Jerome Aboab Bruno Louis Bjorn Jonson Laurent Brochard

Relation between PaO_2/F_1O_2 ratio and F_1O_2 : a mathematical description

Received: 23 July 2006 Accepted: 24 July 2006 Published online: 9 August 2006 © Springer-Verlag 2006 J. Aboab · L. Brochard () Réanimation Médicale, AP-HP, Hôpital Henri Mondor, 51, av. du Maréchal de Lattre de Tassigny, 94010 Créteil, France e-mail: laurent.brochard@hmn.aphp.fr Tel.: +33-1-49812389 Fax: +33-1-42079943 B. Louis · L. Brochard Faculté de Médecine Paris 12, INSERM Unit 651, Créteil, France

B. Jonson University Hospital, Department of Clinical Physiology, Lund, Sweden

Introduction

The acute respiratory distress syndrome (ARDS) is characterized by severe hypoxemia, a cornerstone element in its definition. Numerous indices have been used to describe this hypoxemia, such as the arterial to alveolar O₂ difference, the intrapulmonary shunt fraction, the oxygen index and the PaO₂/F_IO₂ ratio. Of these different indices the PaO_2/F_IO_2 ratio has been adopted for routine use because of its simplicity. This ratio is included in most ARDS definitions, such as the Lung Injury Score [1] and in the American-European Consensus Conference Definition [2]. Ferguson et al. recently proposed a new definition including static respiratory system compliance and PaO₂/F_IO₂ measurement with PEEP set above 10 cmH₂O, but F_IO₂ was still not fixed [3]. Important for this discussion, the PaO2/FIO2 ratio is influenced not only by ventilator settings and PEEP but also by F_1O_2 . First, changes in F_1O_2 influence the intrapulmonary shunt fraction, which equals the true shunt plus ventilation-perfusion mismatching. At F_IO₂ 1.0, the effects of ventilation-perfusion mismatch are eliminated and true intrapulmonary shunt is measured. Thus, the estimated shunt fraction may decrease as F_IO₂ increases if V/Q mismatch is a major component in inducing hypoxemia

(e.g., chronic obstructive lung disease and asthma). Second, at an F_IO_2 of 1.0 absorption atelectasis may occur, increasing true shunt [4]. Thus, at high F_IO_2 levels (> 0.6) true shunt may progressively increase but be reversible by recruitment maneuvers. Third, because of the complex mathematical relationship between the oxy-hemoglobin dissociation curve, the arterio-venous O_2 difference, the PaCO₂ level and the hemoglobin level, the relation between PaO₂/ F_IO_2 ratio and F_IO_2 is neither constant nor linear, even when shunt remains constant.

Gowda et al. [5] tried to determine the usefulness of indices of hypoxemia in ARDS patients. Using the 50-compartment model of ventilation–perfusion inhomogeneity plus true shunt and dead space, they varied the F_IO₂ between 0.21 and 1.0. Five indices of O₂ exchange efficiency were calculated (PaO₂/F_IO₂, venous admixture, P(A-a)O₂, PaO₂/alveolar PO₂, and the respiratory index). They described a curvilinear shape of the curve for PaO₂/F_IO₂ ratio as a function of F_IO₂, but PaO₂/F_IO₂ ratio exhibited the most stability at F_IO₂ values \geq 0.5 and PaO₂ values \leq 100 mmHg, and the authors concluded that PaO₂/F_IO₂ ratio was probably a useful estimation of the degree of gas exchange abnormality under usual clinical conditions. Whiteley et al. also described identical relation with other mathematical models [6, 7]. This nonlinear relation between PaO_2/F_IO_2 and F_IO_2 , however, underlines the limitations describing the intensity of hypoxemia using PaO_2/F_IO_2 , and is thus of major importance for the clinician. The objective of this note is to describe the relation between PaO_2/F_IO_2 and F_IO_2 with a simple model, using the classic Berggren shunt equation and related calculation, and briefly illustrate the clinical consequences.

Berggren shunt equation (Equation 1)

The Berggren equation [8] is used to calculate the magnitude of intrapulmonary shunt (*S*), "comparing" the theoretical O₂ content of an "ideal" capillary with the actual arterial O₂ content and taking into account what comes into the lung capillary, i.e., the mixed venous content. $Cc'O_2$ is the capillary O₂ content in the ideal capillary, CaO₂ is the arterial O₂ content, and $C\bar{v}O_2$ is the mixed venous O₂ content,

$$S = \frac{\dot{Q}s}{\dot{Q}t} = \frac{(\mathrm{Cc'O}_2 - \mathrm{CaO}_2)}{(\mathrm{Cc'O}_2 - \mathrm{C\bar{v}O}_2)}$$

This equation can be written incorporating the arteriovenous difference (AVD) as:

$$\operatorname{Cc'O}_2 - \operatorname{CaO}_2 = \left(\frac{S}{1-S}\right) \times \operatorname{AVD}.$$

Blood O_2 contents are calculated from PO_2 and hemoglobin concentrations as:

Equation of oxygen content (Equation 2)

$$CO_2 = (Hb \times SO_2 \times 1.34) + (PO_2 \times 0.0031)$$

The formula takes into account the two forms of oxygen carried in the blood, both that dissolved in the plasma and that bound to hemoglobin. Dissolved O_2 follows Henry's law – the amount of O_2 dissolved is proportional to its partial pressure. For each mmHg of PO₂ there is 0.003 ml O₂/dl dissolved in each 100 ml of blood. O₂ binding to hemoglobin is a function of the hemoglobin-carrying capacity that can vary with hemoglobinopathies and with fetal hemoglobin. In normal adults, however, each gram of hemoglobin can carry 1.34 ml of O₂. Deriving blood O₂ content allows calculation of both Cc'O₂ and CaO₂ and allows Eq. 1 to be rewritten as follows:

$$\begin{bmatrix} (\text{Hb} \times \text{Sc'O}_2 \times 1.34) + (\text{Pc'O}_2 \times 0.0031) \end{bmatrix} \\ - \begin{bmatrix} (\text{Hb} \times \text{SaO}_2 \times 1.34) + (\text{PaO}_2 \times 0.0031) \end{bmatrix} \\ = \left(\frac{S}{1-S}\right) \times \text{AVD}$$

This nonlinear relation between PaO_2/F_IO_2 and F_IO_2 . In the ideal capillary (c'), the saturation is 1.0 and the vever, underlines the limitations describing the inten- $Pc'O_2$ is derived from the alveolar gas equation:

$$Pc'O_2 = PAO_2 = (P_B - 47) \times F_IO_2 - \frac{PaCO_2}{R}.$$

This equation describes the alveolar partial pressure of O_2 (PAO₂) as a function, on the one hand, of barometric pressure (P_B) , from which is subtracted the water vapor pressure at full saturation of 47 mmHg, and F_IO₂, to get the inspired O_2 fraction reaching the alveoli, and on the other hand of $PaCO_2$ and the respiratory quotient (R) indicating the alveolar partial pressure of PCO₂. Saturation, $Sc'O_2$ and SaO_2 are bound with O_2 partial pressure (PO₂) $Pc'O_2$ and PaO_2 , by the oxy-hemoglobin dissociation curve, respectively. The oxy-hemoglobin dissociation curve describes the relationship of the percentage of hemoglobin saturation to the blood PO₂. This relationship is sigmoid in shape and relates to the nonlinear relation between hemoglobin saturation and its conformational changes with PO₂. A simple, accurate equation for human blood O_2 dissociation computations was proposed by Severinghaus et al. [9]:

Blood O₂ dissociation curve equation (Equation 4)

$$SO_2 = \left(\left(\left(PO_2^3 + 150PO_2 \right)^{-1} \times 23\,400 \right) + 1 \right)^{-1}$$

This equation can be introduced in Eq. 1:

$$\begin{bmatrix} \left(\text{Hb} \times \left(\left(\left(\left((P_{\text{B}} - 47) \times F_{\text{I}}O_2 - \frac{PaCO_2}{R} \right)^3 + 150 \left((P_{\text{B}} - 47) \times F_{\text{I}}O_2 - \frac{PaCO_2}{R} \right) \right)^{-1} \\ \times 23\,400 \right) + 1 \right)^{-1} \times 1.34 \right) + \left(\left((P_{\text{B}} - 47) \times F_{\text{I}}O_2 - \frac{PaCO_2}{R} \right) \times 0.0031 \right) \end{bmatrix} \\ - \left[\left(\text{Hb} \times \left(\left(\left(PaO_2^3 + 150PaO_2 \right)^{-1} \times 23\,400 \right) + 1 \right)^{-1} \times 1.34 \right) + (PaO_2 \times 0.0031) \right) \right] \\ = \left(\frac{S}{1 - S} \right) \times \text{AVD}$$

Equation 1 modified gives a relation between F_IO_2 and PaO_2 with six fixed parameters: Hb, $PaCO_2$, the respiratory quotient *R*, the barometric pressure (P_B), *S* and AVD. The resolution of this equation was performed here with Mathcad[®] software, (Mathsoft Engineering & Education, Cambridge, MA, USA).

1496

Fig. 1 Relation between PaO_2/FIO_2 and FIO_2 for a constant arterio-venous difference (AVD) and different shunt levels (S)

Fig. 2 Relation between PaO₂/FIO₂ and FIO₂ for a constant shunt (S) level and different values of arterio-venous differences (AVD)

Resolution of the equation

The equation results in a nonlinear relation between F_1O_2 and PaO₂/F_IO₂ ratio. As previously mentioned, numerous factors, notably nonpulmonary factors, influence this curve: intrapulmonary shunt, AVD, PaCO₂, respiratory quotient and hemoglobin. The relationship between PaO_2/F_IO_2 and F_IO_2 is illustrated in two situations. Figure 1 shows this relationship for different shunt fractions and a fixed AVD. For instance, in patients with 20% shunt (a frequent value observed in ARDS), the PaO_2/F_IO_2 ratio varies considerably with changes in F_IO_2 . At both extremes of F_IO_2 , the PaO_2/F_IO_2 is substantially greater than at intermediate F_IO_2 . In contrast, at extremely high shunt (\cong 60%) PaO₂/F_IO₂ ratio is greater at low F_IO₂ and decreases at intermediate F_IO₂, but does not exhibit any further increase as inspired F_IO_2 continue to increase, for instance above 0.7. Figure 2 shows the same relation but with various AVDs at a fixed shunt fraction. The larger is AVD, the lower is the PaO_2/F_IO_2 ratio for a given F_IO_2 . AVD can vary substantially with cardiac output or with oxygen consumption.

These computations therefore illustrate substantial variation in the PaO_2/F_IO_2 index as F_IO_2 is modified

under conditions of constant metabolism and ventilation-perfusion abnormality.

Consequences

This discussion and mathematical development is based on a mono-compartmental lung model and does not take into account dynamic phenomena, particularly when high F_IO_2 results in denitrogenation atelectasis. Despite this limitation, large nonlinear variation and important morphologic differences of PaO₂/F_IO₂ ratio curves vary markedly with intrapulmonary shunt fraction and AVD variation. Thus, not taking into account the variable relation between F_IO_2 and the PaO₂/F_IO₂ ratio could introduce serious errors in the diagnosis or monitoring of patients with hypoxemia on mechanical ventilation.

Recently, the accuracy of the American–European consensus ARDS definition was found to be only moderate when compared with the autopsy findings of diffuse alveolar damage in a series of 382 patients [10]. The problem discussed here with F_IO_2 may to some extent participate in these discrepancies. A study by Ferguson et al. [11] illustrated the clinical relevance of this dis-

cussion. They sampled arterial blood gases immediately after initiation of mechanical ventilation and 30 min after resetting the ventilator in 41 patients who had early ARDS based on the most standard definition [2]. The changes in ventilator settings chiefly consisted of increasing F_1O_2 to 1.0. In 17 patients (41%), the hypoxemia criterion for ARDS persisted after this change (PaO_2/F_IO_2) < 200 mmHg), while in the other 24 patients (58.5%) the PaO_2/F_1O_2 had become greater than 200 mmHg after changing the F_IO₂, essentially "curing" them of their ARDS in a few minutes. Of note, outcome varied greatly as well as other ventilatory settings, varies greatly.

between the "persistent" and "transient" ARDS groups. There was a large difference in mortality, and duration of ventilation, favoring the "transient" ARDS group. Thus, varying F_IO_2 will alter the PaO₂/ F_IO_2 ratio in patients with true and relative intrapulmonary shunt of $\geq 20\%$. In clinical practice, when dealing with patients with such shunt levels, one should know that the increasing PO_2/F_1O_2 with F_IO_2 occurs only after F_IO_2 increase to > 0.6 (depending on the AVD value). Thus, the use of the PO_2/F_1O_2 ratio as a dynamic variable should be used with caution if F_IO_2 ,

References

- 1. Murray J, Matthay MA, Luce J, Flick M 4. (1988) An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis 138:720-723
- 2. Bernard GR, Artigas A, Brigham KL Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R (1994) The American–European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818-824
- 3. Ferguson ND, Davis AM, Slutsky AS, Stewart TE (2005) Development of a clinical definition for acute respiratory distress syndrome using the Delphi technique. J Crit Care 20:147-154
- Santos C, Ferrer M, Roca J, Torres A, Hernandez C, Rodriguez-Roisin R (2000) Pulmonary gas exchange response to oxygen breathing in acute lung injury. Am J Respir Crit Care Med 161:26-31
- 5. Gowda MS, Klocke RA (1997) Variability of indices of hypoxemia in adult respiratory distress syndrome. Crit Care Med 25:41-45
- Whiteley JP, Gavaghan DJ, Hahn CE 6. (2002) Variation of venous admixture, SF6 shunt, PaO₂, and the PaO₂/FIO₂ ratio with FIO2. Br J Anaesth 88:771-778
- 7. Whiteley JP, Gavaghan DJ, Hahn CE (2002) Mathematical modelling of oxygen transport to tissue. J Math Biol 44:503-522

- Berggren S (1942) The oxygen deficit 8. of arterial blood caused by nonventilating parts of the lung. Acta Physiol Scand 11:1-92
- Severinghaus J (1979) Simple, accurate 9. equations for human blood O₂ dissociation computations. J Appl Physiol 46:599-602
- 10. Esteban A, Fernandez-Segoviano P, Frutos-Vivar F, Aramburu JA, Najera L, Ferguson ND, Alia I, Gordo F, Rios F (2004) Comparison of clinical criteria for the acute respiratory distress syndrome with autopsy findings. Ann Intern Med 141:440-445
- 11. Ferguson ND, Kacmarek RM, Chiche JD, Singh JM, Hallett DC. Mehta S, Stewart TE (2004) Screening of ARDS patients using standardized ventilator settings: influence on enrollment in a clinical trial. Intensive Care Med 30:1111–1116