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Abstract
Microplastics (MPs) accumulate in sediments, yet guidelines for evaluating MP risks in dredged sediments are lacking. 
The objective of this study was to review existing literature on MPs in sediments to improve fundamental knowledge of 
MP exposures and develop a publicly available database of MPs in sediments. Twelve percent of the reviewed papers (nine 
studies) included sediment core samples with MP concentrations generally decreasing with depth, peaking in the top 15 cm. 
The remaining papers evaluated surficial grab samples (0 to 15 cm depth) from various water bodies with MPs detected in 
almost every sample. Median MP concentrations (items/kg dry sediment) increased in this order: lakes and reservoirs (184), 
estuarine (263), Great Lakes nearshore areas and tributaries (290), riverine (410), nearshore marine areas (487), dredge 
activities (817), and harbors (948). Dredging of recurrent shoaling sediments could be expected to contain MPs at various 
depths with concentrations influenced by the time elapsed since the last dredging event. These results offer key insights into 
the presence and variability of MPs in dredged sediments, informing environmental monitoring and risk assessment strategies.
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Microplastics (MPs), ranging from 0.01 to 5 mm (Frias and 
Nash 2019), are ubiquitous in sediments, serving as envi-
ronmental sinks with potential for bioaccumulation in eco-
systems and possibly in humans (Darabi et al. 2021). Their 
small size and ability to degrade into nanoplastics is cause 
for concern about ingestion by wildlife and the resultant 
ecological risks, which has gained international (UN 2022) 
and national attention (USEPA 2016). The US Army Corps 
of Engineers (USACE) confronts this directly, annually 
dredging several hundred million cubic yards of sediment 
each year, often without data on MPs abundance in shoaled 
channel beds requiring dredging. The International Maritime 
Organization, a United Nations (UN) specialized agency, 
and the Group of Experts on the Scientific Aspects of 
Marine Environmental Protection, a UN advisory body, both 
recognize that plastics are in shoaled sediments destined for 
dredging and the challenges associated with separating plas-
tic from dredged sediment (IMO 2016; GESAMP 2021). 

Recognizing the need for informed decision-making in the 
management of dredged sediments, the primary objective of 
this study is to synthesize existing peer-reviewed research 
to provide a comprehensive understanding of the presence, 
concentration, and characteristics of MPs in sediments, espe-
cially those that may be relevant to national and international 
navigation channels requiring periodic dredging. By present-
ing MP concentrations, morphologies, size ranges, colors, 
and polymer types, we aim to provide project managers a 
foundational reference that serves as a starting point for a 
risk-informed response strategy for dredged sediments that 
balances environmental risks and operational demands.

Methods and Materials

In March 2023, we systematically searched Web of Science 
and Google Scholar for studies on MPs in dredged sedi-
ments, focusing on sediment collected during dredge sedi-
ment evaluations or sediment collected from disposal areas 
(search “microplastics dredging dredge”). The scarcity of 
research specifically on dredged sediments broadened our 
scope to similar environments, such as harbors, nearshore 
marine and estuarine areas (subtidal), as well as riverine and 
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lacustrine systems including the Great Lakes (search “micro-
plastics sediments”). These areas were likely to share similar 
plastic inputs and physical processes as would take place 
for shoaled sediment destined for dredging. We refined the 
collected literature against minimum data quality objectives, 
prioritizing studies that detailed their MP detection meth-
ods, utilized visual and/or spectrometric identification, and 
reported MP concentration per kilogram of dry sediment. 
When necessary (n = 4 studies), MP quantities reported as 
MP per liter were standardized to MP per kilogram dry sedi-
ment following the methodology of Claessens et al. (2011), 
to allow for more direct comparison across studies. In this 
paper, MP concentrations are reported as “items/kg” used 
to encompasses a variety of MP morphologies (fibers, films, 
foams, fragments, spheres or beads) and polymer types.

For each study, data was disaggregated by specific test 
areas within larger water bodies when such information was 
available. Our exploratory analysis focused on presenting 
median MP concentrations, a metric robust against skewed 
distributions, along with the full range of MP concentrations 
(minimum to maximum) to encapsulate the heterogeneity in 
environmental conditions as well as sampling and laboratory 
methodologies. To offer a more granular perspective, we 
categorized sample locations into systems including lakes, 
rivers, the Great Lakes, estuarine and marine environments, 
harbors and ports, and studies specifically addressing dredg-
ing. For instances of notably high or low MP abundances, 
additional contextual information is provided to elucidate 
possible environmental or methodological factors contribut-
ing to these extremes.

Results and Discussion

The review identified 122 papers, with 73 meeting our pri-
orities based on their relevance and methodological clarity. 
Data from this review was collated in an online microplastic 
database for sediments (MP-SED 2023) which contains a 
searchable database of MP concentrations, sizes, shapes, and 
polymer data for sediments across diverse geographic loca-
tions. These reviewed papers, spanning 2004 to 2023 and 
retrieved from 31 journals, predominantly featured MP con-
centrations in sediment cores and in the top 0–15 cm of sedi-
ments collected in North America (30%), Europe (31%), and 
Asia (32%), with minor contributions from Africa and Oce-
ania. In our review, data extraction from the papers directly 
yielded MP data from tables in 63% of the of the papers 
reviewed. For the remainder of the papers reviewed, MP 
data required interpolation from figures using image analy-
sis software (ImageJ, version 1.54c, NIH, Bethesda, MD). 
Overall, MPs less than 1–2 mm in size were the most abun-
dant. Fibers and fragments were the dominant morphologies, 
and occasionally spheres and foams, and to a much lesser 

extent, films. Commonly observed colors included black, 
blue, brown, white, gray, red, yellow, green, pink, purple, 
orange, and transparent. Plastics consisting of polypropyl-
ene, polyethylene, polyethylene terephthalate, Rayon, Nylon, 
polystyrene, and tire wear particles were most identified. The 
focus on MPs themselves often leads researchers to over-
look sediment characteristics, such as sand, silt, and clay, 
which are not reported in many papers cited here. Although 
some research has explored the correlation between sedi-
ment types and MP concentrations, the results have varied 
(Alomar et al. 2016; Corcoran et al. 2020). Data from sedi-
ment cores are presented below to understand the potential 
presence and concentration of MPs at various depths. For 
grab samples, MPs in the top 0–15 cm of sediments are pre-
sented for each previously listed system (e.g., Great Lakes, 
riverine, harbors and ports). Further, contextual information 
is provided to understand potential MP contamination dur-
ing capital dredging which entails deeper excavation (i.e., 
several meters) of bottom sediments and during maintenance 
dredging (~ top meter of sediment), the most common form 
of dredging.

Nine studies collected sediment cores to depths of 95 cm 
to investigate the temporal variation of MPs. Most cores 
taken from marine (Matsuguma et al. 2017; Chen et al. 2020; 
Zheng et al. 2020; Simon-Sánchez et al. 2022), estuarine 
(Matsuguma et al. 2017; Culligan et al. 2022), and lake 
(Turner et al. 2019; Welsh et al. 2022b; Li et al. 2023) sites 
demonstrated a decrease in MP concentration from surface 
to bottom, punctuated by sporadic peaks (Fig. 1). Irrespec-
tive of the type of water body, the uppermost 15 cm dis-
played the highest concentrations of MPs, showing recent 
accumulation or continuous inputs at these depths. In con-
trast, a study examining a river sediment core (0–50 cm 
depth; Niu et al. 2021) did not follow this trend, showing 
smaller and more numerous MPs in deeper layers which 
the authors contributed to bacterial degradation, indicating 
potentially different fate and deposition dynamics in fluvial 
systems. Niu et al. (2021) noted that the study river under-
goes dredging approximately every five years, with the last 
event in 2015. Although the authors contribute smaller MPs 
in deeper layers to degradation, the dredging history high-
lights a potential interplay between the removal of MPs dur-
ing dredging and their reintroduction from upstream sources 
and redistribution into the active shoaling processes. Thus, 
while the studies indicate a general decrease in MP con-
centration with depth, the process of recurrent shoaling, 
combined with the time scales at which it occurs, should be 
considered because it could result in the presence of MPs 
at various depths.

Four studies were identified that collected 15 sediment 
samples across 15 dredged sediment disposal sites and one 
study that collected 9 samples from sediments collected for 
routine evaluation prior to being dredged. The median MP 
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concentration was 817 items/kg, ranging from 36 to 29,031 
items/kg (Fig. 2). At upland dredged sediment disposal sites, 
Constant et al. (2021) collected sediment samples from dis-
posal sites located along the bank of the Aa River in France, 
reporting MP concentrations that ranged from 1 to 2,800 
items/kg which was 1 to 4 orders of magnitude lower than 
those in many European riverbeds. Whereas Ji et al. (2021) 
reported a mean of 18,911 (9,400) items/kg in dredged sedi-
ments stored in stockpiles on farmlands in China and showed 
that some MPs were remobilized from the piles back into 
surrounding soil and waters downstream. Wilkens et al. 
(2020) extracted MPs from sediments obtained for dredged 
sediment evaluations and reported a mean concentration of 
1,636 items/kg for harbor sites located in the Gulf of Mex-
ico, Atlantic Ocean, and Great Lakes. Notably, the highest 
MP reported in that study came from the Cleveland Harbor 
(5,019 items/kg) which is an area that experienced severe 
industrial pollution in the past (e.g., fires on the Cuyahoga 
River).

Eight studies collected 42 surficial sediment samples 
across14 lakes where MPs were omnipresent. The median 

MP concentration was 184 items/kg, ranging from 9 to 5450 
items/kg. The rural headwater lakes in Muskoka–Haliburton, 
Ontario, recorded the highest concentrations, where fibers 
were the most prevalent type, suggesting atmospheric depo-
sition as a significant source, as supported by Welsh et al. 
(2022a, 2022b). Conversely, Vaughan et al. (2017) collected 
sediment from an urban lake, which might be expected to 
have higher concentrations due to greater local human activ-
ity but exhibited some of the lowest MP concentrations. In 
another context, Wilkens et al. (2020) reported 1114 items/
kg in an oxbow lake along the Mississippi River which is 
annually inundated by the river estimated to contribute more 
than five quadrillion MPs into the Gulf of Mexico annually 
(Martin 2018). The data reveal a substantial range in MP 
concentrations across rural and urban lakes, suggesting that 
their complex presence and distribution are influenced by 
varied factors like atmospheric deposition and river con-
nectivity, pointing to multiple sources and transport mecha-
nisms beyond human proximity.

Four studies that collected surficial sediment samples 
from tributaries and nearshore areas in the Great Lakes, 

Fig. 1   The mean microplastic 
concentration for each sediment 
layer (n = 9 studies) grouped by 
marine (n = 4), estuarine (n = 2), 
lakes and reservoirs (n = 3) and 
a river (n = 1). (source: MP-
SED 2023)

Fig. 2   Distribution of micro-
plastic concentrations (items/kg) 
reported in sediment samples. 
The box range = 25th to the 
75th percentiles; median = hori-
zontal line; whiskers denote 
the range from the 5th to the 
95th percentiles. Dots indicate 
concentrations greater than 95th 
percentiles. (source: MP-SED 
2023)
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covering Lake Michigan (n = 9), Lake Erie (n = 15), Lake 
Huron (n = 7), and Lake Ontario (n = 26), all found micro-
plastics (MPs). Across these studies, the median MP con-
centration was 290 items/kg, with a range from 10 to 27,830 
items/kg. Breaking this down further, tributaries had a 
median MP concentration of 370 items/kg, ranging from 
10 to 27,830 items/kg, while nearshore areas had a median 
of 285 items/kg, with a range from 24 to 5,530 items/kg. 
Urban tributaries, in particular, showed elevated MP con-
centrations. For instance, Ballent et al. (2016) found a mean 
MP concentration of 4,500 (± 10,308) items/kg in Lake 
Ontario tributaries passing through urban areas, which was 
substantially higher than the 567 (± 459) items/kg found in 
nearshore samples. Likewise, Lenaker et al. (2019) reported 
a mean MP concentration of 2,034 (± 2,492) items/kg in 
Lake Michigan tributaries through urban areas, which 
exceeded the mean of 197 (± 116) items/kg for nearshore 
samples. These findings underscore the significant role of 
urban tributaries as contributors to MPs in the Great Lakes 
system, aligning with observations that rivers and streams 
are key pathways for MP contamination (Talbot and Chang 
2022).

Thirty papers collecting 429 surficial sediment samples 
across 75 rivers, all contained MPs except for three samples. 
The median MP concentration was 410, ranging from 0 to 
74,800 items/kg. Notably, Wang et al. (2018) found the high-
est concentration of 32,947 (range 18,690 to 74,800) items/
kg in the Wen-Rui Tang River in China, an area with high 
levels of industrial activity. Hurley et al. (2018) also reported 
elevated mean MP concentrations of 31,950 (range 1,700 to 
62,200) items/kg in River Glossop Brook and 21,300 (range 
500 to 72,400) items/kg in River Tame in the UK. Addition-
ally, in the same study Hurley et al. (2018) noted a decline 
in MP concentrations in 28 out of 40 river sites following a 
major flood event (mean pre-flood 7,036 items/kg; post-flood 
889 items/kg), showing that MP contamination can substan-
tially change following flooding. Eppehimer et al. (2021) 
found similar results for MP concentrations after a flood in 
the Santa Cruz River near Tucson, Arizona.

Twelve studies collecting surficial sediment samples from 
12 nearshore marine areas (n = 106 samples) and 15 studies 
collecting surficial sediments from 17 estuarine areas (n = 72 
samples) environments, all contained MPs except for one 
marine site. The overall median MP concentrations within 
marine environments was 487 items/kg, ranging from 0 to 
15,326 items/kg and within estuarine environments was 263 
items/kg, ranging from 13 to 205,859. In marine nearshore 
areas, concentrations were reported with a mean of 9,510 
(± 3,209) items/kg in the Arabian Sea along the Indian coast 
by Gurjar et al. (2023), and 2,866 and 3,359 items/kg in the 
Celtic and North Seas, respectively, by Bakir et al. (2023). 
In estuarine systems, Haave et al. (2019) reported 79,301 
items/kg in a Norwegian fjord near a wastewater facility. A 

standout report from Cashman et al. (2022) documented an 
extreme mean concentration exceeding 5.26 million items/
kg, dominated by cellulose acetate fibers, in Narragansett 
Bay, USA, but was excluded from the data set since the MP 
concentrations were at least two orders of magnitude higher 
than other locations.

Seven studies collecting 68 surficial sediment samples 
across 18 harbor locations, all contained MPs. The median 
MP concentration was 948 items/kg, ranging from 44 to 
111,933 items/kg. The results were skewed by the high-
est concentrations (n = 22) all reported by Preston-Whyte 
et al. (2021) for sediments collected from the Port of Dur-
ban with a mean MP concentration of 21,067 (range 2,400 
to 111,933) items/kg. The authors suggested that sewage 
overflow, stormwater drains, port operations, and rivers were 
primary MP contributors. Excluding the Port of Durban, the 
median MP concentration for the remaining samples (n = 46) 
decreased to 237 items/kg. The data reveal a substantial 
range in MP concentrations across harbor areas, suggesting 
again that their complex presence and distribution are influ-
enced by varied factors like atmospheric deposition, river 
inputs, and harbor activities.

Regulatory agencies, public health officials, scien-
tists, and the public are increasingly concerned with MPs 
in the environment due to their potential implications on 
human health, regulatory frameworks, and environmental 
ecosystems. Researchers have begun to explore complex 
toxicological datasets to formulate risk-based MP thresh-
olds for ecological receptors in sediment. These risk-based 
thresholds, reflective of an evolving confidence (Mehinto 
et al. 2022), are specific to two anticipated mechanisms of 
action observed during laboratory toxicity evaluations: 1) 
food dilution, where MPs are mistakenly ingested in place 
of more nutritive food items (Straub et al. 2017; de Ruijter 
et al. 2020; Rauchschwalbe et al. 2021); and 2) the trans-
location of MPs into tissue, resulting in inflammation and 
oxidative stress (Limonta et al. 2019; Xia et al. 2020). In 
sediment, risk-based thresholds for food dilution range 
from 6.6 × 107 items/kg to 1.9 × 1011 items/kg, and for the 
translocation of MPs in tissues, 3.2 × 108 to 4.0 × 1011 items/
kg (Redondo-Hasselerharm et al. 2023). As such, current 
reported MP concentrations in sediments typically fall below 
these threshold values. However, ongoing research is cru-
cial for refining these thresholds, including incorporating the 
complexity of MPs and considering them alongside natural 
particles in the environment (Koelmans et al. 2022), to fully 
understand the implications.

This review presents initial findings on the presence of 
MPs in sediments that may be relevant to dredging pro-
grams, with the highest median concentration found in har-
bor sediments. Notably, MPs are less prevalent in deeper, 
undisturbed sediment layers targeted by capital dredging 
compared to the recurrent shoaling sediment of maintenance 
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dredging. The high variability at different depths and envi-
ronments highlights the ubiquitous nature of MPs–both in 
areas where dredging occurs and in places where it does 
not. This variation highlights the critical need for proac-
tive measures at the source to prevent plastic contamina-
tion from entering sediments. These preventative strategies 
could include improved wastewater treatment, stormwater 
controls, and supply chain modifications. Monitoring MPs 
in sediments, including prospective dredged sediments, is a 
potentially important tool for assessing the effectiveness of 
preventative strategies. Since the 1970s, in the United States, 
dredged sediment proposed for open water disposal under-
goes rigorous evaluation and testing to ensure it does not 
adversely affect human health or the environment (USEPA 
and USACE 1991). This often involves bioassays capable of 
detecting the cumulative toxicity of chemical mixtures, both 
known and unknown, compared to a reference sediment. 
Although the recognition of MPs in dredged sediments is 
relatively recent, their potential contribution to cumulative 
toxicity continues to be assessed through these thorough 
evaluations. Despite the number of manuscripts pertaining to 
MPs in sediment, key data gaps remain. Research is needed 
to better understand ecotoxicological effects of environmen-
tally relevant MP exposures. A critical component toward 
improving this understanding involves comprehensively 
documenting MPcharacteristics such as size, morphology, 
polymer type, and toxicity. Collating this information in 
resources like the MP-SED and ToMEx (Thornton Hampton 
et al. 2022) databases is important to help inform future risk 
assessments for plastics in sediments.
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