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damage, lung fibrosis, neurological damage, suppressed 
immune system, etc.) (Forbid et al. 2011). Human health 
effects are contributing to app. 200,000-270,000 premature 
deaths per year worldwide (Velis and Cook 2021).

While several studies have addressed the risk of these 
emissions to human health, much less information is avail-
able on their phytotoxicity. Plants are unwillingly exposed 
for shorter or longer periods, still potential damage posed 
by PM emission of waste burning has been very rarely 
addressed. As such, the main aim of the study was to evalu-
ate phytotoxicity of PM emission from controlled burning 
of the following common plastic waste types: polyvinyl 
chloride (PVC), polyurethane (PUR), polypropylene (PP), 
polystyrene (PS) and polyethylene (PE). These particles 
bind potentially toxic compounds, of which heavy met-
als and polycyclic aromatic hydrocarbons (PAHs) are the 
most frequently addressed. PAHs originate from incomplete 
combustion processes which are quite typical considering 
burning conditions (Wu et al. 2021). Atmospheric PAHs are 
divided into gas and particle phases: those with less molecu-
lar weight are volatile and can be detected in the gas phase 
while those with high molecular weight will typically be 
absorbed by particulates (Ayyildiz and Esen 2020). These 
compounds pose the highest risk by producing reactive oxy-
gen species (ROS) (Simões et al. 2021).

Phytotoxicity was assessed based on peroxidase (POD) 
content of test plants previously treated with the aqueous 

Introduction

The production of plastic waste poses a serious environ-
mental health risk. Annually, over 400 million tons of plas-
tic waste is generated (Hossain et al. 2021), of which less 
than 20% is reused (Liu et al. 2022). According to Velis and 
Cook (2021), worldwide app. 2  billion people burn their 
plastic waste in open fires. Open burning of plastic waste 
releases a variety of potentially harmful pollutants into the 
air such as persistent organic compounds, greenhouse gases 
and particulate matter (PM) (Cogut 2016). Uncontrolled 
burning is also a source of identified endocrine disrupting 
compounds (Sidhu et al. 2005). Toxic emissions results in 
serious human health problems including potential carci-
nogenic effects (e.g. skin cancer, lung cancer, leukaemia) 
and potential non-carcinogenic effects (e.g. liver and kidney 
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Abstract
According to careful estimations, open burning of plastic waste affects app. 2  billion people worldwide. While human 
health risks have become more and more obvious, much less information is available on the phytotoxicity of these emis-
sions. In our study phytotoxicity of particulate matter samples generated during controlled combustion of different plastic 
waste types such as polyvinyl chloride (PVC), polyurethane (PUR), polypropylene (PP), polystyrene (PS) and polyethyl-
ene (PE) was evaluated based on peroxidase levels. While different samples showed different concentration-effect relation-
ship patterns, higher concentration(s) caused decreased peroxidase activities in each sample indicating serious damage.
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extract of PM10. As wet deposition is regarded an important 
exposure pathway (Grantz et al. 2003), this kind of treat-
ment was meant to simulate wet deposition. POD is one of 
the earliest biomarkers reported for assessing impact of air 
pollution on plants (Keller  1974) and has proven generally 
reliable to indicate atmospheric particulate matter phyto-
toxicity (reviewed by Rai 2016). POD was found the most 
sensitive end-point in heavy-metal stressed experimental 
plants (Jaskulak et al. 2018) and gives a fast response to 
PAH exposure as well (Liu et al. 2009).

Materials and methods

PM10 samples from the controlled burning of PVC, PUR, 
PP, PS and PE were collected on quartz filters. Detailed pro-
cedure and experimental conditions have been published in 
Hoffer et al. (2020). Aqueous extract was prepared as fol-
lows: each filter was cut into small pieces and placed in a 
beaker containing 200 mL high-purity water. The beaker 
was covered and kept at room temperature for 24 h. Dur-
ing that time, pieces were stirred several times. Finally the 
extract was filtered through 0.45-µm pore size filter and 
used immediately.

For POD measurement, white mustard (Sinapis alba L.) 
seedlings were grown according to the Phytotoxkit liquid 
samples seed germination and early growth of plants bench 
protocol (Microbiotests Inc. Belgium). Seed germination 
test is a widely accepted tool for evaluating waste incinara-
tion ash leachate phytotoxicity (Ribé et al. 2014). In each 
concentration, 25 seeds were germinated at 25 °C for 3 days 
in Petri dishes covered by transparent cover in darkness. 
All concentrations were tested in 3 replicates. Peroxidase 

activity was measured as described previously (Kováts et 
al. 2021).

Analytical determinations were performed in the testing 
laboratory at the Laboratory of the ELGOSCAR2000 Envi-
ronmental Technology and Water Management Ltd. accred-
ited by the National Accreditation Authority under the 
registration number NAH-1-1278/2015. ICP-OES Thermo 
iCAP 6300 was used for heavy metal concentration determi-
nations, according to EPA 6010 C: 2007. PAHs were mea-
sured by Agilent 6890GC 5973E MSD GC-MS, according 
to MSZ (Hungarian Standard) 1484-6:2003.

Analyses were carried out using oneway ANOVA, pair-
wise differences between treatment groups and control were 
calculated by Tukey HSD post-hoc tests in R Statistical 
Environment (R Development Core Team 2017).

Results and discussion

Concentration of different molecular weight PAHs 
groups in the samples is shown in Fig. 1. Potentially toxic 
heavy metal concentrations are discussed in case of each 
plastic sample.

Concentration-effect relationships of plastic samples and 
POD enzyme activity are shown in Figs. 2, 3, 4, 5 and 6: 
Fig. 2 PVC; Fig. 3 PUR; Fig. 4 PP; Fig. 5 PS; Fig. 6 PE 
extracts.

Polyvinyl chloride

The PVC sample contained high amount of Cd and Zn 
(22.4 µg/L and 78.8 µg/L). Other heavy metals present were 
Cu (6.26 µg/L), Ni (2.5 µg/L) and Mo (2.08 µg/L). It was 

Fig. 1  Amount of PAHs with different ring numbers in the aqueous extract
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the only sample which contained Pb above the detection 
limit (1.01 µg/L). Valavanidis et al. (2008) analysed chemi-
cal composition of PM from controlled combustion of dif-
ferent types of plastic and also detected high concentration 
of these metals in PVC samples. Cd is considered to be one 
of the most phytotoxic metals and is associated with a wide 
range of symptoms, and is highly responsible for ROS pro-
duction (Akinyemi et al. 2017). Zn has also shown to induce 
oxidative stress and enhance the production of antioxidant 
enzymes (Passardi et al. 2005; Chemingui et al. 2019).

According to Tukey post hoc test significant differences 
were found between the control and the tested concentra-
tions (Fig. 2). The 100% concentration showed statistically 
significant decrease in comparison to the control, than a 
gradual increase, finally the lowest concentration (0.78%) 
showed statistically significant increase. Peroxidase activity 
is reported by most of the studies to show concentration-
dependent increase, not responding to low level of contami-
nation (Mitrovic et al. 2004).

However, different patterns have also been reported. In 
the study of Huang et al. (2013) plants were treated with dif-
ferent concentrations of NH4

+. Low levels did not cause sig-
nificant changes in POD activity while it was significantly 
increased at higher concentrations. Finally, highest concen-
tration of the treatment triggered significant decrease. The 
explanation may be the potential damage to cell and plasma 
membranes. It might be supposed that the 100% concentra-
tion in case of the PVC sample caused a serious damage to 
these vital membranes. Újvárosi et al. (2019) also observed 
decreased peroxidase activities in case of high level of stress 
and explained the phenomenon by the decreased capacity of 
scavenging reactive oxygen (ROS) species.

Several studies have discussed Cd-induced effects on 
biochemical markers. Similarly to our results, higher con-
centrations triggered the significant decrease in POD levels, 
indicating the damage to free radical metabolisms (Li et al. 

2015). According to the authors, it might have resulted in the 
increase in relative cell membrane permeability. Reduced 
ascorbate peroxidase activity was measured in chromium 
treated basil (Ocimum tenuiflorum) plants in the study of 
Rai et al. (2004), indicating the sensitivity of the enzyme 
to this metal. Verma et al. (2008) also reported decrease in 
peroxidase activity in Cd-treated Brassica seedlings. On 
the other hand, lower concentrations result in the increased 
levels of POD and other antioxidant enzymes (e.g. Milone 
et al. 2003). Similar behaviour of peroxidases have been 
reported as a response to Zn (e.g. Yang et al. 2017, Ozdener 
and Aydin 2010). A strong correlation was found between 
Zn and POD activity (Hagemeyer 2004).

3.2 Polyurethane

Somewhat similar pattern could be detected in case of 
the PUR sample (Fig.  3). In comparison to the control, 
the 100% concentration caused significant decrease while 
the 25% and 12.5% concentrations elucidated significant 
increase in antioxidant capacity. Lower concentrations, 
however, did not trigger significant toxic effect comparing 
to the control. Similarly to the PVC sample, this sample also 
contained toxic heavy metals in detectable amount, though 
their concentration was lower than in the PVC sample (Cd 
5.54 µg/L, Zn 11.9 µg/L). In addition to heavy metals, the 
sample contained high concentrations of PAHs as well (total 
PAH concentration was 321 µg/L) (Fig. 1).

3.3 Polypropylene

Concentration-effect relationship of the PP sample 
showed an ’all or nothing’ pattern (Fig. 4) (USEPA 2000): 
higher concentrations from 100 to 3.125% elucidated sig-
nificant damage in stress enzyme activity while practically 
no response was detected in the next concentration (1.56%). 

Fig. 2  Concentration-effect relationship of PVC emission and POD level. Enzyme activity is given in µmol µg− 1 min− 1 L− 1 unit
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PAHs (sum of PAHs was 167 µg/L). In addition to heavy 
metals and PAHs, Wu et al. (2021) detected several poly-
chlorinated dibenzodioxin and dibenzofuran (PCDD/F) and 
polychlorinated biphenyl (PCB) congeners when PP con-
taining sample was experimentally burned. The study also 
reported high cytotoxicity measured using human alveolar 
basal epithelial (A549) cell lines.

Chemical analysis revealed the presence of toxic Cr and Zn 
(3.73 and 11.4 µg/L). Ni was detected in lower concentration, 
2.02 µg/L. Zn-induced effects on POD has been discussed 
above. Cr was reported to elucidate the decrease in peroxi-
dase activity as a result of inhibition of the major antioxi-
dant metabolism (Choudhury and Panda 2005). According 
to Tiwari et al. (2013), Cr can have a negative effect on plant 
metabolism through inactivation of enzymes. In general, Cr-
induced ROS can enhance membrane damage, degradation 
and deactivation of enzyme systems (Wakeel et al. 2020). 
The extract also contained relatively high concentration of 

Fig. 5  Concentration-effect relationship of PS emission and POD level. Enzyme activity is given in µmol µg− 1 min− 1 L− 1 unit

 

Fig. 4  Concentration-effect relationship of PP emission and POD level. Enzyme activity is given in µmol µg− 1 min− 1 L− 1 unit

 

Fig. 3  Concentration-effect relationship of PUR emission and POD level. Enzyme activity is given in µmol µg− 1 min− 1 L− 1 unit
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and dibenzofuran when PE containing domestic waste was 
experimentally burned. Mei et al. (2017) found significant 
emission of polybrominated dibenzo-p-dioxins/diben-
zofurans during lab-scale pyrolysis of 90% PE and 10% 
decabromodiphenyl ether (deca-BDE). Polybrominated 
diphenyl ethers (PBDEs) are considered one of the new 
types of persistent organic pollutants (POPs). According to 
Sun et al. (2019), treatments with deca-BDE resulted in the 
decrease of POD activity in the freshwater test organism 
Lemna minor.

Conesa et al. (2009) reported considerable emission of 
volatile organic compounds (VOC) and semi-volatile com-
pounds during the controlled combustion of PE, volatiles 
including benzene and toluene while semi volatiles includ-
ing biphenyl in outstanding concentrations. These com-
pounds have proven toxicity (e.g. Davidson et al. 2021; 
Williams et al. 2020). Benzene was classified as carcino-
genic to humans (belonging to IARC group 1) already in 
1979, on the basis of sufficient evidence that it causes leu-
kaemia, reaffirming the classification specifically for acute 
myeloid leukaemia (AML) and acute non-lymphocytic leu-
kaemia in 2009 (reviewed by Loomis et al. 2017).

4. Conclusions

As concluding remark, it should be noted that while con-
centration-effect graphs showed somewhat different pat-
tern, highest concentration(s) triggered the damage of POD 
in each sample. Chemical analysis of the samples revealed 
that the samples can be characterised by high heavy metal 
or high PAH content, some samples are of mixed nature, 
containing both types of potentially toxic compounds. How-
ever, these groups of potentially toxic compounds could 
not explain resulting toxicity in all cases, especially for 
the polyethylene sample. In general, our results show the 
high phytotoxic risk generated by illegal burning of plas-
tic waste, especially considering the fact that in ’everyday 

3.4 Polystyrene

Statistically significant difference (decrease of POD concen-
tration) was found only in case of the highest concentration 
(Fig. 5), despite the fact that of all plastic samples investi-
gated, particulates generated by this emission contained the 
highest amount of PAHs, 407 µg/L.

Effect of some of the PAHs being present in the extract 
have already been assessed on peroxidases or on other stress 
enzymes. Wei et al. (2014) e.g. reported the concentration-
dependent increase in POD concentrations after phenan-
threne (PHE) treatment. However, concentrations applied 
were significantly higher in comparison to our study: 
0.05, 0.1, 0.2 mg/mL while the PS extract contained PHE 
in 213  µg/L concentration. Fluoranthene (FLT) had simi-
lar effect on POD activity in the study of Tomar and Jajoo 
(2015) but in a relatively high concentration, 5 mg/L. FLT 
concentration in the PS extract was 60.7 µg/L. Much less 
information is available on the combined effects of different 
PAHs. However, for example anthracene and5-ringbenzo[k]
fluoranthene did not produce cumulative toxicity when 
applied together (Wieczorek et al. 2015; Radič et al. 2018) 
assessed the phytotoxicity of coal combustion polluted soil 
samples on the test plant Lemna minor but measured effects 
could not be statistically correlated to individual PAH 
compounds.

3.5 Polyethylene

Every concentration tested showed significant decrease in 
comparison to the control (Fig. 6), implying that membrane 
damage could be anticipated even at the lowest concentra-
tion. Analytical measurements covered only heavy metal 
and PAH compounds. Potentially toxic heavy metals being 
present in the extract were: Cu 6.72 µg/L, Zn 8.23 µg/L. Sum 
of PAHs was rather low (48.7 µg/L extract). Most possibly 
other compounds could also be responsible for the effect. 
Gullett et al. (2001) detected polychlorinated dibenzodioxin 

Fig. 6  Concentration-effect relationship of PE emission and POD level. Enzyme activity is given in µmol µg− 1 min− 1 L− 1 unit
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practice’ these plastic types are mixed, providing a complex 
toxic cocktail for exposed plants.
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