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2006; Bundschuh et al. 2013; Kanu et al. 2022). Therefore, 
to improve the extrapolation of laboratory results to natural 
ecosystems the inclusion of post-exposure periods in exper-
imental setups is a relevant issue in ecotoxicology.

Among ecotoxicological endpoints, mortality is amply 
used in laboratory bioassays because its utility for sensitiv-
ity comparison between species, and it is usually monitored 
at short-term and with low-cost. Consequently, most of the 
data used for environmental risk assessment are based on 
lethal parameters (Constable et al. 2003; Romero-Blanco 
and Alonso 2022; Wang et al. 2022). Yet, other parameters, 
such as reproduction, development, and behavior present 
obvious advantages. For instance, behavioral bioassays are 
more sensitive and require lower toxicant concentrations 
than lethal bioassays (Melvin and Wilson 2013). In fact, 
behavioral changes are the first response to stress at indi-
vidual scale (Hellou 2011; Melvin and Wilson 2013; Alonso 
2021). Therefore, behavior alteration is an early signal of 
toxicant exposure (Hellou 2011). Moreover, the recovery 
of previous behavior to toxicant exposure at the end of the 
post-exposure period may be a good indicator of animal 
recovery.

Among toxicants, cadmium has been amply studied 
in ecotoxicology (Wright and Welbourn 1994; Irfan et al. 

In natural ecosystems, the exposure of animals to pollution 
is not always chronic. Some toxicants can be in aquatic eco-
systems during a short period, from a few hours to a few 
days (Handy 1994; Brent and Herricks 1998; Bundschuh et 
al. 2013; Zhao and Newman 2006; Kanu et al. 2022). There-
fore, animals may face toxicants for a brief period and sub-
sequently they could recover or not during the post-exposure 
period, which depends on the chemical compound, duration 
of the exposure and concentration of the toxicant (Zhao and 
Newman 2006; Hoang et al. 2007; Alonso and Camargo 
2009; Lahman and Moore 2015; Kanu et al. 2022). This 
post-exposure period can help animals to recover fitness if 
detoxification processes are efficient (Handy 1994; Schill 
et al. 2003; Zhao and Newman 2006). However, there may 
be a worsening of animals if toxic threshold has been sur-
passed during exposure (Handy 1994; Zhao and Newman 
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Abstract
The exposure of animals to pollution in ecosystems is not always chronic. Toxicants can remain in aquatic ecosystems 
for a short-term. To improve the extrapolation of laboratory results to natural scenarios the inclusion of post-exposure 
periods is a relevant issue. The present study focuses on the assessment of cadmium toxicity on survival and behavior 
of the aquatic snail Potamopyrgus antipodarum (Tateidae, Mollusca) during exposure and post-exposure. Animals were 
exposed for 48 h to cadmium (0.05, 0.14, 0.44 and 1.34 mg Cd/L) and 168 h of post-exposure. During the post-exposure 
period an increase in mortality in all concentrations was observed. The effects observed during the post-exposure period 
on the LC50 and EC50 were significant. During the post-exposure, behavior showed a clear recovery in surviving animals 
exposed to 0.44 mg Cd/L. Animals exposed to 0.05 mg Cd/L did not show differences with control. Therefore, mortality 
after exposure should be included in the ecotoxicological bioassays for a more realistic estimation of the cadmium effects. 
To assess the degree of animal recovery after cadmium exposure, behaviour has been shown as an adequate parameter.
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2021). Cadmium is a non-essential metal, which can be toxic 
at very low concentrations (Wright and Welbourn 1994). 
There are several evidence that this metal cause impart-
ments in behavior for different aquatic species, including 
vertebrates and invertebrates (Bryan et al. 1995; Sornom et 
al. 2012; Alonso and Valle-Torres 2018). Therefore, it is an 
appropriate model toxicant in behavioral studies. Among 
behavioral variables, movement has important ecological 
implications given that it is involved in most interactions 
between animals and their environment, including escap-
ing from polluted areas or locating food (Alonso and Valle-
Torres 2018; Araujo and Blasco 2019). Therefore, a fast 
recovery of movements after toxicant exposure may imply 
a greater probability of survival under natural conditions.

The aim of the present study is to assess the effects of cad-
mium on survival and behavioral activity of the aquatic snail 
Potamopyrgus antipodarum (Tateidae, Mollusca) during 
exposure and post-exposure periods. We expect an increase 
of mortality in the post-exposure period, and a recovery of 
activity in surviving animals. Additionally, toxic effects of 
cadmium during exposure and post-exposure periods will 
be compared to elucidate the contribution of post-exposure 
period on the adverse effects of cadmium.

Materials and methods

A culture of P. antipodarum was used as a source of ani-
mals for the bioassay. The culture was started in 2009 
with animals collected in the upper reach of the Henares 
River (Guadalajara, Spain) and reared at the University of 
Alcalá (Laboratory of Ecology, Department of Life Sci-
ences). Standardized USEPA water (96 mg NaHCO3, 60 mg 
CaSO4·2H2O, 4  mg KCl, 122.2  mg MgSO4, per litre of 
deionized water plus 10 mg CaCO3 per litre) is used for the 
culture (USEPA 2002). Snails are reared in 60  L aquaria. 
0.10 mg of dry food per animal and day are provided (50% 
fish food Tetra- Menü© GmbH, Melle, Germany + 50% 
Sera© Spirulina Tabs GmbH, Heinsberg, Germany). Every 
two weeks, 10% of the water is renewed. Aquarium water 
is filtered by means of waterfall filter, which also provides 
water aeration. This filter physically traps particles in the 
water by pushing water through filter materials and the fil-
tered water falls into the aquarium.

Before exposure to cadmium, 120 adult animals were 
taken from the culture and situated randomly in two aquaria 
(1 L) (60 animals per aquarium). Aquaria were previously 
filled with 1 L of standardized USEPA water. Aquaria were 
kept during 7 days at 18ºC (climatic chamber ANSONIC). 
In the second day of acclimatization, animals were fed with 
the same food as the cultures. After two hours water was 

renewed. This was repeated for the two batches (see below). 
No animals died during this period.

Animals were exposed to four concentrations of cad-
mium (nominal concentrations of 0.05, 0.12, 0.5 and 1.5 mg 
Cd/L) and control. These concentrations were based on 
previous study on the cadmium toxicity to this species 
(Alonso and Valle-Torres 2018). The cadmium exposure 
was conducted in two batches. In the first one, control and 
the two lowest cadmium concentrations were used. In the 
second batch, control and the two highest cadmium con-
centrations were used. For both batches, cadmium solutions 
were prepared from a stock solution of cadmium chloride 
(80.06 mg CdCl2/100 mL) (SIGMA ALDRICH 655198-5G 
MKBB2360, purity of 99.99% Steinheim, Germany). Ani-
mals were exposed to cadmium for 48 h; subsequently, sur-
viving organisms were transferred to control water (USEPA 
water) and kept for 7 days of post-exposure period. There-
fore, the bioassay lasted for 9 days. Thirty replicates were 
used in each cadmium treatment. In each replicate, an ani-
mal was placed in a glass vessel of 30 ml. Sixty animals 
were used for the control.

Three variables were monitored during the bioassay: 
mortality, immobility, and time to start activity. An animal 
was considered as dead if no reaction was observed when 
the operculum of an inactive animals was touched with for-
ceps. Immobility and the time to start activity (in seconds) 
were considered as behavioral variables. The time to start 
activity was the time spent by animals to start the sliding 
movement (Alonso 2021). This variable was individually 
monitored, taking each snail up with forceps and placing it 
in the centre of the vessel, with the operculum facing to the 
bottom. The time to start activity was recorded by means of 
a chronometer (Alonso 2021). If after 150 s the animal did 
not move, it was considered as immobile (Romero-Blanco 
et al. 2021). Proportioning of mortality and immobility were 
monitored after 24 and 48 h of cadmium exposure, and after 
24, 48, 120 and 168 h of post-exposure to cadmium. Time 
to start activity was monitored at 0, 24 and 48 h of cadmium 
exposure, and at 24, 48, 120 and 168  h of post-exposure 
to cadmium. A stereomicroscope (MOTIC® SMZ-168) 
equipped with optic fiber beam (Jenalux® 150) was used 
for the monitoring of variables.

During the bioassay, water temperature (ºC), conductiv-
ity (microS/cm), dissolved oxygen (mg O2/l) and pH were 
monitored. An oximeter (Crison® Oxi 45+), conductiv-
imeter (for conductivity and water temperature) (Crison® 
CM35+) and pHmeter (Crison micropH 2001, ALELLA 
08328) were used. Actual cadmium concentrations were 
monitored at 0 and 48 h of exposure through a spectropho-
tometer (Spectroquant© NOVA60, Merck, KGaA, 64,293 
Darmstadt, Germany) and the Spectroquant Cadmium Test 
(1.01745.0001, Spectroquant©, Merck, KGaA, 64,271 
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Darmstadt, Germany). Spectroquant© method has a sensi-
tivity ranging from 0.002 to 0.5 mg Cd/L. Samples of the 
two highest concentrations were diluted before cadmium 
analysis. This method is based on the reaction of cadmium 
ions with 1-(4-nitrophenyl)-3-(4-phenylazophenyl)tri-
azene). The analytical quality assurance of the method was 
checked following the recommendations of Spectroquant 
Cadmium Test (1.01745.0001, Spectroquant, Merck©). Six 
randomly selected replicates of each treatment were used 
to measure the actual cadmium concentrations. After 48 h 
of post-exposure, water was renewed. Before water renova-
tion, animals were fed with the same food as the cultures. 
At the end of the bioassay, seven animals of each treatment 
were randomly selected to measure the shell length using 
a micrometer installed in the stereomicroscope (MOTIC® 
SMZ-168).

To assess the effects of cadmium on mortality and on 
mortality plus immobility, the LC50 and EC50 were calcu-
lated, respectively. The cumulative mortality at 48 h of cad-
mium exposure and at 168 h of post-exposure were used to 
calculate the LC50 and their 95% confidence intervals. The 
cumulative mortality plus immobility were also used at the 
same exposure and post-exposure periods. Actual cadmium 
concentrations were used to calculate LC and EC values. 
To assess if post-exposure period has any influence on cad-
mium sensitivity, the statistical differences between LC50 
48 h and LC50 168 h (and between EC50 48 h and EC50 
168 h) were assessed by means of an overlap test or a Z test 
(Wheeler et al. 2006). If the 95% confidence intervals do 
not overlap, the LC or EC values were statistically differ-
ent (p < 0.05). LC50 and EC50 values were calculated using 
the “drc” package in R 3.5.1. Software (Ritz and Streibig 
2005; R Core Team 2019). For those Cd treatments with 
low mortality (the two lowest cadmium concentrations), the 
differences between the mean of the time to start activity of 
the control animals and this of animals at 48 h of cadmium 
exposure and at 168 h of post-exposure were compared with 
zero by means of a t-test (Field et al. 2012). This procedure 
allows to test if animals start activity faster (negative val-
ues) or slower (positive values) than control animals. The 
‘t.test’ function was used in R (R Core Team 2019).

Results and Discussion

The mean (± SD) (n = 12) physical-chemical parameters 
were: 17.9 ± 0.4ºC for water temperature, 9.19 ± 0.12  mg 
O2/l for dissolved oxygen, 352.4 ± 8.6 microS/cm for 
conductivity, and 8.09 ± 0.31 for pH. The mean actual 
(± SD) (n = 6) cadmium concentrations were 0.05 ± 0.01, 
0.14 ± 0.03, 0.44 ± 0.06, and 1.34 ± 0.22  mg Cd/l for the 
four cadmium treatments (nominal concentrations of 0.05, 

0.12, 0.5 and 1.5 mg Cd/L, respectively). Therefore, actual 
concentrations were very similar to nominal ones (0% of 
variation with the nominal concentration for the first treat-
ment, 16.6% lower for the second treatment, 12% lower for 
the third treatment and 10.7% lower for the fourth treat-
ment). Cadmium concentration in the control were less than 
0.002 mg Cd/l (n = 6). Shell length of animals (mean ± SD) 
(n = 34) was 3.88 ± 0.16 mm.

The cumulative mortality in control was less than 10% 
(Fig. 1). During the exposure period, the two highest cad-
mium concentrations caused high cumulative mortality 
(97% at 1.34 mg Cd/L and 53% at 0.44 mg Cd/L) and high 
immobility plus mortality (100% at 1.34 mg Cd/L and 90% 
at 0.44 mg Cd/L) in P. antipodarum (Fig. 1 A and 1B). On 
the contrary, the two lowest concentrations had a relatively 
low effect during exposure to cadmium (13% for mortality 
in both concentrations, and 23% and 17% for cumulative 
immobility plus mortality) (Fig. 1 A and 1B). In the case of 
mortality, the post-exposure to cadmium caused an increase 
in mortality in all concentrations, with a marked increase in 
the three lowest concentrations (Fig. 1 A). A similar trend 
was found for the cumulative mortality plus immobility 
(Fig. 1B). The effect of post-exposure period to cadmium 
on LC50 and EC50 was significant (p < 0.05; Overlap test, 
Fig. 2). At 48 h of cadmium exposure, the LC50 was 0.41 
(0.30–0.51) mg Cd/L and after the end of post-exposure 
the LC50 was 0.12 (0.06–0.16) mg Cd/L (Fig. 2). For the 
EC50 values, differences were significant but less marked 

Fig. 1  Percentage of cumulative mortality (A) and mortality plus 
immobility (B) of Potamopyrgus antipodarum for control and cad-
mium treatments (0.05, 0.14, 0.44 and 1.34 mg Cd/L) for each expo-
sure (24 and 48 h) and post-exposure periods (24, 48, 120 and 168 h)
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which allows a better ecotoxicological risk assessment of 
toxicants.

During the post-exposure to cadmium, the time to start 
activity showed a clear recovery in surviving animals 
exposed to 0.44 mg Cd/L (Fig. 3). Under the lower cadmium 
concentrations (0.05 and 0.14 mg Cd/L), animals showed a 
trend similar to the control. The differences of time to start 
activity between cadmium treatments (0.05 and 0.14  mg 
Cd/L) and the mean control activity at the end of exposure 
(48 h) and at the end of post-exposure (168 h) are shown in 
Fig. 4. Differences were higher than cero at 48 h of expo-
sure for 0.14 mg Cd/L, which means a lower activity than 
controls (p < 0.05; t-test, Fig. 4). Animals of this treatment 
at the end of the recovery period showed a higher activ-
ity than those of the control (p < 0.05; t-test, Fig. 4), which 
could indicate overexcitation caused by the exposure to cad-
mium. The 0.05 mg Cd/L treatment did not differ from the 
control in any time (p > 0.05; t-test, Fig. 4). Therefore, this 
concentration was safe to avoid behavioral impairments in 
P. antipodarum. This concentration was lower that the lower 
limit of the EC50 at 168  h of post-exposure to cadmium 
(0.07 mg Cd/L) (Fig. 2).

During cadmium exposure, animals may uptake a high 
amount of toxicant that subsequently cause lethal and sub-
lethal effects on organisms during the post-exposure period 
(Pascoe and Shazili 1986; Wright and Welbourn 1994; Brent 
and Herricks 1998; Schill et al. 2003; Alonso and Valle-Tor-
res 2018). A similar trend was also found for zinc (Mebane 
et al. 2021). The increase in mortality during the post-expo-
sure period may be due to the damage on the detoxification 
mechanisms, reducing their effectiveness, and increasing 
the adverse effects of toxicants (Downs et al. 2001; Alonso 

(p < 0.05; Overlap test, Fig. 2), with a EC50 at 48 h of expo-
sure of 0.21 (0.17–0.25) mg Cd/L and a EC50 at 168  h 
of 0.11 (0.07–0.16) mg Cd/L (Fig.  2). In general, during 
post-exposure periods, animals exposed to metals show 
an increase of mortality (Pascoe and Shazili 1986; Handy 
1994; Schill et al. 2003; Zhao and Newman 2004, 2006; 
Hoang et al. 2007; Mebane et al. 2021). In our study this 
was especially marked in the highest concentrations. There-
fore, mortality during post-exposure to toxicants should be 
included in the mortality endpoints (e.g., LC values) for 
a precise estimation of the real effects of toxicants (Zhao 
and Newman 2004). Models based on postexposure may 
enhance our predictive capabilities on the adverse effects of 
metals in field populations (Zhao and Newman 2004, 2006), 

Fig. 4  Mean (n = 17–18) differences (and 95% confidence intervals) 
between the time to start activity of each animal and the mean activ-
ity of control for 48  h of exposure and for 168  h of post-exposure 
to cadmium (0.05 and 0.14 mg Cd/L). Asterisks indicate significant 
differences with respect to zero for each cadmium concentration and 
exposure and post-exposure periods (p < 0.05; t-test). ns: no signifi-
cant. Cadmium treatments of 0.44 and 1.34 mg Cd/L were not ana-
lyzed as the number of active animals was less than 3

 

Fig. 3  Time to start activity (in seconds) of Potamopyrgus antipo-
darum for control and each cadmium treatment (0.05, 0.14, 0.44 and 
1.34 mg Cd/L) during the exposure and post-exposure periods. Stan-
dard deviations have been removed for clarity. Only active animals 
have been included

 

Fig. 2  Lethal Concentrations 50 (LC50) and Effective Concentrations 
50 (EC50) (mortality plus inactive animals) at 48 h of exposure and at 
168 h of post-exposure for Potamopyrgus antipodarum. Squares repre-
sent the LC and EC, and the black lines represents the 95% confidence 
intervals. Asterisks show significant differences between the final 
exposure period (48 h) and the final of post-exposure period (168 h) 
for each endpoint (LC50 and EC50) (p < 0.05; overlap test)
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in energy reserves, which can impair overall performance 
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The present study has shown that the inclusion of post-
exposure in ecotoxicological bioassays allows a realistic 
assessment of the cadmium effects. The LC and EC values 
calculated with post-exposure effects showed a higher sen-
sitivity of P. antipodarum, compared to exposure values. 
This fact should be taken into account for an adequate envi-
ronmental risk assessment of toxicants. However, the activ-
ity showed a certain recovery in the animals that survived, 
which may indicate a certain cadmium detoxification in the 
individuals that were more tolerant to cadmium.
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