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(Endler 2000). However, background environmental pollu-
tion can interfere with perception of ecological information 
in three ways. One way, known as masking, occurs when 
background chemicals alter the signal to noise ratio of 
transmitted information changing the ability of the receiver 
organism to extract relevant information (Dusenbury 1992). 
Second, chemicals can physiologically impair chemosensory 
systems by temporarily reducing sensory receptor functions 
through agonistic / antagonistic binding of chemical mol-
ecules to neuroreceptor sites (Sutterlin 1974). Third, back-
ground pollution can alter physiological processes in the 
organism hindering the internal processing of information. 
A large source of background pollution is through anthro-
pogenic nonpoint source pollution runoff into streams and 
rivers.

Commercial fertilizers such as anhydrous ammonia and 
urea are commonly lost during runoff events as they enter 
nearby streams and other aquatic systems (Eddy 2005). 
Crustaceans are physiologically impacted by ammonia 
exposure, including toxicity and death (Arthur et al. 1987; 
Young-Lai et al. 1991; Romano and Zeng 2010). Ammonia 
uptake also alters ion regulation in crayfish (Harris et al. 
2001). However, crayfish extract important socio-ecological 
information from chemical stimuli in urine of conspecifics 
(Zulandt-Schneider et al. 2001; Breithaupt and Eger 2002; 
Bergman and Moore 2005a, b).

Crayfish urine is important during agonistic behavior 
while fighting over available resources (Wofford et al. 2015). 
Dominant crayfish are known to urinate more than subordi-
nate opponents during fights (Bergman et al. 2005). When 
Orconectes rusticus is exposed to urine stimuli from a domi-
nant conspecific prior to fighting, the crayfish will reduce 
aggression during the fight. When O. rusticus is exposed to 
urine stimuli from a subordinate conspecific prior to fight-
ing, the crayfish will increase aggression during the fight 

Abstract  Crayfish extract information from chemical 
stimuli during social interactions. Commercial fertilizers 
increase background ammonia concentrations which may 
interfere with chemical communication. Background pol-
lution can disrupt perception of chemical stimuli in three 
ways: masking, sensory impairment, physiological impair-
ment or in combination. We investigated whether exposure 
to ammonia alters agonistic behavior. Crayfish pairs exposed 
to 0.9 mg/L ammonia fought for a longer duration, while 
crayfish exposed to 9.0 mg/L ammonia fought for a shorter 
duration. Altering activity patterns of crayfish may alter 
crayfish populations leading to a nonproportional impact 
because of their importance to the structure and function of 
aquatic ecosystems.
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Due to the limited nature of light (visual stimuli) in aquatic 
habitats, ecological behaviors such as foraging (Weissburg 
and Zimmer-Faust 1994), locating mates or conspecifics 
(Hazlett 1985; Endler 1987; Aquiloni et al. 2012), and avoid-
ing predation (Gelowitz et al. 1993) are highly mediated 
through chemical stimuli (Moore and Crimaldi 2004; Wolf 
et al. 2009). Chemical stimuli contain information evoking 
behavioral responses (Jurcak and Moore 2014) which have 
evolved in habitats free of interference with chemoreception 

 *	 Paul A. Moore 
	 pmoore@bgsu.edu

1	 Laboratory for Sensory Ecology, Department of Biological 
Sciences, Bowling Green State University, Bowling Green, 
OH 43403, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00128-017-2190-7&domain=pdf


190	 Bull Environ Contam Toxicol (2018) 100:189–194

1 3

(Bergman and Moore 2005b). Urine release by O. rusticus 
during agonistic battles correlates with decreased time and 
intensity of subsequent fights with the same conspecific 
(Zulandt-Schneider et al. 2001). Thus, urine appears to 
play a role in the assessment strategy used by individuals 
when deciding to prolong an agonistic interaction (Wof-
ford et al. 2015). The decision to prolong a fight can hinder 
subsequent behaviors (i.e. —mating, foraging) because of 
energy expenditure, damage to appendages, or other costs 
outweighing the acquisition of a resource. Therefore, per-
ception of information from conspecifics is important and 
could be altered in the presence of background ammonia. 
The natural habitat of O. rusticus for this study in the Por-
tage River, Ohio, USA, fluctuates in ammonia levels from 
1.9 × 10 −5 M NH3 to 5.3 × 10 −5 M NH3 (0.323 mg/L NH3 
to 0.901 mg/L NH3) following peak fertilizing times (Ohio 
Environmental Protection Agency, OEPA 2010). We hypoth-
esized an elevated ammonia exposure prior to, and during 
agonistic fights would result in escalated aggression and 
reduced fight duration when compared to low or no ammo-
nia exposure.

Materials and Methods

Sixty male, form I O. rusticus were collected from the 
Portage River, Bowling Green, Ohio, USA. Crayfish 
were grouped into small (carapace: 2.4 ± 0.1 cm, chelae: 
1.9 ± 0.1 cm, weight: 5.7 ± 0.4 g; mean ± SEM) and large 
(carapace: 3.3 ± 0.1  cm, chelae: 3.0 ± 0.1  cm, weight: 
13.4 ± 0.8 g; mean ± SEM) sizes. Animals were placed in 
isolated containers in a flow—through holding tank with a 
constant temperature (23.1°C) one week before the experi-
ment to remove individual social information and hierarchy 
status from their natural habitat. Animals were retained in 
a light: dark cycle (12:12 h) and fed one rabbit pellet three 
times a week. Crayfish were paired by size - matching with 
one crayfish at least 30% larger than the opponent to predict 
a dominance hierarchy (Pavey and Fielder 1996). To identify 
individuals of the fighting pair, crayfish were uniquely iden-
tified (ID) by marking on the carapace with White—Out®.

Thirty fighting pairs were equally distributed (N = 10) 
amongst a control (dechlorinated tap water), ‘low’ (0.9 mg/L 
NH3), and ‘high’ (9.0 mg/L NH3) ammonia treatments. 
The low concentration of 0.9 mg/L NH3 was determined 
by ammonia runoff as reported for the Portage River (Ohio 
Environmental Protection Agency 2010). The high concen-
tration of 9.0 mg/L NH3 was chosen to test for an increased 
magnitude effect of ammonia on behavior. Both concentra-
tions are considered well below the reported 96-h LC50 con-
centration (300–1000 mg/L NH3) for freshwater Orconectes 
crayfish (Arthur et al. 1987). A stock solution of 90 mg/L 
NH3 was prepared using dechlorinated tap water (pH 7.8, 

dissolved oxygen = 8.32 mg/L, temperature = 23.1°C, hard-
ness = 250 mg/L) and liquid anhydrous ammonia (NH3, 
Sigma-Aldrich). Tanks were aerated to maintain a consistent 
dissolved oxygen (8.32 mg/L) level and maintained consist-
ent room temperature (23.1°C) throughout the experiment. 
Ammonia concentrations were verified using a Bausch 
and Lomb® Spectrophotometer (Spectronic 20) and Hach 
(Loveland, Colorado, USA) TNTplus®, kit TNT831, method 
10205. This method is an approved U.S. Environmental Pro-
tection Agency (USEPA 350.1 method) equivalent test. Test 
kits reported total ammonia and unionized ammonia was 
calculated from equilibrium constants as described in Emer-
son et al. (1975). Although ammonia resides in equilibrium 
with ammonium, calculations verified the order of magni-
tude difference, and the ecologically relevant concentration 
of ammonia used in treatments. Exposure lasted 8 days. Con-
centrations were monitored every 12 h and reset on days 
three, five, and seven for consistent exposure.

After the isolation week, O. rusticus pairs were placed in 
ten—gallon tanks split into two equal sections with a remov-
able opaque divider for the exposure and behavioral assay 
trials. An opaque divider prevented visual and chemical 
signaling between the two crayfish. O. rusticus were intro-
duced to each tank for an acclimation period of ten minutes. 
After 10 min, the opaque divider was removed and a behav-
ioral assay was conducted. The agonistic behavioral assay 
began when the opaque divider was removed and crayfish 
were within one body lengths apart. The assay was consid-
ered complete after a winner was assigned by one crayfish 
retreating or tail flipping from the interaction and crayfish 
were one body length apart for at least 10 s (Fero 2007). All 
behavioral interactions were video—recorded from above 
with a Panasonic HDC—HS700K 3MOS Hybrid Full HD 
1920 × 1080 60p Camcorder. The first agonistic encounter 
was used to assign behaviors through a pre—established 
ethogram (Moore 2007; Table 1).

Total fight duration, time to reach intensity levels, and 
time at various intensity levels from Table 1 were measured. 

Table 1   Agonistic ethogram used to determine levels of fight inten-
sity as adapted from Moore PA (2007)

Assigned 
number

Behavior

− 2 Tail flip away from the opponent
− 1 Back away slowly from the opponent
0 Ignore opponent with no response or threat display
1 Slowly approaching opponent, no threat display
2 Approach opponent with a meral spread
3 Boxes and pushes opponent open—clawed
4 Grasps opponent with claws and dances
5 Unrestrained fighting and tearing of appendages
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Total fight duration was defined as the time from fight initia-
tion (approaching opponent) to when a winner was assigned. 
Not all agonistic battles included escalated behaviors 
(greater than two on the ethogram), therefore we decided 
to analyze early stages of agonistic interactions (intensity 
levels 1 and 2. Time to reach intensity levels were defined 
as the total time from beginning of the behavioral assay 
to the first-time crayfish exhibited the respective intensity 
level behavior (Table 1). Time spent at intensity levels were 
defined as the total amount of time crayfish were at a respec-
tive intensity level behavior (Table 1). After the first behav-
ioral assay, the opaque divider was replaced and crayfish 
were again isolated in the arena. Data were collected for 
separate agonistic interactions on the eighth day of expo-
sure. Behavioral fights on the eighth day did not include an 
acclimation period as individuals were already in the behav-
ioral assay arenas. Linear mixed models (LMM) followed by 
analysis of deviance tables using Type II Wald Chi Square 
tests (Zuur et al. 2009) were used to determine the effect of 
exposure and time on fight durations, time to reach different 
intensities, and time spent at different intensities in the lme4 
package (Bates et al. 2015) in R statistical software (version 
3.3.0) (R Development Core Team 2016). Models were con-
structed using time (Day 1 and 8) and ammonia concentra-
tion (control, 0.9, and 9) as fixed effects and animal ID as a 
random effect to account for the repeated measures design. 
Differences of least squares means (‘difflsmeans’) from the 
lmerTest package (Kuznetsova et al. 2016) in R was used as 
a post hoc test for significant differences of the main effects.

Results and Discussion

We observed a significant interaction effect of treatment and 
exposure length on total fight duration (Fig. 1; X2 = 7.72, 
df = 2, p = 0.021). On day 1 crayfish in the low exposure 
fought for a significantly shorter duration compared to the 
control and high treatment. On day eight, crayfish in the low 
exposure fought for a significantly longer duration compared 
to the high exposure treatment but no difference compared 
to control crayfish (Fig. 1). Additionally, crayfish in the high 
exposure treatment fought for a significantly longer duration 
on day one than on day eight. Lastly, no statistically sig-
nificant difference was observed in fight duration of control 
crayfish between day one and day eight (p > 0.05).

Exposure length exhibited a marginal effect on the 
aggressive escalation of agonistic interactions, measured 
as the length of time to reach intensity level one (Fig. 2a; 
X2 = 3.65, df = 2, p = 0.16). Crayfish pairs in the low treat-
ment took longer to reach intensity level one on day one than 
the control pairs on day eight. No difference in the length 
of time to reach intensity level two was observed (Fig. 2b, 
p > 0.05).

We observed a significant effect of exposure length on the 
intensity of agonistic interactions, measured as the amount 
of time spent at intensity level 2 (meral spread threat dis-
play). Crayfish pairs in the high treatment spent significantly 
more time at intensity level 2 on day one than on day eight. 
(Fig. 2d; X2 = 4.38, df = 1, p = 0.036). No interaction effect 
of treatment and exposure length was observed for time 
spent at intensity level 2. A marginal effect of treatment was 
observed for time spent at intensity level 1 (slowly approach-
ing opponent) (Fig. 2c; X2 = 3.65, df = 2, p = 0.161). O. rusti-
cus in the low exposure exhibited more time at intensity level 
one on day eight than on day one. No statistically significant 
effect of exposure length (X2 = 1.13, df = 1, p = 0.288), or 
the interaction (X2 = 2.98, df = 2, p = 0.225) was observed 
for time at intensity level 1 (Fig. 2).

These results suggest that crayfish fighting behavior is 
altered in the background presence of sublethal ammonia 
concentrations. After eight days of exposure to 0.9 and 
9.0 mg/L levels of ammonia, duration of fights between 
crayfish pairs increased and decreased, respectively (Fig. 1). 
Crayfish pairs exposed to 0.9 mg/L concentration of ammo-
nia exhibited longer time to escalate the agonistic inter-
action. Crayfish pairs exposed to 9.0 mg/L of ammonia 
exhibited meral spread threat displays to their opponent 

Fig. 1   Duration (s ± SE) of agonistic interactions on day one and day 
eight of ammonia exposure
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for a longer duration on day one than on day eight (Fig. 2). 
Background presence of chemicals in the environment 
could affect a crayfish’s ability to extract ecologically rel-
evant information from chemical stimuli in conspecific 
urine through masking, chemosensory impairment, and/
or interruption of physiological processing in the organism 
(Sutterlin 1974). All three mechanisms are playing a role 
and we cannot definitively argue for the independent degree 
of impact each mechanism has in our study. Mechanisms 
would require further study to parse out the role each plays 
during agonistic interactions. Our results from exposure to 
0.9 mg/L of ammonia could be explained by acute chem-
osensory impairment.

Chemosensory impairment is a result of temporary dam-
age to the external chemoreceptors as the animal is exposed 
to external chemicals. The transmittance of chemical infor-
mation via urine signals is used during assessment stages 
of fights and with this information absent, fight duration 
should increase (Zulandt-Schneider et al. 2001; Wofford 
et al. 2015). If our results indicate chemosensory impair-
ment such that information contained in chemical signals is 
missing, we would expect agonistic fight duration to increase 
over the 8 days. The fight duration of the 0.9 mg/L ammo-
nia treatment for day one was significantly shorter than the 
fight duration of the control group. However, at day eight, 
there was no significant difference between the low ammonia 
treatment and the control group (Fig. 1). Average fight dura-
tion increased from day one to day eight while no difference 
was observed for crayfish in the control group. O. rusticus in 
the 0.9 mg/L exposure treatment also spent more time at a 
lower intensity level on day eight than on day one, indicating 

prolonged time at a reduced intensity of slowly approaching 
the opponent. These results together support a hypothesis of 
reduced chemical transmittance of social information during 
early stages of an agonistic battle. Results from the 9.0 mg/L 
ammonia treatment could be explained by physiological dis-
ruption of internal information processing.

If the 9.0 mg/L ammonia treatment led to slight internal 
physiological changes (Harris et al. 2001), we would expect 
crayfish to reduce agonistic behavior. Internal processing of 
information is lost or hindered from the breakdown of neu-
rological function. Fighting pairs of the 9.0 mg/L ammonia 
treatment showed reduced aggression and total fighting dura-
tion on day eight compared to day one (Figs. 1, 2). O. rusti-
cus in the 9.0 mg/L treatment exhibited longer time at using 
threat displays on day one than day eight prior to engaging 
in a fight, indicating a potential reluctance or reduced ability 
to fully engage in an agonistic battle. While masking also 
reduces the ability to acquire social information, our results 
do not solely support the mechanism of masking.

We cannot rule out masking as an impairment mecha-
nism, however our results do not suggest masking as the 
main mechanism underlying observed behavioral differ-
ences. Each crayfish had an acclimation time before the 
first behavioral assay. The agnostic/antagonistic binding 
of molecules to sensory receptor sites during acclimation 
would result in extended fight duration because of reduced 
chemosensory information during agonistic fights. In addi-
tion, prolonged exposure to social odors has been shown to 
increase fighting times (Bergman et al. 2005). Therefore, if 
masking were the sole mechanism, fight durations would 
be significantly longer in both treatments than the control 

Fig. 2   Duration (seconds ± SE) 
of time to reach (a, top left) 
intensity level 1, and (b, bottom 
left) intensity level 2. Duration 
(seconds ± SE) of time spent at 
(c, top right) intensity level 1 
and (d, bottom right) intensity 
level 2
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on day one and day eight. This was not observed (Fig. 1). 
Alteration in the daily behavior of O. rusticus from reduced 
ability to obtain ecological information from either mecha-
nism can have cascading environmental impacts. It is pos-
sible that these effects could be short term if the crayfish’s 
physiology acclimates or desensitizes to the presence of 
increases ammonia concentrations.

Two exceptionally important behaviors mediated by 
chemical stimuli for O. rusticus are foraging and mating. 
Crayfish utilize chemical cues to orient and locate food 
but foraging ability is reduced when chemosensory ability 
is inhibited by atrazine and copper (Belanger et al. 2016; 
Lahman and Moore 2015). Urine signals from female cray-
fish are used to communicate mating receptivity and when 
female urine signals are blocked male courtship behavior is 
prevented (Berry and Breithaupt 2010). While in reproduc-
tive status, male O. rusticus use major chelae to discriminate 
female odors and reduced ability to detect these odors could 
alter crayfish population dynamics (Belanger and Moore 
2006). O. rusticus rely heavily on chemical stimuli com-
posed of ammonia for social behaviors. Our study adds to 
knowledge of anthropogenic related impacts to organisms.
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