that, at the
highest VT, the expression of versican, heparan-sulphate
proteoglycan, and biglycan in lung tissue was increased.
In addition, Moriondo and colleagues [64] observed
heparan sulphate fragmentation at high VT, suggest-
ing ventilation-induced plasma membrane disruption.
Altered proteoglycans may also contribute to the pathol-
ogy seen in response to excessive ventilation through
their putative pro-inflammatory effects (Fig. 3). GAGs
have shown highly specific interactions with various

Fig. 3 Changes in extracellular matrix during spontaneous breathing
and mechanical ventilation (MV) with normal or high tidal volume
(VT ). In mechanical ventilation at normal tidal volume (6–8 ml/kg)
an initial fragmentation of both heparan sulphate (HS) and chon-
droitin sulphate (CS) proteoglycans is triggered by the activation of
a few metalloproteinases (grey discs). Deeper degradation of both
heparan sulphate and chondroitin sulphate proteoglycans and loss
of the entire ECM structure and function is observed in mechanical
ventilation at high VT. At normal VT, matrix breakdown is associ-
ated with enhanced metalloproteinases’ degradative digestion and is
not associated with release of inflammatory mediators. W/D, Wet-
to-dry weight ratio
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chemokines, such as CCL5/RANTES, CCL2, MCP-1, and
CXCL8/IL-8 [65]. In addition, PGs may act as ligands for
pro-inflammatory Toll-like receptors [66]. Therefore, frag-
mentation of GAGs and breakdown of proteoglycans may
have an impact on the development of the inflammatory
response seen in VILI.

Additionally, the concept of “matrikines” may be con-
sidered. Matrikines are a new class of ligands which exist
as a domain within an ECM protein. Natural matrikines
are those which signal directly from the ECM, while cryp-
tic matrikines are those that require proteolytic breakdown
for the ligand to be revealed [67]. Decorin is an example of
a proteoglycan matrikine; it functions through the EGF re-
ceptor and activates downstream signalling pathways, such
as ERK1/ERK2 [68]. Thus, breakdown of ECM proteins
caused by high VT results in an exposure of matrikines,
which can then act as ligands to induce subsequent bio-
logic effects [69].

Recent animal studies demonstrated that mechanical
ventilation with low VT may also cause histological
damage to peripheral airways and interstitium in healthy
lungs [8, 70–72]. These alterations are most likely the
consequence of abnormal stresses that develop locally
at the level of both the bronchiolar epithelium and the
parenchyma, mainly at the alveolar–bronchiolar junctions,
because of the cyclic opening and closing of peripheral
airways at low end-expiratory lung volume [73]. Duggan
and colleagues showed ultrastructural evidence of micro-
vascular endothelial disruption during ventilation with
VT of 8 ml/kg and respiratory frequency of 40 breaths
per minute [74]. Interestingly, microvascular injury in
their model was more pronounced in animals that did
not receive recruitment manoeuvre, suggesting that re-
peated cyclic stretch of collapsed alveoli, rather than
overdistended ones, may play a critical role in injury
to pulmonary structures. Moriondo and colleagues [64]
reported marked fragmentation of the interstitial and
basal membrane proteoglycans in anaesthetized rats
ventilated for 4 h at 7 ml/kg VT. In contrast, other studies

have shown that low-VT ventilation does not adversely
affect the ECM. Al Jamal and colleagues [7] did not find
an increase in synthesis of proteoglycans in the ECM
after 1 h of mechanical ventilation with VT of 8 ml/kg.
Farias and colleagues [53] reported that 1 h of ventilation
with 6 ml/kg VT in healthy rat lungs did not increase
type III procollagen mRNA expression. An important
question is whether these alterations are mainly due to
activation of an inflammatory process or to direct mech-
anical damage associated with an ultrastructural lesion
(Fig. 3).

Conclusions

Mechanical ventilation may induce physical forces such as
stress and/or strain acting on different structures: epithe-
lium, endothelium, peripheral airways, and extracellular
matrix. Although the role of repeated cyclic stretch and
high VT and pressure on alveolar and endothelial cells
are well studied, the impact of mechanical ventilation on
the ECM needs to be unveiled. Mechanical ventilation
affects the macromolecules that constitute the ECM
(collagen, elastin, fibronectin, laminin, proteoglycan, and
glycosaminoglycans) which suffer changes and impact
the biomechanical behaviour of the lung parenchyma.
Furthermore, changes in ECM alter the mechanical forces
on the cells, influencing the way that cells remodel the
interstitium. In this regard, the reduction in tidal volume
or transpulmonary pressure is associated with a more
uniform distribution of the stress and strain with less
ECM disorganization, diminishing the risk of rupture and
remodelling. The study of the ECM may help to improve
our understanding of the pathophysiology of lung damage
induced by mechanical ventilation.
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