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Abstract
Carbonaceous species [organic carbon (OC), elemental carbon (EC), elemental matter (EM), primary organic carbon (POC), 
secondary organic carbon (SOC), total carbon (TC), and total carbonaceous matter (TCM)] of  PM2.5 were analyzed to study 
the seasonal variability and long-term trend of carbonaceous aerosols (CAs) in megacity Delhi, India from January, 2012 
to April, 2021. The average concentrations (± standard deviation) of  PM2.5, OC, EC, TC, EM, TCM, POC and SOC were 
127 ± 77, 15.7 ± 11.6, 7.4 ± 5.1, 23.1 ± 16.5, 8.2 ± 5.6, 33.3 ± 23.9, 9.3 ± 6.3 and 6.5 ± 5.3 µg  m−3, respectively during the 
sampling period (10-year average). The average CAs accounted for 26% of  PM2.5 concentration during the entire sampling 
period. In addition, the seasonal variations in  PM2.5, OC, EC, POC, SOC, and TCM levels were recorded with maxima in 
post-monsoon and minima in monsoon seasons. The linear relationship of OC and EC, OC/EC and EC/TC ratios suggested 
that the vehicular emissions (VE), fossil fuel combustion (FFC) and biomass burning (BB) are the major sources of CAs at 
megacity Delhi, India.
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Atmospheric aerosols are complex in their chemical com-
position (Weagle et al. 2018), varying spatially and tem-
porally (Sharma et al. 2021a) and have different effects on 
local as well as regional air quality (Belis et al. 2013; Jain 
et al. 2020), visibility, Earth’s radiation budget, global cli-
mate (Ramanathan et al. 2001) and human health (Pope and 
Dockery 2006; Dockery and Stone 2007; Pope et al. 2009; 
Fuzzi et al. 2015; Lelieveld et al. 2015; Gauderman et al. 
2015; Velali et al. 2016). Studies reveal that the  PM2.5 was 
responsible for more than 3 million premature deaths per 
year worldwide (Jerret 2015; Leliveld et al. 2015).  PM2.5 
consists of organics [organic carbon (OC) and elemental 
carbon (EC)], elements, sea salt, secondary aerosols, etc. 
The constituents of carbonaceous species of  PM2.5 have 
an important impact on regional and global climate along 
with Earth’s atmospheric system (Ramanathan et al. 2001). 
Therefore, identifying and quantifying the carbonaceous 

aerosols (CAs) in  PM2.5 is essential to design the air qual-
ity management strategies to control  PM2.5 mass loading in 
the ambient air through targeted action (Waked et al. 2014).

Carbonaceous aerosols are the significant sources of 
atmospheric particulate matter (PM)/aerosols, containing 
up to 70% of aerosols mass loading (Kanakidou et al. 2005) 
and its major sources are biomass burning (BB), fossil fuel 
combustion (FFC) and biogenic emissions (Claeys et al. 
2004; Venkataraman et al. 2005). Several studies have been 
conducted on CAs and their probable sources in urban (Ram 
and Sarin 2010; Mandal et al. 2014; Sharma et al. 2018; Jain 
et al. 2020), rural, remote (Begam et al. 2017) and high alti-
tude atmosphere (Kaushal et al. 2018; Sharma et al. 2021a, 
b) of the Indian region on a short-term basis, but a few stud-
ies have been carried out on the long-term trend (Sharma 
et al. 2018; 2021a). In this paper, we reported the seasonal 
and annual variability of OC, EC, elemental matter (EM), 
primary organic carbon (POC), secondary organic carbon 
(SOC) and total carbonaceous matter (TCM) of  PM2.5 at an 
urban site of Delhi, India from January, 2012 to April, 2021.
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Materials and Methods

PM2.5 samples (n = 805) were collected periodically (2 
samples/week) at the observational site of CSIR-National 
Physical Laboratory (28° 38′ N, 77° 10′ E; 218 m amsl), 
New Delhi from January, 2012 to April, 2021 [except 
July–December, 2012 and Covid-19 lockdown period 
(lockdown periods: 25 March, 2020–31 May, 2020; unlock 
periods: 1 June, 2020–31 August, 2020)]. The sampling 
site is a typical urban environment surrounded by heavy 
roadside traffic and an agricultural institute in the south-
west direction (Sharma et al. 2018). Vehicular traffic, FFC, 
BB, secondary aerosols, minerals and soil dust are the 
major source of aerosols of Delhi and surrounding areas 
(Sharma et al. 2014). During 2020–2021, the total number 
of registered vehicles in Delhi was 11.8 million (Delhi Sta-
tistical Handbook 2021). The meteorology of Delhi is 
divided into four different seasons: winter (January–Febru-
ary), summer (March–May), monsoon (June–September) 
and post˗monsoon (October–December). Winter months 
are chilly (temperature: ~ 3°C) whereas, the summers are 
generally scorching and dry (temperature: 47°C).

A fine particle sampler (APM 550, Envirotech, Delhi, 
IN; having a flow rate of 1  m3  h−1 with accuracy ± 2%) 
was used to collect the  PM2.5 samples on pre-baked 
quartz filters (size: 47 mm) for 24 h. The quartz filters 
were weighed before and after the sampling to determine 
the gravimetric mass concentration of collected  PM2.5 
samples. OC and EC analysis of  PM2.5 samples was per-
formed by a Thermo-optical carbon analyzer (DRI 2001A, 
Atmoslytic Inc., Calabasas, CA, USA) using IMPROVE-A 
protocol (Chow et al. 2004). OC/EC carbon analyzer is 
working on the preferential oxidation of OC and EC at 
different temperatures plateaus (140, 280, 480 and 580°C; 
for OC1, OC2, OC3 and OC4, respectively) in pure He 
and three temperature plateaus (580, 740 and 840°C for 
EC1, EC2 and EC3, respectively) in 98% He + 10%  O2 
gas (Chow et al. 2004). A proper punch of ~ 0.536  cm2 
area of the filter was cut and analyzed in triplicate along 
with field blank filters (> 50 samples during the sampling 
period). The standard calibration for peak area verification 
was performed daily using 5%  CH4 + balance helium gas 
(before and after sample analysis). Calibration of the OC/
EC analyzer was performed by 4.8% of  CO2 + balance He 
gas along with known amounts of KHP (potassium hydro-
gen phthalate) and sucrose solution. In the present case, 
repeatability errors of OC (detection limit: 0.54 µg  m−3) 
and EC (detection limit: 0.21 µg  m−3) analysis were esti-
mated as 3%–7% (Sharma et al. 2021a). Statistical data 
analysis of chemical species of  PM2.5 was performed by 
chi-square method using Monte Carlo statistics (non-par-
ametric test) (Sharma et al. 2018). TCM is computed by 

the addition of organic matter (OM = 1.6 × OC) and EM 
(EM = 1.1 × EC) of  PM2.5 (Malm et al. 2004; Turpin and 
Lim 2001; Srinivas and Sarin 2014). The effective carbon 
ratio (ECR) of CAs provides the information about the 
formation of SOC in the atmosphere which is calculated 
as SOC/(POC + EC). SOC cannot be measured directly by 
a Carbon analyzer, therefore, SOC was computed by the 
EC tracer method (Castro et al. 1999) using the following 
equations:

Results and Discussion

Figure 1 represents the time series plots of OC, EC and TC 
of  PM2.5 along with  PM2.5 concentration from January, 2012 
to April, 2021. The annual average concentrations of  PM2.5, 
OC, EC, TC, EM, TCM, POC and SOC with standard devia-
tion (± SD) were 127 ± 77, 15.7 ± 11.6, 7.4 ± 5.1, 23.1 ± 16.5, 
8.2 ± 5.6, 33.3 ± 23.9, 9.3 ± 6.3 and 6.5 ± 5.3 µg  m−3, respec-
tively during 2012–2021 (Table 1). During the study, a non-
significant decreasing trend in annual concentration of  PM2.5 
(y =  − 1.596x + 135.3; R2 = 0.18) was recorded, whereas the 
significant decreasing trend in annual concentration of OC 
(y =  − 0.484x + 18.4; R2 = 0.49), EC (y =  − 0.502x + 10.2; 
R2 = 0.51) and TC (y =  − 0.986x + 28.6; R2 = 0.54) were 
recorded (Fig. S1; in supplementary information). In 2017, 
the highest annual average concentration of  PM2.5 was noted 
as 143 ± 70 µg  m−3, whereas the minimum concentration 
of  PM2.5 was obtained in 2021 as 109 ± 53 µg  m−3 which 
are exceeding the National Ambient Air Quality Stand-
ards (annual: 40 µg  m−3). The higher concentrations of OC 
(19.3 ± 13.9 µg   m−3), EC (11.4 ± 7.5 µg   m−3) and TCM 
(43.3 ± 30.1 µg  m−3) were observed in 2013. OC, EC and 
TCM contributed to ~ 12%, ~ 6% and ~ 26%, respectively to 
 PM2.5 concentrations during 2012–2021 (10-year average). 
Jain et al. (2020) reported similar percentage contributions 
of OC (~ 12%), EC (~ 5.5%) and TCM (~ 25%) to  PM2.5 at 
Delhi, whereas Mandal et al. (2014) reported higher percent-
age contributions of OC (28%) and EC (9%) to  PM2.5 in an 
industrial area of Delhi.

The seasonal variations in the level of OC, EC, TC, TCM, 
POC and SOC of  PM2.5 and their percentage contribution to 
 PM2.5 and seasonal differences are summarized in Table 2. 
The highest concentrations of  PM2.5, OC, EC, TCM, POC 
and SOC were recorded during post-monsoon seasons fol-
lowed by winter, summer and monsoon seasons (Table 2; 
Fig. S2, in supplementary information). The higher con-
centrations of  PM2.5 and its carbonaceous species during 

(1)POC =
[

OC∕EC
]

min
× EC

(2)SOC = OC − POC
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Fig. 1  Time series plot in mass 
concentrations of  PM2.5, OC, 
EC and TC during 2012–2021 
(the data from July–December, 
2012 and the lockdown peri-
ods in 2020 were not included)

Table 1  Annual average concentrations of carbonaceous species in  PM2.5 (OC, EC, TC, TCM, EM, POC and SOC) in Delhi

 ± Standard deviation at 1σ (n = 805 samples for 10 years); The data from July-December, 2012 and the  lockdown periods  in 2020 were not 
included 

Year PM2.5 OC EC TC TCM EM POC SOC ECR OC/EC EC/TC
(µg  m−3)

2012 133 ± 92 18.7 ± 10.6 10.1 ± 6.4 28.8 ± 16.8 41.0 ± 23.7 11.1 ± 7.0 13.4 ± 8.5 5.2 ± 4.0 0.27 ± 0.16 1.85 ± 0.37 0.35 ± 0.12
2013 136 ± 91 19.3 ± 13.9 11.4 ± 7.5 30.6 ± 21.1 43.3 ± 30.1 12.5 ± 8.3 12.3 ± 8.1 7.0 ± 6.2 0.34 ± 0.31 1.79 ± 0.65 0.37 ± 0.13
2014 113 ± 96 16.6 ± 14.5 9.5 ± 8.4 26.1 ± 22.8 37.0 ± 32.3 10.5 ± 9.2 10.7 ± 9.4 5.8 ± 4.7 0.35 ± 0.20 1.75 ± 0.43 0.36 ± 0.15
2015 123 ± 65 13.8 ± 9.1 6.0 ± 3.3 19.8 ± 12.2 28.7 ± 17.9 6.6 ± 3.6 7.1 ± 3.9 6.7 ± 5.8 0.52 ± 0.27 2.31 ± 0.59 0.30 ± 0.11
2016 138 ± 58 14.5 ± 13.2 4.9 ± 3.8 19.4 ± 16.7 28.6 ± 25.0 5.4 ± 4.2 7.0 ± 5.4 7.5 ± 6.4 0.64 ± 0.35 2.97 ± 0.86 0.25 ± 0.12
2017 143 ± 70 17.0 ± 11.7 6.5 ± 3.8 23.5 ± 15.1 34.4 ± 22.5 7.2 ± 4.2 9.5 ± 5.5 7.5 ± 7.3 0.47 ± 0.30 2.60 ± 0.73 0.28 ± 0.13
2018 124 ± 70 13.4 ± 9.5 6.8 ± 4.4 20.1 ± 13.5 28.8 ± 19.6 7.5 ± 4.9 7.5 ± 4.9 5.9 ± 5.7 0.43 ± 0.29 1.97 ± 0.62 0.34 ± 0.12
2019 129 ± 96 15.8 ± 14.2 7.0 ± 5.1 22.8 ± 19.3 32.9 ± 28.3 7.7 ± 5.6 7.8 ± 5.7 8.0 ± 7.7 0.47 ± 0.23 2.27 ± 0.48 0.31 ± 0.13
2020 117 ± 68 14.2 ± 11.0 6.2 ± 4.6 20.4 ± 15.4 29.6 ± 22.5 6.8 ± 5.1 7.7 ± 5.7 6.5 ± 5.9 0.53 ± 0.32 2.31 ± 0.71 0.30 ± 0.12
2021 109 ± 53 14.0 ± 8.9 5.9 ± 3.6 19.9 ± 12.3 28.9 ± 18.0 6.5 ± 4.0 9.6 ± 5.8 4.5 ± 4.4 0.33 ± 0.29 2.38 ± 0.75 0.30 ± 0.13
Average 127 ± 77 15.7 ± 11.6 7.4 ± 5.1 23.1 ± 16.5 33.3 ± 23.9 8.2 ± 5.6 9.3 ± 6.3 6.5 ± 5.3 0.43 ± 0.27 2.22 ± 0.62 0.32 ± 0.12



505Bulletin of Environmental Contamination and Toxicology (2022) 109:502–510 

1 3

Ta
bl

e 
2 

 S
ea

so
na

l v
ar

ia
tio

ns
 o

f c
ar

bo
na

ce
ou

s s
pe

ci
es

 in
  P

M
2.

5 a
nd

 th
ei

r p
er

ce
nt

ag
e 

co
nt

rib
ut

io
n 

in
 D

el
hi

Th
e 

da
ta

 fr
om

 Ju
ly

–D
ec

em
be

r, 
20

12
 a

nd
 th

e 
lo

ck
do

w
n 

pe
rio

ds
 in

 2
02

0 
w

er
e 

no
t i

nc
lu

de
d 

 ±
 S

ta
nd

ar
d 

de
vi

at
io

n 
at

 1
σ

a  Si
gn

ifi
ca

nt
ly

 d
iff

er
en

t (
at

 p
 <

 0.
05

)
b  Si

gn
ifi

ca
nt

ly
 n

ot
 d

iff
er

en
t (

at
 p

 <
 0.

05
)

Sp
ec

ie
s

Se
as

on
s

Se
as

on
al

 d
iff

er
en

ce

W
in

te
r (

W
) (

n =
 18

0)
Su

m
m

er
 (S

) (
n =

 21
6)

M
on

so
on

 (M
) 

(n
 =

 19
6)

Po
st-

M
on

so
on

 
(P

M
) (

n =
 21

3)
W

-S
W

-M
W

-P
M

S-
M

S-
PM

M
-P

M

PM
2.

5 (
µg

  m
−

3 )
15

8 ±
 64

95
 ±

 35
67

 ±
 28

19
0 ±

 92
62

.9
a

90
.3

a
 −

 32
.4

a
27

.4
a

 −
 95

.3
a

 −
 12

2.
7a

O
C

 (µ
g 

 m
−

3 )
20

.5
 ±

 11
.1

9.
5 ±

 4.
1

6.
5 ±

 2.
9

25
.6

 ±
 14

.3
11

.0
a

14
.0

a
 −

 5.
1a

3.
0b

 −
 16

.1
a

 −
 19

.1
a

EC
 (µ

g 
 m

−
3 )

9.
4 ±

 5.
1

4.
8 ±

 2.
6

2.
9 ±

 1.
6

10
.9

 ±
 6.

3
4.

5a
6.

5a
 −

 1.
5b

2.
0b

 −
 6.

0a
 −

 8.
0a

TC
 (µ

g 
 m

−
3 )

29
.8

 ±
 15

.5
14

.3
 ±

 6.
4

9.
4 ±

 4.
2

36
.4

 ±
 19

.7
15

.5
a

20
.5

a
 −

 6.
6a

4.
9a

 −
 22

.1
a

 −
 27

.1
a

TC
M

 (µ
g 

 m
−

3 )
43

.0
 ±

 22
.5

20
.5

 ±
 9.

1
13

.5
 ±

 6.
1

52
.9

 ±
 28

.8
22

.6
a

29
.5

a
 −

 9.
8a

6.
9a

 −
 32

.4
a

 −
 39

.3
a

EM
 (µ

g 
 m

−
3 )

10
.3

 ±
 5.

6
5.

3 ±
 2.

8
3.

2 ±
 1.

7
12

.0
 ±

 6.
9

5.
0a

7.
1a

 −
 1.

7b
2.

1b
 −

 6.
6a

 −
 8.

8a

PO
C

 (µ
g 

 m
−

3 )
11

.9
 ±

 6.
1

6.
1 ±

 3.
0

3.
5 ±

 1.
8

13
.1

 ±
 7.

2
5.

9a
8.

4a
 −

 1.
2b

2.
5a

 −
 7.

1a
 −

 9.
6a

SO
C

 (µ
g 

 m
−

3 )
8.

5 ±
 6.

7
3.

4 ±
 1.

9
2.

9 ±
 1.

7
12

.4
 ±

 8.
9

5.
1a

5.
6a

 −
 3.

9a
0.

5b
 −

 9.
0a

 −
 9.

5a

EC
R

0.
43

 ±
 0.

27
0.

37
 ±

 0.
21

0.
55

 ±
 0.

31
0.

56
 ±

 0.
28

0.
06

a
 −

 0.
12

a
 −

 0.
13

a
 −

 0.
18

a
 −

 0.
19

a
 −

 0.
01

b

O
C

/E
C

2.
3 ±

 0.
7

2.
1 ±

 0.
6

2.
2 ±

 0.
8

2.
5 ±

 0.
8

0.
2b

0.
1b

 −
 0.

2b
 −

 0.
1b

 −
 0.

4b
 −

 0.
3b

EC
/T

C
0.

32
 ±

 0.
17

0.
34

 ±
 0.

14
0.

31
 ±

 0.
12

0.
30

 ±
 0.

15
 −

 0.
02

b
0.

01
b

0.
02

b
 −

 0.
03

b
 −

 0.
04

b
0.

01
b

O
C

 (%
)

12
.9

 ±
 4.

0
10

.8
 ±

 4.
9

10
.7

 ±
 5.

2
13

.9
 ±

 6.
6

2.
1a

2.
2a

 −
 1.

0a
0.

1b
 −

 3.
1a

 −
 3.

2a

EC
 (%

)
6.

0 ±
 2.

2
5.

6 ±
 3.

2
4.

9 ±
 3.

1
6.

1 ±
 3.

7
0.

4b
1.

2b
 −

 0.
1b

0.
7b

 −
 0.

5b
 −

 1.
3b

TC
 (%

)
18

.9
 ±

 5.
5

16
.4

 ±
 6.

9
15

.6
 ±

 8.
0

20
.0

 ±
 9.

9
2.

6a
3.

4a
 −

 1.
1b

0.
8b

 −
 3.

6a
 −

 4.
5a

TC
M

 (%
)

27
.3

 ±
 8.

0
23

.6
 ±

 11
.1

22
.5

 ±
 11

.3
29

.0
 ±

 14
.2

3.
9a

4.
8a

 −
 1.

7b
0.

9b
 −

 5.
6a

 −
 6.

5a



506 Bulletin of Environmental Contamination and Toxicology (2022) 109:502–510

1 3

post-monsoon and winter seasons could be the source 
strength of  PM2.5 and prevailing meteorological conditions 
(temperature, relative humidity, wind speed, wind directions, 
etc.) as well as the lowering of mixing height of the bound-
ary layer at the sampling site. Regional and long-range trans-
portation of pollutants (from crop residue burning) towards 
the sampling site also arises from the north-western states 
of IGP (Punjab, Harayana) of India (Ravindra  et al. 2022). 
Sharma et al. (2021b) also experienced similar seasonal vari-
ations of  PM10 and their chemical constituents in megacity 
Delhi based on long-term observations (2010–2019). During 
all the seasons, the POC value is recorded higher than the 
SOC level with an ECR value < 1.0 (0.3 to 0.6) which indi-
cates the higher contribution of POC over SOC (Table 2).

Monthly average (pooled estimate of each month of 
2012–2021) values of  PM2.5, OC, EC, TC and TCM from 
January, 2012 to April, 2021 are represented in Fig. 2. The 
highest monthly average concentrations of  PM2.5, OC, 
EC and TCM were 226 ± 71; 28.9 ± 12.2; 12.3 ± 6.8 and 
59.8 ± 25.7 µg  m−3, respectively during December (post-
monsoon) (Fig. 2), whereas the minimum monthly average 
levels of  PM2.5, OC, EC and TCM were 64 ± 23; 6.1 ± 2.4; 
2.5 ± 1.3 and 12.4 ± 4.8 µg  m−3, respectively during July 
(monsoon). Several researchers (Mandal et al. 2014; Bisht 

et al. 2015; Jain et al. 2020; Sharma et al. 2021b) have 
reported similar monthly variations in carbonaceous spe-
cies (OC, EC, TC and TCM) of  PM2.5 at Delhi and IGP of 
India (Ram and Sarin 2010; Srinivas and Sarin 2014; Khai-
wal et al. 2021). The monthly concentration of  PM2.5 has 
also exceeded the National Ambient Air Quality Standards 
(NAAQS; 24 h: 60 µg  m−3; annual: 40 µg  m−3) of India.

Generally, FFC and BB fuel burning (dungcake, crop 
residue and wood-burning) contribute appreciably to OC 
and EC particulates (Ram and Sarin 2010; Begum et al. 
2011). A positive linear correlation between OC and EC is 
usually considered as emissions from the same combustion 
sources (Salma et al. 2004; Ram et al. 2010; Sharma et al. 
2014; Jain et al. 2017). Whereas, a weakly correlated OC 
and EC suggest the influence of secondary organic aero-
sols (SOA) formed through the gas-to-particle conversion 
of volatile organic compounds (VOCs) (Begum et al. 2004, 
2006). In the present study, significant positive linear rela-
tionships between OC and EC were observed during winter 
(R2 = 0.66), summer (R2 = 0.74), monsoon (R2 = 0.62) and 
post-monsoon (R2 = 0.67) seasons (Fig. 3) in Delhi, indicat-
ing the influence of VE or BB (or both).

The OC/EC ratio has been applied extensively for decod-
ing the sources of CAs around the globe (Novakov et al. 

Fig. 2  The monthly average var-
iation in concentrations (error 
bar: ± SD) of  PM2.5, OC, EC, 
TC and TCM (pooled estimate 
of 2012 to 2021;  the data from 
July–December, 2012 and the  
lockdown periods in 2020 were 
not included)

Fig. 3  Relationship of OC and EC (of  PM2.5) during winter, summer, monsoon and post-monsoon seasons (the data from July–December, 2012 
and the lockdown periods in 2020 were not included)
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2000; Cheng et al. 2006; Ram et al. 2010). The higher OC/
EC value (between 4 and 12) is generally used for BB (Szi-
dat et al. 2006), whereas, the OC/EC ratio between 1.4 to 4 
are used (between 0.3 to 1 used for diesel vehicles) for VE 
along with BB (mixed type) (Amato et al. 2009; Salameh 
et al. 2015; Ram et al. 2010). In this study, the average OC/
EC ratio of  PM2.5 were 2.3 ± 0.7, 2.1 ± 0.6, 2.2 ± 0.8 and 
2.5 ± 0.8 during winter (range 1.1–5.7), summer (range 
1.0–3.9), monsoon (range 1.2–5.9) and post-monsoon 
(range: 1.1–6.8) seasons, respectively (Table 2). The aver-
age OC/EC mass ratio evidenced that the FFC and BB are 
the dominant sources of CAs at the study site. The seasonal 
value of the EC/TC ratio also support the emissions of these 
sources over Delhi. Stable carbon and nitrogen isotopic 
analysis of  PM2.5 also suggested that the VE and BB are the 
major sources of  PM2.5 in Delhi (Sharma et al. 2015, 2017, 
2022). Jain et al. (2020) have applied the receptor models 
on long-term chemical species of  PM2.5 and reported that 
BB and VE were the major sources of  PM2.5 in Delhi. The 
average ECR values (Tables 1 and 2) of  PM2.5 demonstrated 
the abundance of POC (in the present case ECR < 1.0) over 
SOC and has more warming effects.

Several researchers (Jain and Sharma 2020; Singh et al. 
2020; Sokhi et al. 2021; Saharan et al. 2022) have reported 
the reduction in concentrations of gaseous (NO,  NO2, CO, 
 SO2,  O3,  NH3, benzene, toluene, etc.,) and particulate  (PM2.5 
and  PM10) pollutants in Delhi, India, and globe during 
covid-19 lockdown period as compared to pre-lockdown 
period due to restricted activities. The sampling period of 
 PM2.5 also falls under the 4 lockdown, and 3 unlock periods 
in Delhi during 2020 (Table S1; in supplementary informa-
tion). Therefore, analysis of  PM2.5 and its carbonaceous spe-
cies (OC, EC, TC, and OC/EC) are essential to understand 
the levels of CAs during this period. During 4 lockdown 
periods (25 March 2020 to 31 May 2020), the  PM2.5 samples 
were not collected at the study site due to restricted entry 
into the laboratory. However,  PM2.5 sample collection was 
resumed from the unlock-1 period, i.e., 1 June 2020 onwards 
(Table S1; in supplementary information). Figure 4 shows 
the time series plots of  PM2.5, OC, EC, and TC concentra-
tions from pre-lockdown to unlock period (January 2020 to 
December 2020) in Delhi. The average concentrations of 

 PM2.5, OC, EC, and TC were 125, 13.6, 6.6 and 21.1 µg  m−3, 
respectively during the pre-lockdown period, whereas the 
average concentrations of  PM2.5, OC, EC, and TC were 68, 
6.0, 3.0 and 9.1 µg  m−3 during the unlock-1 period when 
only government offices were opened with limited capac-
ity (Table S1; in supplementary information). The average 
reduction in mass concentrations of  PM2.5 (reduced by 45%) 
and its carbonaceous components OC (reduced by 55%), EC 
(reduced by 53%), and TC (reduced by 54%) were ~ 50% 
when compared with pre-lockdown to unlock-1 period. Also, 
the OC/EC ratio is increased up to ~ 50% (2.0 to 3.1), how-
ever the sources of CAs still arises from VE and FFC. Singh 
et al. (2020) reported > 40% reduction in  PM2.5 concentra-
tion over Delhi during lockdown period in comparison to 
unlock period. In contrast, Saharan et al. (2022) reported a 
35% reduction in  PM2.5 concentration during the lockdown 
period compared with the pre-lockdown period in Delhi dur-
ing 2020. Several researchers in India and the globe reported 
a similar reduction in pollutants levels (Kotnala et al. 2020; 
Jain and Sharma 2020; Sokhi et al. 2021).

The present study demonstrates the seasonal variability 
and long-term trends with high loading of carbonaceous 
species (OC, EC, TC, EM, TCM, POC, and SOC) in  PM2.5 
over megacity Delhi, India, which is further contaminating 
the ambient air quality of the region and impact on the level 
of short-lived climate-forcing pollutants. Seasonal varia-
tions in mass concentrations of  PM2.5, OC, EC, POC, SOC, 
and TCM were recorded maximum in post-monsoon and 
minimum in monsoon seasons. The study suggested that the 
VE, FFC, and BB are the major sources of CAs at megacity 
Delhi, India. During covid-19 unlock periods, the OC/EC 
ratio is increased up to ~ 50% (2.0 to 3.1), which shows the 
sources of CAs arises from VE and FFC. In urban areas, 
the number of vehicles, industries, and influence of human 
activities was increasing with time and expected to increase 
soon, which is believed to augment the abundance of TCM 
over the region. The CAs have a significant impact on atmos-
pheric chemistry, climate, and environmental transport sys-
tems. Hence, there is a need to take necessary mitigation 
measures to control/cut down the emissions of carbonaceous 
aerosols from various sources.
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