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Abstract Background: Multi-
ple organ dysfunction syndrome is
the commonest reason for sepsis-
associated mortality. Discussion:
In the 40 years since it was first
described understanding of its patho-
physiology has improved, and novel
methodologies for monitoring and
severity of illness scoring have
emerged. These, together with the
development of systematic strategies
for managing organ dysfunction in
sepsis, and potentially effective new
therapeutic interventions, should
assist in reducing sepsis-associated
mortality. Conclusion: These his-
torical developments are discussed,

and the reader is directed to these
references for further guidance.
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Introduction

Sepsis: historical perspective

The term sepsis is derived from the Greek word sepsin,
which means ‘to make putrid’. Early descriptions of dis-
ease mediated by “small invisible creatures” were made
in the second century B.C., and the concepts of contagion
and isolation of diseased individuals followed. Despite at-
tempts at prevention pan-epidemic infections have caused
the deaths of millions of persons throughout history. The
first documented observations of living bacteria were made
by van Leeuwenhoek in 1674 and classification of bacte-
rial morphology in the early nineteenth century. However,
the relationship between infectious disease, its aetiology,
and its pathogenesis remained elusive.

The principles of disinfection and anti-septic practices
pioneered by Semmelweis and later by Lister were adopted
only several decades later. The importance of the host re-
sponse to infection was first described in the 1880s and

classified separately in terms of cell-mediated and humoral
immunity. The subsequent use of drug anti-metabolites to
ameliorate the effects of syphilis at the turn of the century,
and the discovery of antibiotic sulphonamides, moulds and
vaccination, led to a revolution in the treatment and pre-
vention of infection. It was believed that these develop-
ments had the potential of eradicating sepsis from the mod-
ern age, but the problems of changing disease patterns and
antibiotic resistance dampened early ambitions and sepsis
has remained a formidable problem in many areas of med-
ical practice.

Sepsis and multiple organ dysfunction: epidemiology

Sepsis, the host response to an infectious process, is
termed severe when complicated by predefined organ
system dysfunction [1]. Together, the systemic inflamma-
tory response syndrome (SIRS), sepsis and septic shock
have been termed the ‘sepsis syndromes’ [1, 2, 3]. The
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nature of infectious organisms associated with sepsis
is changing. Thus, whilst Gram-negative bacteria were
traditionally responsible for the majority of hospital-
acquired infections, Gram-positive organisms (30–50%
of cases) and multidrug-resistant bacteria or fungi (25%)
are now more common [4, 5]. Moreover, the burden of
sepsis-related disease is also rising; from 82.7 to 240.4
cases per 100,000 population in the United States and
to 51 cases per 100,000 population (1997 figures) in the
United Kingdom, where 27.1% of adult ICU admissions
had severe sepsis in the first 24 h [6].

Severe sepsis and shock are characterised by tissue
hypoperfusion, cellular hypoxia and metabolic dysfunc-
tion. Consequently the majority of patients with SIRS
and its sequelae who fail to survive succumb to multiple
organ dysfunction syndrome (MODS). Multiple organ
failure (i.e. demonstrable failure of two or more organs)
within the ICU was first documented in 1977. Bacterial
sepsis was aetiologically significant in 69% of the cases
described [7]. Indeed, the onset of MODS, synonymous
with multiple organ system failure, was thought originally
to follow a temporal sequence (lung, liver, gastric mucosa
and kidney) [8]. Moreover, whilst strongly linked to
uncontrolled infection (in particular intra-abdominal), it is
now recognised that MODS can occur independently of
sepsis. The commonest manifestation of MODS is acute
lung injury, defined by refractory hypoxaemia attributable
to high permeability pulmonary oedema [9]. Its extreme
manifestation, the acute respiratory distress syndrome
(ARDS), occurs in more than 40% of patients with sepsis
and severe sepsis [6, 10].

There has been an evolution in the appreciation of
mechanisms that result in sepsis and subsequent MODS.
Thus, initially, a link between infections, which were
recognised and treated and their inflammatory conse-
quences was not appreciated. Indeed, progression to
MODS, in spite of evidence of clearing of infection,
nurtured the hypothesis of the body’s response to infection
associated systemic inflammation (by now autonomous
from the initial infection) as being crucial to outcome. The
process of increasing understanding of sepsis-associated
MODS has required a number of key components, namely:
(a) defining the biophysiological pathways arising from
a systemic inflammatory insult, (b) clear epidemiological
definitions of the spectrum of sepsis syndromes (often
misused terms), (c) understanding the pathophysiological
processes of the clinically apparent systemic disturbances
during early and later stages and (d) testing different
therapeutic approaches, directed at specific implicated
inflammatory markers or at abnormal physiological
parameters. Many therapeutic ‘bedside’ approaches have
been proven wrong, yet providing insights into further
‘bench’ studies.

In summary, the sepsis syndromes and their sequelae,
specifically MODS, represent the leading cause of death
in adult general ICUs, with an associated mortality of

30–45%, consumption of 45% of ICU and 33% of hospital
bed days and an estimated cost of $16.7 billion [6, 11].

Pathophysiology of MODS in sepsis

It is unknown why sepsis progresses to MODS in only
certain individuals, or what the exact pathway is that leads
to this. If the inflammatory process that characterises
the systemic response to infectious pathogens becomes
self-sustaining and progressive, organ dysfunction ensues.
An extraordinarily complex and intricate cascade of
inflammatory mediators, extra- and intracellular cell sig-
nalling pathways is activated. Prevailing wisdom suggests
that these result in either microvascular dysregulation
and/or mitochondrial dysfunction (so-called cytopathic
hypoxia). These processes result in tissue hypoperfusion,
and a further cascade of biochemico-physical alterations
culminating in MODS [12].

Microvascular dysfunction

Early in the course of sepsis cardiac output (CO) rises to
maintain blood pressure and organ perfusion in the face
of reduced peripheral vascular resistance (hyperdynamic
sepsis). As sepsis progresses, cardiac output is frequently
reduced (so-called hypodynamic sepsis), which has a poor
prognosis. Cardiac dysfunction per se is apparent in up to
44% of critically ill septic patients, with the aetiological
agents suspected to be circulating depressant factors.
Myocardial function tends to recover in survivors, and the
prognostic significance of dysfunction in sepsis remains
debatable [13]. Redistribution of capillary blood flow has
been demonstrated in both animal models and in clinical
sepsis [14, 15]. The use of investigatory tools such as
intravital videomicroscopy, now applicable in the clinical
setting, has provided evidence of simultaneous structural
and functional abnormalities in sepsis, strengthening
the association between tissue hypoperfusion and organ
dysfunction. However, contradictory evidence from an-
imal studies suggests that such hypoperfusion does not
invariably lead to organ dysfunction and death.

Cytopathic hypoxia

Elevated tissue oxygen levels have been demonstrated in
animals during experimental sepsis and in human skeletal
muscle, suggesting that cellular inefficiency of oxygen
utilisation rather than a failure of oxygen delivery (DO2)
to tissues occurs in sepsis. By contrast, in cardiogenic
shock tissue oxygen is reduced [16, 17]. Tissue oxygen
consumption occurs normally principally through ATP
production by oxidative phosphorylation in mitochondria.
Reduced ATP concentrations in skeletal muscle during
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sepsis are associated with increasing severity of, and
poor outcome from, septic shock [18]. The pathophysi-
ological consequences of both regional flow alterations
and mitochondrial dysfunction undoubtedly co-exist in
the septic state, but do not appear to lead to significant
histopathological correlates detectable at post-mortem
examination.

Inflammatory cytokines in sepsis

The development of sequential organ failure in criti-
cally ill patients with sepsis is strongly predictive of
mortality. However, the mechanisms involved in the
dynamic interaction between different organ systems are
dictated by the intricate interplay of haemodynamics,
oxygen transport and metabolic disturbances. Genetic
predisposition is almost certainly relevant in upregulating
the expression of inflammatory mediators [e.g. tumour
necrosis factor (TNF), interleukin (IL) 1, IL-8, triggering
receptor on myeloid cells 1, high mobility group box 1),
thereby influencing adversely the anti-/pro-inflammatory
balance. Genetic predisposition seems more important
for some infectious diseases such as meningococcaemia,
but polymorphisms such as for TNF-α gene promoter
can play a more general role in susceptibility to septic
shock associated mortality [19]. Neuroendocrine systems
and prothrombotic pathways (e.g. tissue factor) are ac-
tivated with downregulation of fibrinolytic systems (i.e.
anti-thrombin III, activated protein C and tissue factor
pathway inhibitor) [20]. Inflammatory mediators TNF,
IL-1, nitric oxide and reactive oxygen species are believed
to disrupt communication pathways between organs which
precedes organ failure [21]. Indeed, epithelial dysfunction
has been proposed as a final common pathway for organ
dysfunction in sepsis [22]. The tight junctions between
these cells are affected in experimental models of sepsis.
This may be particularly relevant in the gastrointestinal
tract, which has been variously proposed as the ‘seat of
sepsis’ and the ‘motor of multiple organ failure’ [23, 24].
Bacterial translocation (i.e. direct transcellular transport
of microbes from the enterocytes to the submucosal layer)
across a permeable intestinal luminal mucosa into the
splanchnic circulation has been proposed as the initiator
and propagator of sepsis following a remote insult. Mech-
anisms for this mucosal injury are multifactorial, including
reduced intestinal blood flow and tissue hypoxia. Impaired
hepatic clearance of toxins may also be relevant [25,
26, 27].

The prevailing theories of sepsis as an uncontrolled
inflammatory response, which have been based on ex-
tensive animal studies, do not necessarily reflect the
human clinical pattern. They used relatively large doses
of bacteria or endotoxin and mortality was therefore the
result of a ‘cytokine storm’, that if blocked improved
survival. Meningococcaemia is perhaps the only human

form of sepsis in which circulating levels of TNF-α are
high and correlated with mortality [28]. Furthermore,
there is much evidence of immune suppression during
sepsis. Anergy (a state of non-responsiveness to antigen)
through lymphocyte apoptosis has been demonstrable in
vivo, and from autopsy studies of patients dying from
sepsis [29]. Cellular hibernation or ‘stunning’ as occurs
during myocardial ischaemia has been postulated as
a mechanism for sepsis-associated MODS based on the
notable findings of discordance between histological
findings and the degree of organ dysfunction from patients
who died of sepsis [30].

An emerging concept is the variable immune response
during sepsis; from hyperimmune to hypoimmune, de-
pending on factors that include virulence of the organism,
size of the inoculum, pre-existing co-morbidity, genetic
polymorphisms in candidate genes and the inflamma-
tory insults during the course of sepsis. Therefore it is
perhaps too simplistic to consider an overactive immune
system as the reason for sepsis and associated MODS
but rather a dynamic state where a severely compromised
immune system might prevent adequate eradication of
pathogens [29].

Clinical relevance of organ dysfunction:
severity of illness scoring systems

Scoring systems as risk prediction tools rely on acute
derangements in acute physiological parameters which
are numerically assigned by degree and aggregated. Such
generic (as distinct from disease-specific) scoring systems
are best exemplified by the Acute Physiology and Chronic
Health Evaluation (APACHE) system [31] which has led
to the development of a number of other organ-based
failure scores [32, 33, 34, 35].

Perhaps the most widely applied in current practice is
the Sequential Organ Failure Assessment Score (SOFA,
previously called the Sepsis-Related Organ Failure Assess-
ment). Daily SOFA scores provide an important physiolog-
ical tracking system for the dynamic course of critically
ill patients with sepsis. Whilst not designed for mortality
prediction, worse scores are strongly associated with mor-
tality [36]; the mean and highest SOFA scores are predic-
tors of poor prognosis, whilst a worsening of SOFA within
the first 48 h predicts the likelihood of mortality 50% or
higher [37]. However, whether organ-based scoring sys-
tems direct the timing, degree and duration of appropriate
interventions to prevent MODS in sepsis is uncertain.

Detecting organ dysfunction in sepsis

Continuous monitoring of clinical and physiological
variables, recognition of the significance of any changes
in monitored parameters, and an appropriate response, are
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the cornerstones and defining characteristic of modern-day
intensive care medicine. Electrocardiographic, peripheral
temperature (as an indicator of shock or its response) [38],
non-invasive oxygen saturations [39], arterial blood gas,
end tidal CO2, metabolism (i.e. lactate), central venous,
and cardiac output monitoring have become routine in
practice. Specific organ system monitoring can guide
management in certain circumstances such as intracranial
pressure monitoring in traumatic head injury [40], whilst
other more novel techniques such as gastric tonometry,
and hepatic blood flow devices are under evaluation in the
setting of sepsis [41].

Metabolic monitoring

Hyperlactataemia is multifactorial in origin. Nevertheless,
there is a good relationship in sepsis between lactic acido-
sis, organ failure and poor outcome [42]. Indeed, blood lac-
tate sampling is established and now recommended as an
important parameter for monitoring in international guide-
lines on the management of severe sepsis [43].

Cardiac output monitoring

The history of the development of flow-directed, balloon-
tipped, pulmonary artery catheters (PAC) saw them adopt
a pivotal role in continuous bedside cardiopulmonary
monitoring, and coincidently propagated the value of
central venous catheters [44, 45, 46]. However, the SUP-
PORT [47] investigators identified an increased odds ratio
for mortality and resource utilisation with the use of the
PAC, even after adjustment for treatment selection bias.
The ‘attributable’ morbidity associated with PAC use was
thought more likely due to misinterpretation of the values
thereby derived than to physical complications on inser-
tion [48]. However, such work has led to the development
of a number of other monitoring devices utilising arterial
waveform analysis (i.e. pulse contour cardiac output,
lithium dilution cardiac output), oesophageal Doppler
and bioimpedance. Whilst all are relatively less invasive
than the PAC, none provides the additional information
about the pulmonary circulation. By contrast, the use
of echocardiography is becoming more widespread in
assessing cardiac function in sepsis [49, 50, 51, 52].

Mixed venous oxygen saturation

The value of reduced mixed venous oxygen ten-
sions/saturations sampled from indwelling PACs as
an accurate reflection of inadequate DO2 due to reduced
CO in cardiorespiratory failure was first demonstrated
in patients undergoing cardiac surgery in whom a close
correlation between venous oxygen saturation, CO and

outcome was demonstrated [53]. Central venous oxygen
saturation is now regarded as a crucial physiological
surrogate for identifying and directing the correction of
‘hidden’ oxygen debt [54, 55, 56].

Management of organ dysfunction in sepsis
The principles of management of severe sepsis and asso-
ciated organ dysfunction have evolved concomitantly with
an increasing evidence base. Some critical concepts and
studies that have helped this development are discussed be-
low.

Diagnosis, source control and anti-microbial therapy

Early diagnosis of infection, ‘source control’ and appropri-
ate anti-microbial treatment have been reported as crucial
to outcome in sepsis for many years [57]. By contrast, up to
eight-fold higher mortality is observed in prospective co-
hort studies of antibiotic misuse [58, 59], while inadequate
surgical source control predicts MODS and increases mor-
tality [7, 60].

Resuscitation-fluid management

Prompt and adequate haemodynamic resuscitation in
patients with severe sepsis is pivotal in preventing
progression to MODS and death. International recom-
mendations suggest achieving a central venous pressure
of 8–12 mmHg (or 12–15 mmHg in mechanically ven-
tilated patients [56]. Which type of fluid replacement
(i.e. crystalloid vs. colloid or albumin) to administer is
more contentious [61, 62, 63], although a recent position
statement by the American Thoracic Society is helpful in
this regards [64].

Haemodynamic goals in sepsis

Fluid resuscitation in septic shock is directed at achiev-
ing adequate tissue perfusion and oxygenation, thereby
overcoming tissue oxygen ‘debt’ which relates in part
to inadequate DO2. However, an early demonstration
that dobutamine and adequate volume resuscitation
improve DO2 (and oxygen consumption, VO2) as well
as haemodynamic parameters post-operatively [65, 66,
67] was not reproduced in patients with sepsis-induced
organ failures. Indeed, a strategy of goal directed supra-
normal oxygen delivery (cardiac index 4.5 l min–1 m–2,
DO2 > 60 ml min–1 m–2, VO2 > 170 ml min–1 m–2) using
dobutamine in volume resuscitated critically ill patients in-
creased mortality (54%) compared to controls (34%) [68].
In fact, the dobutamine-‘driven’ patients did not increase
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General
Temperature < 36 ◦C or > 38.3 ◦C (core temperature)
Heart rate > 90 min−1 (or > 2 SD above the normal value)
Tachypnoea
Altered mental status
Significant oedema or positive fluid balance > 20 ml/kg over 24 h)
Plasma glucose > 120 mg/dl (7.7 mmol/l) if not diabetic

Inflammatory
White blood cell count 12,000 µl−1or < 4000 µl−1

(or > 10% immature forms)
Plasma C-reactive protein > 2 SD above normal
Plasma procalcitonin > 2 SD above normal

Haemodynamic
Arterial hypotension Systolic blood pressure < 90 mmHg,

mean arterial blood pressure < 70,
or fall in systolic blood pressure > 40 mmHg
below normal)

Mixed venous oxygen saturation < 70%
Cardiac index < 3.5 l min−1 m−2

Organ dysfunction
PaO2/FIO2 ratio < 300 mmHg or 40 kPa
Urine output < 0.5 ml kg−1 h−1 for at least 2 h
Creatinine increase > 0.5 mg/dl
International normalised ratio > 1.5 or activated partial thromboplastin time > 60 s
Ileus
Platelet count < 100,000/µl
Plasma bilirubin > 4 mg/dl or 70 mmol/l

Tissue perfusion
Plasma lactate > 1 mmol/l
Decreased capillary refill or mottling

Table 1 Diagnostic criteria for
sepsis and associated organ
dysfunction in adults. Adapted
from [2]: infection (documented
or suspected—a pathological
process induced by
a micro-organism) and some of
the following variables

their VO2 beyond those of adequately volume resuscitated
controls. A second study with similar outcomes [69]
helped to establish a number of facts. First, patients with
sepsis and septic shock who can improve their haemo-
dynamic indices through adequate fluid resuscitation are
likely to do better than those who do not. Second, supra-
normal targets for DO2/VO2 are at best unnecessary, and
at worst increase mortality. Third, a beneficial response to
fluid resuscitation is more likely in the acute phase, before
established critical illness. Thus patients with severe sepsis
and septic shock resuscitated to standard haemodynamic
goals, who additionally achieve central venous oxygen
saturation of 70% or higher within the first 6 h by fluid
resuscitation, red cell transfusion to a haematocrit of
30%, and/or dobutamine (up to 20 µg kg–1 min–1) display
significantly lower 30- and 60-day mortality rates [56].

Ventilatory strategies

In those patients with sepsis who develop acute lung injury
and require mechanical ventilatory support low tidal vol-
umes (approx. 6 ml/kg) and inspiratory plateau pressures
below 30 cmH2O should be used where possible. Such
recommendations have emerged from animal studies [70,
71] and a retrospective analysis of patients with ARDS,
which demonstrated that pressure-limited ventilation
with so-called permissive hypercapnia reduced hospital

mortality compared with APACHE II predictions (18.6%
vs. 37.8%) [72]. It was, however, the pivotal ARDSnet
study that demonstrated a 9% absolute mortality reduction
(31% vs. 39.8% for controls) in patients with ARDS
randomised to receive a tidal volume of 6 ml/kg with
plateau pressure limited to less than 30 cmH2O [73]. By
contrast, higher positive end expiratory pressures, prone
positioning and the use of inhaled nitric oxide and surfac-
tant have demonstrated only short-term improvements in
oxygenation. The results of a large randomised controlled
trial of steroid therapy in late stage ARDS based upon an
encouraging single-centre study are awaited [74].

Management of renal dysfunction

The importance of maintaining regional perfusion in sep-
sis is increasingly recognised, not least the hepatosplanch-
nic circulation. Since the first experiences of arteriovenous
haemofiltration in anuric intensive care patients with fluid
overload resistant to diuretics in the 1970s [75], acute re-
nal failure in the critically ill has been recognised to be
of multifactorial aetiology. Hypotension, nephrotoxic drug
insults, sepsis and preceding renal dysfunction may all be
relevant [76]. Acute renal failure is an independent risk
factor for mortality in the critically ill, which varies from
45% to 70% when associated with sepsis [77, 78]. Factors
predicting a poor outcome are advanced age, altered pre-
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Table 2 The Sequential Organ failure Assessment score (MAP mean arterial blood pressure, Nor norepinephrine, Dop dopamine, Dob
dobutamine, Epi epinephrine; FIO2 fraction of inspired oxygen, GCS Glasgow Coma Scale score) (adapted from [31])

0 1 2 3 4

Respiratory: PaO2/FIO2 ratio > 400 ≤ 400 ≤ 300 ≤ 200c ≤ 100c

Coagulation: platelets (× 103 µl−1)a > 150 ≤ 150 ≤ 100 ≤ 50 ≤ 20
Liver: bilirubin (mg dl−1)a < 1.2 1.2–1.9 2.0–5.9 6.0–11.9 > 12.0
Cardiovascular: hypotension No hypotension MAP < 70 mmHg Dop ≤ 5 or Dop > 5, Dop ≥ 15,

Dob any dosed Epi ≤ 0.1 or Epi > 0.1 or
Nor ≤ 0.1d Nor > 0.1d

Central nervous system: GCS 15 13–14 10–12 6–9 < 6
Renal: creatinine (mg dl−1) < 1.2 1.2–1.9 2.0–3.4 3.5–4.9or < 500 > 5 or < 200
or daily urine output (ml)a

a To convert bilirubin from mg dl−1 multiply by 17.1
b To convert mg dl−1 to µmol−1 multiply by 88.4
c Values are with respiratory support
d Adrenergic agents administered for 1 h or longer (doses as µg kg−1 min−1)

vious health status, later onset of acute renal failure, sep-
sis, oliguria and severity of illness [79]. The use of low-
dose dopamine has been shown to be ineffective in halt-
ing the progression to acute renal failure in the critically
ill [80, 81]. Daily intermittent haemodialysis is better than
alternate-day haemofiltration in critically ill patients who
require renal replacement therapy, improving the time to
resolution and survival at 14 days [82]. Continuous renal
replacement therapy has equivalent outcomes to intermit-
tent renal replacement therapy for acute renal failure in
critical illness, although the former may offer easier man-
agement of fluid balance in the haemodynamically unsta-
ble septic patient. Whether higher doses (i.e. ultrafiltra-
tion rates 35–45 vs. 20 ml kg–1 h–1) of continuous renal
replacement therapy confer a survival advantage in acute
renal failure awaits corroboration [83].

Metabolic management

Impaired adrenoceptor responsiveness has long been
recognised in endotoxic shock, partially reversible by
corticosteroids [84, 85]. However, high doses of steroids
(methylprednisolone 30 mg/kg or dexamethasone), ad-
ministered on day 1 of septic shock failed to show an
outcome benefit in two multicentre randomised controlled
trial in the 1980s, with the abandonment of empirical
steroid treatment, except for those with demonstrable
adrenocortical insufficiency [86, 87, 88]. However, later
work employing the prospective characterisation of the
adrenal status of patients in septic shock, through the
use of a 250 µg ACTH stimulation test, into so-called
responders (proposed unimpaired adrenocortical axis) and
non-responders (proposed relative adrenocortical insuffi-
ciency) proved more encouraging. Thus non-responders
randomised to 50 mg hydrocortisone every 6 h plus 50 µg
oral fludrocortisone for 7 days displayed a significantly

better 28-day vasopressor-withdrawal effect and survival
advantage than those receiving placebo [89]. Overall
survival between the hydrocortisone and placebo groups
was not statistically different [90]. An ongoing trial
(EUROCORTICUS) aims to address previous findings
and investigate the risk-benefit ratio of low-dose steroids
in non-refractory septic shock.

Glycaemic control, whilst avoiding potentially dele-
terious episodes of hypoglycaemia, plays an important
role in outcomes of sepsis-associated organ failures
and mortality. Tight glucose control (4.4–6.1 mmol/l)
compared with standard care confers significant survival
advantage in post-operative cardiac surgery patients.
Multiple-organ failure with a proven focus of sepsis was
also decreased [91]. Recent studies further support tight
but less stringent control of blood glucose in critically
ill patients (8.0 mmol/l or less) but suggest that glucose
control, rather than insulin dose per se, is more important
in determining outcome [92].

Anti-thrombotic strategies

The inflammatory response in severe sepsis is integrally
related to procoagulant activity and endothelial activation.
Protein C is activated by complexing with thrombin and
endothelial cell thrombomodulin. Activated protein C
(APC) then modulates inflammation, coagulation and
endothelial cell function. A deficiency of APC and lower
levels of protein C activity in sepsis are correlated with
higher mortality rates [93, 94]. The PROWESS trial of
drotrecogin alfa (activated) (recombinant human APC,
rhAPC) showed that patients with severe sepsis who were
randomised to 96-h infusions of rhAPC (24 µg kg–1 h–1)
within 24 h of inclusion had significantly lower 28-day
all-cause mortality vs. placebo (24.7% vs. 30.8% respec-
tively). The incidence of serious bleeding was higher in the
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Table 3 Management guidelines for ‘early’ (the initial few hours following suspected sepsis) and ‘late’ (the period beyond the first few
hours of severe sepsis) severe sepsis and septic shock (ALI acute lung injury, ARDS acute respiratory distress syndrome, APACHE Acute
Physiology and Chronic Health Evaluation, MODS multiple organ dysfunction syndrome) (adapted from [38])

Early sepsis
Investigations
Diagnosis

Elevated serum lactate
Microbiological cultures before anti-microbial therapy is initiated
Two or more blood cultures (percutaneously and vascular access)

Therapy
Initial resuscitation

Begin resuscitation immediately in patients with hypotension
Early goals

Central venous pressure: 8–12 mmHg
Mean arterial blood pressure: ≥ 65 mmHg and < 90 mmHg
Urine output: ≥ 0.5 ml kg−1 h
Central venous oxygen saturation or mixed venous saturation: ≥ 70%

During the first 6 h if goals not achieved with CVP of 8–12 mmHg
Transfuse packed red blood cells to hmt ≥ 30%, and/or
Dobutamine infusion to achieve goals

Antibiotic therapy
Intravenous antibiotic therapy within the first hour of recognition of severe sepsis, after appropriate cultures
Consider local microbiology susceptibility patterns in guiding treatment regimens
Reassess anti-microbial regimens after 48–72 h aiming to de-escalate empirical broad spectrum regimens, at the earliest opportunity

Source control measures
As soon as possible
Consider measures that are definitive but minimise physiological disturbance, e.g. percutaneous vs. surgical drainage of an abscess
Low threshold for suspecting and replacing intravascular access devices promptly

Late sepsisa

Investigations
Antibiotic therapy: as for early sepsis
Source control: as for early sepsis

Therapy
Fluid therapy

Crystalloid or colloid
Fluid challenges based on response and tolerance

Vasopressors
When an appropriate fluid challenge fails to restore adequate mean arterial pressure and organ perfusion
Vasopressor therapy may also be required transiently to sustain life and maintain perfusion
Norepinephrine (or dopamine)

Inotropic support
If a low CO persists despite adequate initial resuscitation
Dobutamine, epinephrine or dopamine will all increase CO. If used in the presence of low mean arterial pressure,
consider combination with a vasopressor

Steroids
Intravenous corticosteroids: hydrocortisone 200–300 mg/day, for 7 days in patients with fluid-resuscitated,
vasopressor-dependent septic shock
Those with a positive response to an ACTH stimulation test can discontinue therapy

Recombinant human activated protein C

Consider in patients with APACHE II ≥ 25, sepsis-induced MODS, septic shock, or sepsis-induced ARDS and without contraindications
Blood transfusion

Red blood cell transfusion when haemoglobin decreases to 7.0 g/dl to achieve a target of 7.0–9.0 g/dl
Only when early resuscitation is complete, and in the absence of significant coronary artery disease, acute haemorrhage,
or lactic acidosis

Mechanical ventilation of sepsis-induced ALI/ARDS
Avoid high tidal volumes coupled with high plateau pressures
Aim to reduce tidal volumes to ∼ 6 ml.kg−1 of lean body weight and end inspiratory plateau pressure < 30 cmH2O
Permissive hypercapnia allowable

Adjunctive strategies
Prone ARDS patients or utilise selective pulmonary vasodilators (i.e. Inhaled NO) for short term improvements in oxygenation,
if requiring potentially injurious levels of FIO2 or plateau pressure

a Management guidelines, once initial resuscitation/evaluation of the early sepsis strategies above have been fulfilled, but not mutually
exclusive
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Table 3 (continued)

> 30◦ semi-recumbent position to prevent ventilator associated pneumonia, unless contraindicated
Weaning
Use a weaning protocol and daily spontaneous breathing trial to evaluate for ventilation discontinuation

Sedation, analgesia, and neuromuscular blockade in sepsis
Use sedation protocols. Use standardised sedation scores, and retitrate daily to the minimum necessary dose
If necessary, retitrate neuromuscular blockers daily and monitor the depth of blockade

Glucose control
Maintain blood glucose < 150 mg/dl (8.3 mmol) following initial stabilisation

Renal replacement
Continuous veno-venous haemofiltration is equivalent to intermittent veno-venous haemofiltration,
but offers easier management in haemodynamically unstable septic patients

Deep vein thrombosis prophylaxis
Use low-dose unfractionated heparin, low molecular weight heparin

Stress ulcer prophylaxis
Histamine (H2) receptor blockers or alternatively proton pump inhibitors

Advanced care planning
Describe likely outcomes and realistic expectations

rhAPC group (3.5% vs. 2.0%, p = 0.06) [95], and it seems
that sicker patients (APACHE II>25) benefit most from
this therapy [96]. The effect was not reproduced in a large
scale trial of anti-thrombin III in severe sepsis (mortality
38.9%, anti-thrombin group vs. 38.7% for placebo group)
in spite of favourable indications from preclinical and
phase II trials [97], in this sense mirroring experience
with many other putative therapeutic interventions (i.e.
anti-endotoxin, anti-TNF and nitric oxide synthase inhibi-
tion) trialled in patients with sepsis over many years [98,
99, 100, 101, 102, 103, 104, 105, 106, 107]. This failure
(PROWESS notwithstanding) of new pharmacological
therapies and immunotherapies in patients with sepsis
may in part reflect the complexity of mechanisms leading
to organ dysfunction and the consequent heterogeneity
of the patient population. Whether new definitions are
needed that may identify critically ill patients more likely
to respond to novel therapies remains unclear [106].

Other strategies

Blood transfusion requirements in the critically ill have
evolved from reports of its beneficial use dating back to
1935 and the appreciation of its value in improving tissue
DO2 in early resuscitation [108]. However, the Transfu-
sion in Critical Care Trial demonstrated that a conserva-
tive strategy employing a hemoglobin threshold of 7.0 g/dl
(to maintain hemoglobin between 7 and 9 g/dl) is not as-
sociated with higher mortality than with a liberal transfu-
sion protocol (i.e. threshold 10 g/dl), previously accepted
as standard practice. However, only 6% of patients enrolled
had sepsis, and in patients with ischaemic cardiac disease
a higher threshold was recommended [109]. The optimal
haemoglobin levels of specific groups of critically ill pa-
tients are therefore as yet unstudied, and the value of re-
combinant erythropoietin remains unclear.

Stress-ulcer prophylaxis to prevent clinically important
bleeding from the gastrointestinal tract in critically ill
patients is well established, and the predisposing factors
(i.e. coagulopathy, hypotension and mechanical ventila-
tion) are frequently present in patients with sepsis [110].
However, relatively small percentages of patients develop
clinically important bleeding from recent observational
studies. Moreover, the pursuit of early enteral nutrition
where possible, together with a trend to an increased
incidence of ventilator associated pneumonia by H2
antagonists/proton pump inhibitors, means that identifying
subgroups of patients who may benefit most from stress
ulcer prophylaxis remains difficult.

Conclusions
Multiple organ dysfunction complicating sepsis remains
the commonest cause of mortality in the ICU. However,
its mechanisms remain unknown, and the results of
pathological autopsy studies show no correlation with
degree of organ dysfunction or with specific causes of
death. Nevertheless, these mechanisms continue to be
unravelled, alongside emerging genetic predisposing
targets. Moreover, the concept of a variable immune
status, which can be tracked during sepsis and modu-
lated, provides an increasing number of potential new
therapeutic targets. A body of evidence accrued over
decades reemphasises the fundamental importance of
early recognition of physiological surrogates of tissue
dysoxia in reducing associated organ dysfunction. Local
and International clinical strategies, through a phased
approach of the development of evidenced-based guide-
lines (incorporating proven strategies in sepsis), their
implementation and evaluation, have undertaken the
challenge of effecting improved survival in this patient
population.
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