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Abstract
Steel slags, the main waste product from the steel industry, may have several reuse possibilities. Among others, building 
applications represent a crucial field. However, the potential impact of harmful substances on the environment should be 
assessed. The aim of this study was to assess the phytotoxicity of steel slags (SS) and concrete mixtures cast with a partial 
replacement of SS (CSS). Leaching tests were carried out on four SS and four CSS according to EN 12457-2 and UNI EN 
15863, respectively. Each leachate was assayed using root elongation tests on 30 seeds of Allium cepa, Cucumis sativus, 
and Lepidium sativum, respectively, and on 12 bulbs of A. cepa. The latter also allowed the analysis of other macroscopic 
parameters of toxicity (turgidity, consistency, colour change and root tip shape) and the evaluation of the mitotic index on 
20,000 root tip cells per sample. None of the samples induced phytotoxic effects on the organisms tested: all samples sup-
ported seedlings emergence, verified by root elongation comparable to, or even greater than, that of the negative controls, 
and did not affect cell division, as evidenced by mitotic index values. The absence of phytotoxicity demonstrated by the 
leachates allows SS and SS-derived concrete to be considered as reliable materials suitable for use in civil constructions or 
in other engineering applications, with economic and environmental advantages, such as the reduction of the final disposal 
in landfills as well as the consumption of natural resources.
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The quality and type of steel produced by steel mills is regu-
lated through the adjustment of incoming scrap metal. As 
a consequence, the derived steel slags (SS) have distinct 
chemical, mineralogical and physical characteristics (Cor-
nacchia et al. 2015). In the sole Europe in 2018 the produc-
tion of SS amounted to 16.3 million tons (Harder 2020). 

Due to their composition, mainly characterized by oxides 
of calcium, iron, silicon, aluminum, magnesium, and man-
ganese (Cornacchia et al. 2015; Yüksel 2017), SS can be 
assimilated to natural hard rocks. SS could be reused in sev-
eral applications such as soil amendment (Radić et al. 2013; 
Das et al. 2020; Kong et al. 2023), road base, asphalt mix-
tures (Paul et al. 2021), and in concrete production (Rondi 
et al. 2016; Collivignarelli et al. 2020). This last applica-
tion is promising, due to the technical characteristics, good 
workability and mechanical properties of SS (Diotti et al. 
2021). The reuse of such material, ultimately reduces its 
final disposal in landfill, thus limiting the consumption of 
natural resources. Nevertheless, the use of SS or SS-based 
materials may generate concern about the potential release 
of detrimental compounds into the environment. As a mat-
ter of fact, the characteristics of the steel production process 
could enrich the SS with potentially toxic elements, such 
as chromium, molybdenum, and vanadium (Primavera et al. 
2016; Gan et al. 2022). To address this issue, which has not 
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yet been plainly defined from the regulatory point of view, 
previous studies were developed on the toxicity and geno-
toxicity of granular SS leachates on living organism mod-
els representing different trophic levels (Alias et al. 2021). 
Among all the available model organisms, plants in particu-
lar are worth considering. Plant-based assays have a number 
of advantages, including high sensitivity, good correlation 
with animal systems, ecological pertinence, simplicity of 
execution, and, last but not least, low cost. Since decades, 
higher plants have been considered valuable systems for 
screening and monitoring environmental pollutants (Grant 
1994). The United Nations Environment Program (UNEP), 
together with the World Health Organization (WHO) and 
the US Environmental Protection Agency (USEPA), pro-
moted these tests by means of the International Program on 
Plant Bioassays (IPPB) (Roccotiello et al. 2011). Not less 
important, the diffusion of plant-based assays could improve 
public understanding of the toxic and genotoxic effects of 
pollutants (Ma 1999). These assays make it possible to thor-
oughly analyze the environmental degradation caused by a 
great variety of pollutants: air pollution (Hasanovic et al. 
2022), pesticides (Menzyanova et al. 2022), plastic parti-
cles (Bouaicha et al. 2022), rare earth elements (Egler et al. 
2022), urban and industrial wastewater (Bertanza et al. 2021; 
Chowdhary et al. 2022), municipal solid waste leachates 
(Palm et al. 2022), bottom ash and slag from municipal 
solid waste incinerators (Phoungthong et al. 2016; Tintner 
et al. 2016). Furthermore, plants make it possible to perform 
analyses on different tissues (leaves, roots, pollen), as well 
as to assess toxicity on the organism at different times in its 
life cycle. Among plant assays, those based on the measure-
ment of seed root elongation provide an informative and 
rapid assessment of the environmental hazard of chemicals 
(substances or mixtures). This type of test can be useful for 
studying the chronic toxic effects of persistent substances 
in aqueous matrices. The USEPA Guidelines recommend 
using seeds of plant species of economic or ecological 
importance (USEPA 1996). In compliance with the eco-
toxicology principle of “battery”, the regulatory institutions 
indicate from two or three (APAT 2004; ISO 18763 2016) 
up to ten or more (USEPA 1996) organisms belonging to 
both monocot and dicot classes. Among others, the common 
onion (Allium cepa), and the cucumber (Cucumis sativus) 
are frequently recommended by international and national 
agencies (USEPA 1996; APAT 2004; OECD 2006). Another 
well-recognized model in ecotoxicological assessments is 
represented by the garden cress (Lepidium sativum), com-
monly used to evaluate soil pollutants, sludge, and industrial 
waste (Methneni et al. 2021; Nikolaeva et al. 2021; Bożym 
2022; Bona et al. 2023). The aim of this study was to assess 
the phytotoxicity of granular SS and SS-containing concrete 
leachates by using a battery of plant-based tests composed 

of seeds of A. cepa, C. sativus, L. sativum, and bulbs of A. 
cepa.

Materials and Methods

Four samples of steel electric arc furnace (EAF) slags (SS1, 
SS2, SS3, SS4) were collected from four different steel 
mills in northern Italy. Each plant had an adequate input 
of scrap metal to obtain structural steel (plant 1) or special 
steel (plants 2, 3 and 4), which implies the production of 
different steel slags. Steel slags were stored by the factories 
in open, unprotected areas for at least 90 days.

Four concrete mixtures, called concrete-SS (CSS), were 
cast with the use of Portland cement (13% w/w) and a partial 
replacement (30% w/w) of natural aggregate with SS. The 
cement/water ratio was 0.48 and the concrete density was 
about 2470 kg/m3. Casts were naturally dried to constant 
weight (approximately 30 days) prior to analysis.

SS was submitted to EN 12457-2 leaching test (EN 
12457-2 2002) performed by mixing the homogenized sam-
ple with demineralized water at a liquid to solid ratio of 
10 L/kg. The mixture was placed on a tightly closed rotary 
shaker (VELP, Italy) and agitated for 24 h, rotating at 10 ± 2/
min. The solutions were filtered (0.45 μm) and stored at 
4 °C. CSS leaching test was performed following the stand-
ard procedure on building products (UNI CEN/TS 16637 
2014), for the first two extraction stages only (total duration 
24 h) which can reasonably be considered to represent the 
most critical situation for the release of pollutants. Tests 
were performed on soaked concrete blocks in demineralized 
water (leachant) at a liquid to surface area ratio of 8 mL/
cm2. The leachant was renewed after 6 and 18 h of con-
tact. At the end of these periods, the solutions were filtered 
(0.45 μm), the pH was measured using a pH glass electrode 
(Hanna Instruments, Italy) according to ISO 10523, and the 
electrical conductivity (EC) was determined by a platinum 
potentiometric probe (Hanna Instruments, Italy) according 
to ISO 7888. The leachates were then stored at 4 °C.

The root elongation assays on seeds were performed fol-
lowing the Italian standard with some modifications (UNI 
11357 2010). Briefly, seeds of onion (A. cepa), cucumber (C. 
sativus), and garden cress (L. sativum), not treated with fun-
gicides, were preliminarily checked for vitality in distilled 
water in the dark at 25 ± 1 °C (germination rates > 90%). 
Leachate solutions were tested without any dilution, and the 
distilled water was used as negative control. Three replicates 
per treatment were arranged by wetting a Whatman no. 1 
filter paper with 2 mL of each solution. Ten seeds for each 
replicate were distributed on the filter. The three dishes of 
each replicate were packed into a tightly closed plastic bag 
and incubated at 25 ± 1 °C in the dark for 72 h. At the end of 
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the incubation time, the root length of the sprouts (≥ 1 mm) 
was assessed.

The root elongation test on bulbs was performed on 
equal-sized young onion bulbs purchased from the local 
market without any treatment. Twelve bulbs were exposed 
for 72 h in the dark to leachate solutions without any dilu-
tion, and the distilled water was used as negative control. 
The roots’ mean length was calculated (Fiskesjö 1995). 
Results were expressed as mean length ± SD. Other toxicity 
parameters (turgidity, consistency, colour change and root 
tip shape) were also evaluated. Moreover, root tips were cut 
and stained with 2% acetic orcein to assess the mitotic index 
(MI), a proxy for the cell division ratio. The microscopic 
analysis (1000 × magnification) was conducted on 20,000 
cells per sample.

The experiments were performed in duplicate. The sta-
tistical analysis was performed using Student’s t test, where 
p < 0.05 was considered significant.

Results

The chemical parameters pH and EC of leaching solutions 
are summarized in Table 1. The SS leachates demonstrated 
the expected alkalinity with pH ranging from 8.5 to 10. 
The leachates from CSS displayed lower pH values than 
the corresponding granular SS, though in the alkali range 
(8.0–9.0). The pH value of sample CSS1-6h was the only 
exception in that it was neutral. The EC of SS showed some 
variability, ranging from 119.3 µS/cm to 342.0 µS/cm of 
samples SS2 and SS1, respectively, while samples SS3 and 
SS4 were both slightly above 200 µS/cm. The EC values of 
leachates from CSS showed higher consistency among the 
two fractions of leachates. Moreover, a slight increase over 
time was observed, with the lower value shown by CSS2-6h 
(78.0 µS/cm) and the higher EC values obtained by CSS3-
18h (126.0 µS/cm).

The phytotoxicity of leachates obtained from SS was 
assessed through the root elongation of A. cepa, C. sativus, 
and L. sativum seeds and A. cepa bulbs (Fig. 1). None of 
the samples caused significant toxic effects on both seeds 
and bulbs. The only exception was a slightly significant 

inhibition effect induced by sample SS4 (12.0 ± 1.3 mm) in 
A. cepa seeds (Fig. 1a). Conversely, samples SS2 and SS4 
caused a significant stimulation of root elongation in C. sati-
vus (86.3 ± 2.4 and 82.4 ± 8.5 mm, respectively) (Fig. 1b).

Table 2 summarizes the macroscopic parameters and 
mitotic indexes assessed on the roots of onion bulbs exposed 
to SS leachates. The macroscopic parameters (turgidity, con-
sistency, color change and root tip shape) of onion bulbs 
roots were mostly normal, with the exception of the presence 
of the “hook” root shape. In particular, sample SS3 induced 
the highest frequency of hooks (33%), while samples SS1, 
and SS4 were perfectly comparable to the negative control 
(17%). Surprisingly, sample SS2 did not induce any root 
modification. Furthermore, the assessment of the MI of the 
onion bulbs roots confirms the absence of any effect on cell 
division, as no differences were found between the MI of the 
roots exposed to SS samples (from 10.02% to 11.46%) and 
that of the negative control (12.65%).

The phytotoxicity of leachates obtained from concrete 
cast with a partial replacement of SS was than assessed 
(Fig. 2). Similar to the previously described samples, the 
leaching fractions obtained after 6 and 18 h of contact did 
not exert toxic effects on plant species, as demonstrated by 
the root elongation which was not significantly reduced com-
pared to the negative controls. On the other hand, some sam-
ples significantly increased root elongation: sample CSS4-
18h acted positively on both C. sativus (73.1 ± 4.9 mm) and 
A. cepa bulbs (39.4 ± 6.5 mm). The latter was also stimu-
lated by samples CSS2-18h (39.8 ± 2.9 mm), and CSS3-
6h (36.0 ± 2.5 mm). Table 3 summarizes the macroscopic 
parameters and mitotic indexes assessed on onion bulbs 
roots exposed to CSS leachates. Again, the macroscopic 
parameters of onion bulbs roots were mostly normal, with 
the exception of the presence of two root shapes: “hooks” 
and “broken”. In particular, the former was induced by all 
samples (from 17% to 33%), except for CSS4. The “broken 
tips” were only generated by the 18 h fraction of samples 
CSS1 and CSS3. As shown for the previous data on SS, the 
assessment of the MI confirmed the absence of any effect on 
cell division, as no differences were found between the MI of 
the roots exposed to the samples (from 10.06% to 11.34%) 
and that of the negative control (10.90%).

Table 1  Chemical parameters 
pH and EC of leaching solutions 
from SS and CSS

Sample SS CSS

6 h 18 h

pH EC (µS/cm) pH EC (µS/cm) pH EC (µS/cm)

1 9.0 342.0 7.0 102.7 8.0 117.7
2 10.0 119.3 8.0 78.0 8.5 107.1
3 8.5 220.0 8.0 109.0 8.0 126.0
4 9.5 208.3 9.0 123.4 8.5 125.6
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Discussion

Leachates from SS and from the concrete cast with a par-
tial substitution of SS were characterized through a plant-
based approach to assess their impact on terrestrial com-
partment. Although the lack of detailed chemical data on 
leachates may be a limitation of this research, this study 
mainly focused on the effects induced by leachates, which 
are a complex mixture enriched by metals and ions species, 
on plants. Previous studies conducted on other batches of 

slags from the same steel mills, revealed that the leachate 
solutions had a low chemical content, below the limit val-
ues imposed by the Italian legislation for the recovery of 
non-hazardous waste (Alias et al. 2021). Interestingly, both 
SS and CSS leachates showed an overall comparable non-
toxic behaviour on plants. This suggests that the presence 
of industrial waste in concrete does not worsen the impact 
and may even lower the toxicity of the waste alone on plant 
organisms. The immobilization of SS in concrete produced 
a clear reduction in toxicity, as observed between SS4 and 
CSS4 sample treatments in A. cepa seeds. Recently, Brás 
et al. showed that concrete incorporating industrial waste 
is safer than reference concrete, by measuring the toxicity 
in terms of duckweed (Lemna gibba) fronds growth (Brás 
et al. 2020). Moreover, the effects of the two subsequent 
fractions of leachates (after 6 and 18 h of contact) suggest 
the release of a non-toxic mixture within the first 24 h of 
analysis. As surface wash-off and dissolution were identi-
fied as the predominant leaching mechanisms for several 
pollutants (e.g. heavy metals) in monolithic samples (Kog-
bara et al. 2013), more leaching fractions (up to 64 days) 

Fig. 1  Root elongation of a A. cepa, b C. sativus, c L. sativum seeds, 
and d A. cepa bulbs treated with undiluted leachates of SS obtained 
according to UNI 12457-2. Data are expressed as mean ± SD. Bold 

line represents mean root length of negative control ± SD (dotted 
lines). *Statistically significant versus negative controls according to 
Student’s t test (p < 0.05)

Table 2  Macroscopic 
parameters (MP) and mitotic 
indexes (MI) of A. cepa bulbs 
roots treated with undiluted 
leachates of SS

Samples MP (%) MI (%)
Hooks

SS1 17 11.41
SS2 0 11.46
SS3 33 10.39
SS4 17 10.02
Neg. control 17 12.65
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should be evaluated to better investigate the potential 
release or accumulation over time of substances with toxic 
or biostimulation properties. This latter suggestion, also 
made by Brás et al. 2020, is relevant as leachates from 
concrete and slag are known to be rich in minerals required 
for plant growth (e.g. calcium, silica, magnesium). In the 

same vein, Ishimori et al. have lately investigated the fea-
sibility of using waste concrete leachates instead of fer-
tilizers (Ishimori et al. 2022). Plants represent valuable 
toxicological models for environmental studies due to their 
strong ability to interact directly with pollutants and to tol-
erate a wide range of experimental conditions, especially 
in terms of pH, salinity and temperature (Grant 1994). 
The phytotoxicity assays on A. cepa, C. sativus, and L. 
sativum seeds and A. cepa bulbs were performed without 
any modification of the leaching solutions (dilutions or pH 
adjustment) and the observed effects appear to be inde-
pendent from their pH and EC. Given that the evaluation 
of an unmodified sample is a possibility allowed by few 
toxicological assays, this observation makes plants pivotal 
organisms in the ecotoxicology of construction materi-
als, where the analysis of leachates without any adjust-
ment is crucial for a more realistic assessment of their 
environmental impact (Mocová et al. 2019). Interestingly, 
plant-based tests also represent a powerful tool for toxi-
cology in line with the application of the 3Rs principles 
(Russell and Burch 1959), because of their high concord-
ance with animal systems, including humans (Tedesco and 

Fig. 2  Root elongation of a A. cepa, b C. sativus, c L. sativum seeds, 
and d A. cepa bulbs treated with undiluted leachates of CSS obtained 
according to UNI EN 15863. Data are expressed as mean ± SD. Bold 

line represents mean root length of negative control ± SD (dotted 
lines). *Statistically significant versus negative controls according to 
Student’s t test (p < 0.05)

Table 3  Macroscopic parameters (MP) and mitotic indexes (MI) of A. 
cepa bulbs roots treated with undiluted leachates of CSS

Samples MP (%) MI (%)

Hooks Broken tips

CSS1-6 h 17 0 10.66
CSS1-18 h 17 33 11.10
CSS2-6 h 20 0 10.71
CSS2-18 h 33 0 10.79
CSS3-6 h 33 0 11.34
CSS3-18 h 17 17 10.58
CSS4-6 h 0 0 10.06
CSS4-18 h 0 0 11.00
Neg. control 20 30 10.90
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Laughinghouse IV 2012; Reis et al. 2017). This means that 
plant assays could provide a valuable assessment of the 
toxicity and even genotoxicity of different samples (par-
ticularly in the environmental field), avoiding or limiting 
the use of animals. Recently, the international bioscience 
community has been gone ahead, adopting the expres-
sion of new approach methodologies (NAMs) to high-
light the importance of non-animal technologies (NATs) 
use in chemicals, drugs, food, and environmental toxicity 
assessment (Van Mulders et al. 2022). Tests on seed mod-
els have additional multiple advantages, such as ease of 
execution, low cost, wide range of available species, and, 
above all, sensitivity to heavy metals and organic pollut-
ants, as observed by Bozym et al. in their study of foundry 
dust and landfilled waste on L. sativum seeds (Bożym 
2022). On the other hand, seeds are also able to discrimi-
nate non harmful matrices, as demonstrated by Bona et al. 
who investigated hydrochar from digestate and hydrochar 
co-compost through an analysis of root modifications on 
L. sativum, C. sativus, and Sorghum bicolor (Bona et al. 
2022). In this study, A. cepa (monocot) and L. sativum 
and C. sativus (dicots) were used because of their variable 
sensitivity to potentially heavy metal-polluted samples and 
their representativeness of agronomically relevant fruit 
and vegetables species. As already observed by Baderna 
et al. dicots and a monocot responded differently to met-
als and metal mixtures (Baderna et al. 2015). All of this 
reinforces the idea that the obtained results on SS and CSS 
were not due to a lack of sensitivity of the test models, but 
to a proper non-phytotoxicity of the samples. The effects 
of the tested samples on the macrophytes used showed 
only slight differences, both between the different classes 
(monocot A. cepa versus dicots C. sativus and L. sativum) 
and between different forms of the same plant (seeds ver-
sus bulbs of A. cepa). This demonstrated how consistency 
between the results of a battery of plant assays supports 
the data obtained and allows for the identification with 
higher certainty of samples of greater or lesser concern.

Furthermore, plant-based tests, as reliable and sensitive 
systems, could overcome the limits of the chemical analyses 
which detect single and known elements, revealing the syn-
ergistic effects of mixtures characterized by low or very low 
concentrations of several compounds. More generally, bio-
logical assays are powerful tools because of this independ-
ence from a pre-determined analytical schedule, which does 
not necessarily describe a sample completely (Kortenkamp 
and Faust 2018; Escher et al. 2020; Luo et al. 2022). Put sim-
ply, a synthesis could be the motto: “It does not matter what 
the chemical composition is, but rather its effect on living 
organisms”. Furthermore, ecotoxic assessments could help 
to correctly manage a waste product, shifting the reusing 
from a system with a hazardous impact (e.g., some granular 
waste) to a less harmful one (e.g., the same waste product 

incorporated into inert matrices), thus minimising disposal 
and landfilling to highly hazardous waste only. The transition 
from waste to product feeds the virtuous path of the circular 
economy. This could be an interesting prospect for the steel 
industry, which would have direct economic advantages. Not 
least, this could generate environmental benefits due to the 
lower demand for primary resources.

Conclusion

The findings presented here did not reveal any concerning 
aspect of the tested samples, thus supporting the idea that 
not only the use of granular SS but also their application in 
the construction field could play a role in making industrial 
activities more sustainable towards the environment. This 
study contributes to the ongoing debate on waste manage-
ment and the decision-making process regarding the reuse 
of such materials, shifting the perspective from a “static” 
chemical characterization of a waste to a toxicological one, 
that describes the effects on living organisms as a result of 
dynamic processes.
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