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Abstract
Rare earth elements (REEs) cerium (Ce) and lanthanum (La) and their combination were tested across a concentration 
range, from toxic  (10−4 to  10−5 M) to lower concentrations  (10−6 to  10−8 M) for their effects on sea urchin (Sphaerechinus 
granularis) sperm. A significantly decreased fertilization rate (FR) was found for sperm exposed to  10−5 M Ce, La and 
their combination, opposed to a significant increase of FR following  10−7 and  10−8 M REE sperm exposure. The offspring 
of REE-exposed sperm showed significantly increased developmental defects following sperm exposure to  10−5 M REEs 
vs. untreated controls, while exposure to  10−7 and  10−8 M REEs resulted in significantly decreased rates of developmental 
defects. Both of observed effects–on sperm fertilization success and on offspring quality–were closely exerted by Ce or La 
or their combination.

Keywords Rare earth elements · Fertilization · Developmental defects · Transmissible effects · Hormesis

Introduction

Rare earth elements (REEs) include a group of elements, 
the lanthanoids [lanthanum (La) to lutetium (Lu)] and two 
closely related elements, yttrium (Y) and scandium (Sc) 
which are recognized to be indispensable in the present 
world, due to their extensive roles in a number of technolo-
gies (Du and Graedel 2013; Pagano et al. 2015; González 
et  al. 2015). REE-associated adverse effects have been 

assessed in a vast body of literature encompassing several 
biota, with implications also in human health, so that REEs 
have raised extensive health concern and are viewed as 
emergent contaminants (Brouziotis et al. 2022; Gravina et al. 
2018; Thomas et al. 2014; Trifuoggi et al. 2017).

Apart from their adverse effects, REEs also display rec-
ognized stimulatory effects, as reported in a body of litera-
ture on their use as components of fertilizers improving crop 
yields and in livestock feed additives (Abdelnour et al. 2019; 
Agathokleous et al. 2019; Bölükbaşı et al. 2016; He et al. 
2010; Lian et al. 2019; Tommasi et al. 2021; Yin et al. 2021; 
Zhang et al. 2018). This duplicity of REE-associated effects 
is not specific for REEs, but may be ascribed to a general 
phenomenon of a concentration-related shift from inhibi-
tion, or “toxicity” for high agent concentrations to stimula-
tion for lower agent concentrations, also termed hormesis, 
and previously tagged as “Arndt-Schulz effect” (Stebbing 
1982; Pagano et al. 1982; Cedergreen et al. 2006; Agathok-
leous et al. 2020; Calabrese 2016; Técher et al. 2020). The 
multiple implications of hormesis have been reported in an 
extensive body of basic and applied disciplines (e.g. Agath-
okleous et al. 2022; Calabrese et al. 2022; Katsnelson et al. 
2021; Lee and Lee, 2019; Jalal et al. 2021; Nitti et al. 2022; 
Schirrmacher, 2021; Shibamoto and Nakamura, 2018).
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Within the frame of REE-associated hormetic effects, the 
present study was aimed at verifying the effects of micromo-
lar and sub-micromolar levels of two REEs, Ce and La, and 
their combination on sea urchin sperm fertilization success 
and offspring embryogenesis. The results confirmed a shift 
from inhibition to stimulation of tested events by comparing 
 10−5 M vs. <  10−6 M.

Materials and Methods

Cerium nitrate, lanthanum nitrate and their equimolar com-
binations were tested for their effects on Sphaerechinus 
granularis sea urchin sperm in changing fertilization success 
and the frequency of developmental defects in the offspring 
of exposed sperm. A preliminary assay tested a duration of 
control sperm suspension (10 to 60 min), allowing to either 
assess inhibition or stimulation of fertilization rate, leading 
to an intermediate (∼50%) fertilization rate, and was found 
as 30-min sperm exposure (Pagano et al. 2017).

Sperm suspension was carried out by 1% dilution of “dry” 
sperm (as released by testes from two males) in agent solu-
tions at concentrations ranging from  10−8 to  10−5 M. These 
duplicate sperm suspensions, in turn, fertilized eggs from 
three females, thus providing six-replicate embryo cultures 
that were observed for fertilization rate (FR, % fertilized 
eggs) and then for offspring quality. FR was measured start-
ing from the appearance of fertilization membrane and of 
early cleavage (2-cell stage) for approximately 3 h post-ferti-
lization. Subsequent observation of offspring was performed 
3 days post-fertilization allowing detection of % prepared 
immediately before analysis developmental defects (DD) as 
larval malformations or pre-larval arrest and of mortality. 
This observation was carried out after immobilizing larvae 
and embryos by adding a  10−4 M chromium sulfate, which 
allowed screening of bottom-laying embryos/larvae in an 
inverted microscope, ×10 magnification.

Analytical concentrations of Ce and La in the samples 
were determined by inductively coupled plasma mass 
spectrometry (ICP-MS, Aurora M90 Bruker, Germany). A 
Milli-Q unit (Millipore, United States) was used to obtain 
high-purity water (resistivity = 18.2 MΩ cm) was obtained 
from a Milli-Q unit (Millipore, United States). Nitric acid 
 (HNO3, 69% v/v Ultratrace@ ppb-trace analysis grade) was 
purchased from Scharlau (Barcelona, Spain). All samples 
analyzed in ICP-MS were prepared in  HNO3 solution (2% 
v/v). The analysis was performed in High Sensitivity mode. 
Calibration curves for determining REEs ranged from 0.5 
to 1,000 µg/L for Normal and from 0.005 to 10 µg/L for 
High Sensitivity and were constructed daily by analysis of 
standard solutions prepared immediately before analysis. 
The internal standard was 115In for both calibration curve 
and sample analysis.

The uniform and minimal weight concentration of sperm 
cells was not measured.

Datasets were analyzed in IBM SPSS v20 and Micro-
soft® Excel 2013/XLSTAT©-Pro (Version 7.2, 2003, Add-
insoft, Inc., Brooklyn, NY, USA). Homogeneity of vari-
ances was checked by Levene’s test. Differences between 
each concentration group and the controls were determined 
by two-tailed Independent Samples t-test. A normality test 
was performed and the significance of the difference among 
the groups was evaluated by One-way Analysis of Variance 
(ANOVA). Differences were considered significant when 
p < 0.05.

Results and Discussion

The correspondence between nominal and analytical con-
centrations of the tested samples, measured by ICP-MS, 
is shown in Table 1. The analytical/nominal ratios mostly 
ranged from 0.889 to 1.283; thus nominal concentration 
values were considered as reliable for concentration-related 
trends.

As shown in Fig. 1, fertilization rate (FR) of S. granularis 
sperm exposed for 30 min to Ce(NO3)3, or La(NO3)3, or their 
equimolar combination at concentrations ranging from  10−8 
to  10−5 M showed the expected spermiotoxicity following 
 10−5 M pretreatment as reported previously (Trifuoggi et al. 
2017). No significant effect was detected following sperm 
exposure to  10−6 M Ce(NO3)3 or La(NO3)3 level, with a 
significant FR decrease was observed following sperm expo-
sure to  10−6 M Ce + La combination. Lower agent levels, as 
 10−7 and  10−8 M Ce, La and Ce + La combination resulted 
in significant FR increase.

The opposite concentration-related trend was found for 
the frequency of developmental defects (DD) and mortal-
ity (M) in the offspring of Ce-, La- and (Ce + La)-exposed 
sperm, which was significantly increased following sperm 
exposure to  10−5 M agents and to Ce  10− 6 M, whereas lower 
agent concentrations  (10−7 and  10−8 M Ce, or La or their 
combination) in sperm exposure resulted in significantly 
decreased offspring DD and M, as shown in Fig. 2.

The present results confirm the established database 
of REE-associated spermiotoxicity and induction of off-
spring damage following sperm exposure to Ce and La 

Table 1  Ratios of analytically checked concentrations of tested REEs 
(by ICP-MS, as µg/L) vs. nominal concentrations

Nominal con-
centrations

10−4 M 10−5 M 10−6 M 10−7 M 10−8 M

Ce 1.095 1.008 1.102 1.277 1.021
La 0.92 0.883 1.238 1.053 1.224
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at concentrations ≥  10−5 M (Trifuoggi et al. 2017). On 
the other hand, this study provides evidence for a hor-
metic shift of these REEs and of their combination at 
sub-micromolar concentrations that were found to signifi-
cantly increase fertilization success and to decrease off-
spring anomalies vs. controls. Trans-generational hormetic 
effects were reported by Agathokleous et al. 2022. These 
results are new, though they could be anticipated on the 
grounds of the established use of REEs in supporting ani-
mal growth (He et al. 2010; Bölükbaşı et al. 2016; Abdel-
nour et al. 2019). Should these results be further confirmed 
in other bioassay models, they provide the grounds toward 
REE utilization in safely promoting animal growth.
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Fig. 1  Percent fertilization rate of S. granularis sperm exposed 30 
min toCe(NO3), or La(NO3), or their combination atconcentrations 
ranging from  10−8 to  10−5 M
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Fig. 2  Percent developmental defects and mortality inthe offspring of 
S. granularis spermexposed 30 min to Ce(NO3), or La(NO3), or their-
combination at concentrations ranging from  10−8 to  10−5M
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