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Abstract
Drill core samples from the Profitis Ilias Pb-Zn-Cu-Ag-Au vein mineralization on Milos Island, Greece provide new insights 
into (i) the metal sources, (ii) the primary vertical metal(loid) distribution, and (iii) the supergene enrichment processes in 
a transitional shallow-marine to subaerial hydrothermal environment. Metal contents of unaltered and altered host rocks 
combined with Pb isotope analyses of hydrothermal sulfides suggest that most metal(loid)s were derived by leaching of 
basement rocks, whereas the distinct enrichment of Te is related to the addition of Te by a magmatic fluid. The trace element 
contents of base metal sulfides record decreasing Au, Te, Se, and Co, but increasing Ag, Sb, and Tl concentrations with 
increasing elevation that can be related to progressive cooling and fluid boiling during the hypogene stage. The formation 
of base metal veins with porous pyrite hosting hessite inclusions at ~ 400 m below the surface was triggered by vigorous 
fluid boiling. By contrast, the enrichment of native Au associated with oxidized Fe and Cu phases in the shallower part of 
the hydrothermal system resulted from supergene remobilization of trace Au by oxidizing meteoric water after tectonic 
exhumation to subaerial levels. Disseminated pyrite with higher Tl/Pb ratios and locally elevated Hg concentrations relative 
to vein pyrite reflects infiltration of the host rocks by boiled liquids and condensed vapor fluids. The vertical and temporal 
evolution of the Profitis Ilias mineralization, therefore, provides unique insights into the transport and precipitation of Au, 
Ag, Te, and related metal(loid)s by multiple fluid processes.
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Introduction

Magmatic-hydrothermal systems in subduction zone envi-
ronments are important contributors to the world’s Cu, Au, 
Pb, Zn, Ag, and Mo supply (Hedenquist and Lowenstern 
1994). In addition, arc-related epithermal and volcanogenic 
massive sulfide deposits in the shallow crust and associ-
ated hybrid mineralization-styles exhibit significant enrich-
ments of metals and metalloids (summarized as metal(loid)
s) with a volatile affinity, such as As, Sb, Tl, Te, Bi, Hg, 
and Se (Saunders and Brueseke 2012; Goldfarb et al. 2016). 
Yet, our understanding of the behavior of these elements in 
hydrothermal solutions remains incomplete, as the processes 
controlling their enrichment are complex.

The formation of local metal(loid) enrichments in hydro-
thermal systems results from an interplay of the fluid and 
metal sources combined with suitable conditions for the 
transport and deposition of these elements (Hemley and Hunt 
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1992; Hedenquist and Lowenstern 1994). Yet, metal sources 
are often difficult to define and the contribution of magmatic 
fluids to the metal budget of hydrothermal systems associated 
with volcanic rocks is a key issue in subduction-related sys-
tems (Richards 2011; Keith et al. 2018a; Martin et al. 2020; 
Falkenberg et al. 2022). Combined trace element and isotope 
analyses (e.g., Pb and S) of hydrothermal precipitates provide 
further insights into the metal sources and fluid processes that 
control the enrichment of key elements in mineral deposits 
(Berkenbosch et al. 2019; Wind et al. 2020; Klose et al. 2021; 
Falkenberg et al. 2021; Schaarschmidt et al. 2021a).

Starting with a metal-rich, hot fluid at depth, the transport 
of metal(loid)s during ascent is controlled by the physico-
chemical fluid properties including temperature, pressure, 
pH, salinity, oxygen fugacity (fO2), and sulfur fugacity (fS2). 
The evolving conditions during ascent of a fluid determine 
the speciation, and, thus, the solubility of the dissolved com-
ponents (Crerar et al. 1985; Hemley et al. 1992; Einaudi 
et al. 2003; Pokrovski et al. 2013). Numerical modeling, 
experimental data, and observations in natural systems have 
shown that changing fluid conditions resulting from mixing, 
boiling, or fluid-rock interaction trigger metal deposition 
in hydrothermal systems (Drummond and Ohmoto 1985; 
Cooke and McPhail 2001; Reed and Palandri 2006; Heinrich 
2007; Simmons et al. 2016). Therefore, trace element com-
position in hydrothermal sulfides is useful for characterizing 
conditions and processes during metal deposition (Frenzel 
et al. 2016; Keith et al. 2018b; Román et al. 2019; Steadman 
et al. 2021; Falkenberg et al. 2021). Sulfides from different 
hydrothermal sites, different depth, or different hydrothermal 
stages record distinct fluid processes through space and time 
during the formation of multistage or zoned mineralization 
(Román et al. 2019; Grant et al. 2020; Frenzel et al. 2021; 
Swinkels et al. 2021; Wang et al. 2022; Falkenberg et al. 
2022).

Drill core samples from the Profitis Ilias Pb-Zn-Cu-Ag-
Au mineralization in western Milos, Greece span a depth 
range of > 500 m, providing a vertical profile through a 
young (< 3 Ma) multi-stage epithermal system in a volcanic 
arc setting. Previous studies focused on the mineralogical 
and thermobarometric characterization of the system. These 
showed that boiling conditions during fluid ascent controlled 
the deposition of both base metals and native gold (Kilias 
et al. 2001; Naden et al. 2003; Alfieris et al. 2013). Here, 
we use a multi-analytical approach to investigate the metal 
budget, the metal sources, and the vertical distribution of 
metals within the mineralized rocks by examining the trace 
element and isotopic composition of both base metal sulfides 
and altered host rocks. This allows us to define the temporal 
and vertical fluid evolution, which can be linked to physico-
chemical changes during fluid cooling, boiling, and super-
gene overprint.

Geological setting of Milos Island and the Profitis 
Ilias Au prospect

Milos Island (Fig. 1) is located within the South Aegean Vol-
canic Arc (SAVA), where the African plate is subducting 
towards the north beneath the Aegean microplate in the east-
ern Mediterranean. The island largely consists of Pliocene to 
recent volcanic and volcaniclastic units (Fig. 1) that overly the 
metamorphic basement and some Neogene marine sediments 
(Fytikas et al. 1986). The metamorphic basement is dominated 
by Mesozoic greenschist- to blueschist-facies metasediments of 
the Cycladic Blueschist Unit (Liakopoulos et al. 1991; Grase-
mann et al. 2018). The volcanism shows a general evolution 
from submarine pyroclastic activity (3.3 to 2.13 Ma) and sub-
marine eruption of andesitic to rhyolitic lavas (2.13 to 1.48 Ma) 
to subaerial rhyolitic activity (1.48 Ma to present) (Stewart and 
McPhie 2006; Zhou et al. 2021). Hydrothermal activity led to 
the formation of several hybrid epithermal-VMS-style Pb-Zn-
Cu-Ag-Au vein mineralization across western Milos (Naden 
et al. 2005; Alfieris et al. 2013; Schaarschmidt et al. 2021a). 
Recent hydrothermal activity such as shallow-submarine venting 
of metal-rich fluids with temperatures up to 115 °C at Paleo-
chori Bay in the southeast of Milos Island (Valsami-Jones et al. 
2005) is located along NW–SE striking tectonically active gra-
ben structures (Fig. 1).

Profitis Ilias (Fig. 1) represents the highest elevation of the 
island (748 m) and displays vein mineralization, which was pros-
pected for Au during a drilling program in 1994. The Pb-Zn-
Cu-Ag-Au mineralization at Profitis Ilias has been estimated to 
contain five million tons of ore with 4.4 g/t Au and 43 g/t Ag and 
has been the subject of several studies (Kilias et al. 2001; Naden 
et al. 2005; Alfieris et al. 2013). Drill cores crosscut the dacitic-
rhyolitic cryptodome that forms the core of the volcanic center 
and is surrounded by the voluminous Profitis Ilias ignimbrite, 
which is a submarine pumice breccia (Fig. 2a). A recent study 
dated the Profitis Ilias cryptodome and the pumice breccia to 
2.75 and 2.62 Ma, respectively (Miles 2021). Two drill cores 
reached the contact to the underlying metamorphic basement at 
180 and 230 m (all elevations given in meters above sea level). 
In one of these drill cores (PD11), the basement is overlain by 
a ~ 10 m thick layer of Neogene sedimentary rocks and two 25 m 
thick tuff units (Fig. 2a) that are related to submarine explosive 
volcanic activity during the Late Pliocene. The different litho-
logical units of Profitis Ilias are intersected by complex, mostly 
N-S and NE-SW striking veins that host the Pb-Zn-Cu-Ag-Au 
mineralization (Kilias et al. 2001). The surface alteration of Prof-
itis Ilias consists of an argillic alteration assemblage compris-
ing illite ± kaolinite ± smectite ± sericite, while the epithermal 
veins are surrounded by adularia-sericite alteration (Alfieris 
et al. 2013).

Previous studies at Profitis Ilias revealed vertical trends in 
the mineralogy, the Au and Ag grades, and the fluid temperature 



1103Mineralium Deposita (2023) 58:1101–1122	

1 3

and salinity (Kilias et al. 2001; Naden et al. 2003). Fluid inclu-
sion thermometry indicates variable salinities of < 1 to 16 wt. % 
NaCl equivalent and decreasing minimum homogenization 
temperatures from ~ 250 °C to < 150 °C with increasing eleva-
tion (Fig. 2b; Kilias et al. 2001). Based on the homogeneous 
trapping of brines below 450 m and higher maximum homog-
enization temperatures above 450 m, Kilias et al. (2001) sug-
gested the presence of a liquid-dominated zone below 450 m 
and a vapor-dominated zone above 450 m, generated by exten-
sive boiling during fluid ascent (Fig. 2b). An upwards increas-
ing vapor/liquid ratio of the hydrothermal system is supported 
by decreasing δ18O values of quartz-hosted fluid inclusions 
(Fig. 2c; Naden et al. 2003). Gold and Ag concentrations in 
bulk ore samples show higher concentrations at shallow lev-
els > 500 m (Fig. 2c) with a recorded maximum of 57 μg/g Au 
and 1200 μg/g Ag at 621 m (Naden et al. 2003). The observed 
Au enrichment is related to native Au and electrum in samples 
above 430 m (Kilias et al. 2001; Alfieris et al. 2013).

Samples and methods

During this study more than 100 segments from a total 
of 13 drill cores from Profitis Ilias were investigated that 
cover a depth range between 140 and 680 m elevation 

(ESM2, Tables S1, S2). Based on depth, alteration, and 
mineralization, 24 polished thin sections and 13 polished 
thick sections were prepared (Fig. 2d). Furthermore, ten 
polished sections from the same drill cores used in a pre-
vious study (Alfieris et al. 2013) and two polished sec-
tions from surface samples near the summit were included. 
Polished sections were studied by optical microscopy and 
unknown phases were identified by scanning electron 
microscopy (SEM) using a Hitachi TM 4000 equipped 
with an Oxford Instruments energy dispersive spectrome-
ter (EDS) at the GeoZentrum Nordbayern, Friedrich-Alex-
ander-Universität Erlangen-Nürnberg. The measurements 
were performed with an acceleration voltage of 15 kV.

Whole rock analysis

Representative samples were washed in an ultrasonic bath, 
crushed, milled to 50 µm in an agate mill, and were then 
dried at 55 °C for 24 h. For x-ray diffraction (XRD) analysis 
the samples were dried a second time at 105 °C for 12 h. 
The XRD analyses of the rock powders were performed by 
a Siemens D5000 diffractometer at the GeoZentrum Nord-
bayern (ESM2, Table S3). Mineral abundances (> 1 wt. %) 
were calculated using the Rietveld-algorithm with the Soft-
ware Profex (Doebelin and Kleeberg 2015). The results are 
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semiquantitative since amorphous materials could not be 
quantified.

Whole rock samples with abundant sulfides were ana-
lyzed for major and trace elements at Activation Laborato-
ries (Ontario, Canada) (ESM2, Table S4). The sample pow-
der was fused using lithium meta- or tetraborate, followed 
by melting and then digestion of the molten sample in a 
nitric acid solution. Major element oxides and selected trace 
elements were analyzed using inductively-coupled plasma 
optical emission spectrometry (ICP-OES). Additional trace 
element analyses were performed by fusion inductively-cou-
pled plasma mass spectrometry (ICP-MS). The measure-
ments were calibrated and checked for quality by 14 certified 
USGS reference materials (ESM2, Table S5).

Sulfide-free whole-rock samples were analyzed for major 
element concentrations using a Spectro XEPOS He X-ray 
fluorescence (XRF) spectrometer, while trace element analy-
ses were performed by a Thermo-Fisher Scientific X-Series 
2 quadrupole ICP-MS at the GeoZentrum Nordbayern 
(ESM2, Table S4). For XRF analyses sample powders were 
processed to fused glass beads. Accuracy was monitored by 
measurements of the whole rock reference materials BE-N 
and GA (Govindaraju 1994); these results agreed with the 

assigned values to better than 7% for all major element 
oxides except for P2O5 (32%) (ESM2, Table S5). For ICP-
MS trace element analyses sample powders were digested 
in HNO3 and HF and processed following the method 
described in Schaarschmidt et al. (2021b). Accuracy was 
better than 13% for all reported trace elements, except for Sn 
which had a bias of 21%. The long-term reproducibility of 
the whole rock reference material BHVO-2 was better than 
20% (2 s), except for Cs (40%). The elements Te, Re, and Au 
were measured on the same sample solutions following the 
other trace elements, as described in Regelous et al. (2020). 
Typical precision for Te, Re, and Au was between 1 and 5%, 
and reproducibility as determined by repeated analysis of a 
10 pg/g standard solution was better than 7%.

Major and trace element analysis of sulfides

Twelve thick sections were investigated by electron micro-
probe analysis (EPMA) for the major and minor element 
composition of sulfides and other metal-bearing phases 
(e.g., tellurides) using a JEOL JXA-8200 Superprobe at the 
GeoZentrum Nordbayern. Spot analyses of mineral cores 
and rims were performed. The elements S, Fe, Pb, Zn, 
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Cu, Sb, As, Cd, Ag, Au, and Te were determined (ESM2, 
Table S6). All analyses were performed with a focused beam 
using an acceleration voltage of 20 kV and a beam current 
of 20 nA. The detection limits during EPMA were below 
0.03 wt. % for all elements. Only major element concentra-
tions > 0.1 wt. % were considered for the data interpretation; 
for trace element concentrations < 0.1 wt. % LA-ICP-MS 
data were used.

Fourteen sections from different elevations were analyzed 
for their trace element compositions in pyrite, sphalerite, 
galena, and chalcopyrite using laser ablation (LA-)ICP-MS 
at the GeoZentrum Nordbayern (ESM2, Table S7). More 
than 300 spot analysis of mineral cores and rims were per-
formed. An Analyte Excite 193 nm laser from Teledyne 
Photon Machines coupled with an Agilent 7500c ICP-MS 
operated with a plasma power of 1280 W. Helium (0.9 l/min) 
and argon (0.94 l/min) were used as carrier gases. Argon 
(14.9 l/min) was used as both the plasma gas and auxiliary 
gas (0.9 l/min). The external calibration of Mn, Fe, Co, Ni, 
Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, In, Sn, Sb, Te, Hg, 
Tl, Pb, and Bi was performed by the MASS-1 polymetal 
sulfide reference material (USGS). Gold was calibrated by 
the Po724 B2 SRM sulfide reference material (Memorial 
University, Newfoundland). A single spot ablation geom-
etry with a 15 Hz repetition rate and a fluence of 3.06 J/
cm2 were used for the measurements at a beam diameter of 
10 to 35 µm depending on the size of the analyzed grain. 
Background measurements of ~ 20 s were performed prior 
to ~ 22 s of sample ablation. The analytical uncertainty was 
monitored by the repeated analysis of the reference materi-
als, which yielded 1 s repeatabilities between 5 and 12% for 
all elements (ESM2, Table S8). Additionally, reproducibility 
and accuracy were monitored by the repeated analyses of 
the UQAC-FeS-1 sulfide reference material (University of 
Quebec) (ESM2, Table S8). Elemental interference of 115In 
with 115Sn was corrected by the natural abundances for 115In 
concentrations > 0.1 ng/g. Element concentrations, analytical 
uncertainties (1 sigma error), and minimum detection limits 
were calculated using GLITTER (Version 4.4.4, Macquarie 
Research Ltd., Sydney, Australia) (ESM2, Table S9). The 
minimum detection limits were 4 µg/g for Fe, 1 µg/g for Zn, 
between 1 and 0.01 µg/g for Mn, Ni, Cu, Ge, As, Se, Mo, 
Cd, Sn, Sb, Te, Hg and < 0.01 µg/g for Co, Ga, Ag, In, Au, 
Tl, Pb, and Bi.

Pb and S isotope analysis of sulfides

Five samples between 245 and 270 m elevation were chosen 
for lead isotope ratio analysis due to the large grain size 
and dominant occurrence of sphalerite in this interval that 
allows for simple mineral separation. Pure sphalerite grains 
were handpicked and analyzed following Schaarschmidt 
et al. (2021a). Lead isotope analyses were performed by 

a Thermo-Fisher Neptune multi-collector (MC) ICP-MS 
at the GeoZentrum Nordbayern, using a 207Pb/204Pb dou-
ble spike to correct for instrumental mass fractionation. 
The internal uncertainty was less than 0.0003, 0.0003, and 
0.0007 (2 s) for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb. 
Repeated measurements of the NBS981 Pb isotope standard 
yielded 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of 
16.9413 ± 0.0012, 15.4985 ± 0.0008, and 36.7209 ± 0.0024 
(2 s, n = 4), respectively. All Pb data were normalized to 
values of 16.9410, 15.4993, and 36.7244 for the NBS981 
Pb isotope reference material.

The in-situ δ34S composition of selected spots (n = 50) in 
pyrite at ~ 10 µm spatial resolution were performed by sec-
ondary ion mass spectrometry (SIMS) at the GeoForschun-
gsZentrum (GFZ) in Potsdam (ESM2, Table S10). Three 
polished sections from different elevations were gold-coated 
and analyzed using a Cameca 1280-HR SIMS instrument. 
The 34S/32S repeatability on the Balmat pyrite reference 
material was ± 0.1‰ (1 rsd) or better on all three days of 
data acquisition, corresponding to an uncertainty of the 
δ34S values of ± 0.1‰ (1 s). The SIMS results were cali-
brated against a reference value of δ34S = 15.1 for the Balmat 
pyrite (Crowe and Vaughan 1996). Further analytical details 
are presented in Schaarschmidt et al. (2021a). After SIMS 
analysis, the same spots were analyzed for their trace ele-
ment composition by LA-ICP-MS following the procedure 
described above (ESM2, Table S7).

Results

Host rock mineralogy and geochemistry

The investigated host rock samples cover levels cut by cores 
between 141 and 670 m elevation and include samples of the 
Profitis Ilias ignimbrite, the dacitic lavas, the tuff units, and 
the basement schists (Fig. 2d). The volcanic host rocks show 
a porphyritic texture dominated by a microcrystalline to 
medium grained quartz-K-feldspar-sericite matrix with grain 
sizes generally between 5 and 50 µm (Fig. 3). The matrix of 
some shallow samples (> 500 m) also contains fine grained 
kaolinite or illite. The volcanic rocks contain euhedral tabu-
lar K-feldspar (Fig. 3a), which is partly altered to sericite 
(Fig. 3b-d). Some samples also contain sericitized plagio-
clase phenocrysts, anhedral quartz (Fig. 3c), and tabular 
chlorite crystals (Fig. 3b). Some samples contain reworked 
basement xenoliths (Fig. 3a) and volcanic rock fragments 
from deeper stratigraphic levels (Fig. 3b). The least altered 
samples are from the uppermost part of core PD12, where 
the matrix contains relict volcanic glass (Fig. 2a; Fig. 3a).

XRD analyses of ignimbrite, dacitic lavas, and tuff indi-
cate mineral contents of ~ 30–50 wt.  % quartz, ~ 30–60 
wt. % adularia, and 0–12 wt. % sericite (ESM1, Fig. S1). 



1106	 Mineralium Deposita (2023) 58:1101–1122

1 3

Furthermore, some of the rocks contain up to 20 wt. % 
albite, 5 wt. % anorthite, 14 wt. % chlorite, 9 wt. % dickite, 
11 wt. % illite, and 2 wt. % pyrite. About half of the ana-
lyzed rocks, especially the dacitic samples, have > 2 wt. % 
loss on ignition values, indicating the presence of significant 
amounts of hydrate and carbonate alteration phases. There is 
no systematic variation of the host rock mineralogy or geo-
chemistry with elevation (ESM1, Fig. S1; ESM2, Tables S3, 
S4). The Profitis Ilias ignimbrite shows higher SiO2 con-
tents, lower MgO and Fe2O3 contents, and a larger variation 
of trace element compositions compared to the dacitic lava 
(Fig. 4a). The incompatible element composition of the vol-
canic host rocks (Fig. 4a) is enriched in Ba, K, and Pb, and is 
depleted in Cs, Nb, Ta, Sr, and P relative to upper continen-
tal crust (UCC; Taylor and McLennan 1985). The Profitis 
Ilias ignimbrite is enriched in Zn, Cd, Cu, As, Au, Ag, Sb, 
Te, and Pb, and depleted in Sn, Fe, Ni, and Co compared to 
UCC (Fig. 4b). The dacitic lavas are characterized by high 
concentrations in Zn, Cd, Te, Pb, and Tl.

The basement rocks consist of quartz (35 wt. %), albite 
(44 wt. %), muscovite (17 wt. %), and minor chlorite and 
pyrite. They show multiple cleavages, which are shaped 
by elongated muscovite grains and anhedral albite grains. 
Pyrite grains are anhedral to euhedral and lack deformation 
textures. The basement rocks show incompatible element 
characteristics similar to the volcanic rocks, but they have 
lower large ion lithophile element (LILE) contents and lack 
a positive Pb anomaly (Fig. 4a).

Vein mineralogy and geochemistry

At all elevations the altered host rocks at Profitis Ilias are cut 
by mm- to meter-thick veins. The mineralogy of the veins 
varies with the elevation. Four different epithermal vein 
types have been identified at Profitis Ilias: Silica-dominated 
(S-type) veins, silica-dominated oxide-bearing (So-type) 
veins, and two types of sulfide-bearing epithermal (Em- and 
Eq-type) veins (Table 1). The S- and E-type veins mutually 
crosscut each other (e.g., Fig. 5d).

The S-type veins consist mainly of quartz (> 90 vol. %), 
chalcedony, adularia, minor barite, small amounts of pyrite 
(< 5 vol. %) and other sulfides, such as galena and sphalerite 
(< 1 vol. %) (Figs. 3a and 5a). The grain size of euhedral, 
prismatic quartz crystals varies between 20 µm and several 
mm and often increases from the vein margin to the center. 
The S-type veins occur at all elevations, but are more abun-
dant and thicker at higher elevations (> 600 m). Some S-type 
veins have brownish alteration halos.

A sub-group of silica-dominated veins has associated 
oxides (> 5 vol. %), barite, and minor pyrite (So-type veins; 
Figs. 3d and 5b). These contain goethite, hematite, anatase, 
Mn-, and Pb-oxides, as well as metal sulfates or carbon-
ates, such as jarosite and malachite. Large barite crystals 
occur in the center of this vein-type and oxides form crusts 
that surround euhedral quartz and barite (Figs. 3d and 5b). 
This oxide-bearing assemblage occurs in veins, fractures, 
and cavities of the altered host rock at 10 to 100 m beneath 

Fig. 3   Microphotographs of 
altered host rock at Profitis 
Ilias. Transmitted light, plane 
polarized. (a) Ignimbrite 
enclosing a metamorphic xeno-
lith and crosscut by a quartz 
vein (S-type). The K-feldspar 
crystals are surrounded by a 
fine-grained matrix (PD12-14.6, 
504 m elevation). (b) Altered 
dacite with sericitized K-feld-
spar, quartz, chlorite crystals, 
and volcanic enclaves (PD12-
334.5, 255 m elevation). (c) 
Altered ignimbrite crosscut by 
a quartz-sulfide vein (Eq-type) 
(PD09-228.8, 479 m elevation). 
(d) Altered ignimbrite with 
vugs filled by quartz, barite, and 
Fe oxides or sulfates forming 
irregular overgrowth (PD05-91, 
642 m elevation). brt = barite, 
cct = chalcocite, chl = chlorite, 
ccp = chalcopyrite, kfs = K-feld-
spar, qz = quartz, ser = sericite
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the surface (Table 1). The bulk rock geochemistry of two 
silica-dominated veins reveals SiO2 contents > 90 wt. % 
and depleted incompatible trace element contents com-
pared to the UCC (Fig. 4a). By contrast, one S-type vein at 
an elevation of 640 m shows strong enrichment of Au, Ag, 
and Sb together with low base metal and Te concentrations 
(Fig. 4b). This is in accordance with the occurrence of native 
Au or electrum (and Sb) in quartz veins as described by 
Kilias et al. (2001).

The Em-type veins include all veins that contain > 50 
vol. % sulfides (mainly pyrite, sphalerite, chalcopyrite, and 
galena) and < 50 vol. % gangue minerals (Fig. 5c, d), whereas 
the Eq-type veins contain 5–50 vol. % sulfides (Fig. 3c). Sub-
hedral to euhedral quartz is the main gangue phase in both the 

Em- and Eq-type veins. The Em-type veins range in thickness 
from 100 µm to several cm, they lack alteration halos, and 
have sharp boundaries to the host rock (Fig. 5d). The Eq-type 
veins merge with Em-type or S-type veins (Fig. 5d) and have 
the same textural features as the Em-type veins, but are gener-
ally thinner (< 5 mm). The Em-type veins occur only at eleva-
tions between 178 and 270 m where they are hosted by the 
altered dacite-rhyolite drilled in PD12. The main sulfides in 
both the Em- and Eq-type veins are pyrite, sphalerite, galena, 
and chalcopyrite in different proportions (Table 1; Fig. 6). 
Minor minerals include covellite, chalcocite-digenite, bornite, 
greenockite, tetrahedrite-tennantite, along with Ag(-Au)-tel-
lurides. Alfieris et al. (2013) and Kilias et al. (2001) recorded 
native Au and electrum occurring as inclusions in base metal 
sulfides and in quartz.

Sulfide petrography

Pyrite is the most abundant sulfide mineral at the Profitis 
Ilias, and ubiquitous at all elevations. Four different pyrite 
types were identified according to textural differences and 
their relative occurrences in the mineral assemblage (Fig. 6). 
Pyrite 0 (py0) is disseminated in the altered host rock at 
all elevations (Fig. 7d). Inclusions and cavities are rare and 
the grain size of the subhedral to euhedral pyrites varies 
between 10 and 100 µm. The Em- and Eq-type veins both 
contain two types of pyrite (py1 and py2) that are associated 
with chalcopyrite, sphalerite, and galena (Fig. 7). Euhedral 
to subhedral pyrite 1 (py1) has a round, cubic, or hexagonal 
shape and varies in grain size from 20 to 1000 µm. Pyrite 
1 also has a porous texture and commonly hosts inclusions 
of chalcopyrite, galena, sphalerite, and hessite (Fig. 7g-i). 
Pyrite 1 occurs along the margins of the Em- and Eq-type 
veins or as isolated grains in close proximity. Cracks com-
monly intersect py1 that are sealed by chalcopyrite, sphal-
erite, and covellite (Fig. 7l). Anhedral to euhedral pyrite 2 
(py2) has a grain size of 20 to 400 µm, and is less porous and 
hosts fewer inclusions than py1 (Fig. 7g, k). Pyrite 3 (py3) 
is associated with quartz, barite, and oxides in the So-type 
veins. It is anhedral and has a skeletal texture with grain 
sizes up to 500 µm (Fig. 7e).

Chalcopyrite exhibits a semi-massive texture and is typi-
cally associated with sphalerite, galena, and py1/2 (Fig. 7a-
c, g, j-l). Chalcopyrite is most abundant in the deepest seg-
ment (178 m; Fig. 7k, l), but rare at high elevations, where 
it is surrounded by successive bornite, chalcocite-digenite, 
covellite, and galena (Fig. 7b, c, g, j).

Sphalerite occurs as large anhedral grains and is the domi-
nant sulfide phase in the base metal zone between 178 and 
270 m elevation, with modal amounts of 20–75 vol. % in 
the Em-type veins (Table 1). It mostly occurs together with 
chalcopyrite, galena, py1/2, and bornite-chalcocite-covel-
lite (Fig. 7a, g, j-l). Sphalerite from the deepest part of the 
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Fig. 4   Incompatible (a) and chalcophile (b) element concentrations 
of the host rocks relative to the upper continental crust (UCC; Taylor 
and McLennan 1985; Te content from Wedepohl 1995). Ranges and 
median compositions of the different host rock lithologies are shown. 
(c) Median chalcophile element concentrations of sulfides relative to 
the UCC. The elements are ordered by their main host sulfide phase. 
sp = sphalerite, ccp = chalcopyrite, py = pyrite, gn = galena
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Table 1   Occurrence of vein types with mineralogy. The relative 
abundance of sulfide minerals is given with M = minor (1–5%), 
C = common (5–25%), A = abundant (25–50%), and D = domi-
nant (> 50%). Mineral abbreviations: adl = adularia, brt = barite, 

ccd = chalcedony, ccp = chalcopyrite, gn = galena, goe = goethite, 
gre = greenockite, hem = hematite, mlc = malachite, ox = oxide, 
py = pyrite, sp = sphalerite, tnt-ttr = tennantite-tetrahedrite. The Cu 
phase can include covellite, bornite, chalcocite and digenite

Sample elevation
(m)

vein
type

thickness
(cm)

gangue
minerals

oxide
minerals

py sp gn ccp Cu
phase

trace
(< 1%)

MI1817 721 Eq 4 ccd, qz A A
MI1818 681 S 2 qz C M
PD03-31,9 672 Eq 1.5 qz C A M M A tnt-ttr, gre
PD07-21,5 664 Eq 0.3 qz, adl, brt C
PD03-48 661 So 0.5 qz, brt
PD08-21,7 656 So 2 qz, brt
PD08-24 654 S 2 qz, ccd M
PD08-25 653 S 2 qz
PD05-91 642 So 1 qz, brt goe, hem M gre
PD06-8 640 So  > 5 brt, qz Fe ox
PD02-66 639 So 1 qz Fe, Ti ox
PD05-95 639 So 0.3 qz Fe ox M
PD06-18 633 So 10 qz, adl, brt, mlc Fe ox
PD06-21,5 630 So 0.5 qz, brt Fe ox
PD03-104,4 621 S 1 qz M
PD03-104,65 621 S 0.8 qz
PD04-48,5 611 Eq 0.3 qz M A M C C
PD03-118,8 611 So 0.8 qz, brt Fe ox
PD01-11,8 605 So 0.3 qz Fe, Mn, Ti ox M
PD09-68 593 So  > 3 qz, ccd Fe ox
PD09-72 590 So 0.5 qz, ccd, brt Fe ox
PD09-73 589 So 0.5 qz, ccd, brt Fe ox
PD10-132 513 So 1 qz Fe, Ti ox M
PD12-14 504 S 0.3 qz, mlc
PD12-15,5 503 So 0.5 qz, adl Fe ox
PD12-38 486 So 0.1 - Fe ox
PD09-228,8 479 Eq 0.7 qz C C C tel
PD09-229,3 479 S 0.3 qz M
PD11-156 420 So 10 adl, clay Fe ox M
PD11-317,2 306 S 0.5 qz D
PD12-315,3 270 Eq 0.5 qz M D C C M
PD12-315,3 270 Em 0.8 qz M D C C M
PD12-315,3 270 S 0.1 qz
PD12-317,5 268 Em  > 10 - C D C M M gre
PD12-318,5 268 Em  > 5 - C D M C M tnt-ttr, tel
PD12-319 267 Em 0.5 - C D C M A gre, tel
PD12-319 267 S 0.2 qz
PD12-320 266 Em 0.1 qz A M C A C tel
PD12-321 266 Em 0.1 qz C D C
PD12-321,25 265 Eq 0.3 qz A C A gre
PD12-322,5 264 Eq 0.2 qz C C A A
PD12-322,5 264 S 0.3 qz
PD12-322,85 264 Em 0.4 qz C
PD11-376,5 264 S 0.1 qz M
PD12-323,9 263 Em 0.8 - C A C M M
PD12-328,5 260 Eq 0.2 qz C A A M M

PD12-348 245 Em 0.5 qz C A A C M gre
PD12-433 178 Em  > 5 - C C M D M
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mineralization hosts chalcopyrite inclusions near the grain 
boundaries. The abundance of chalcopyrite inclusions in 
sphalerite decreases with increasing elevation, whereas the 
amount of bornite-chalcocite-covellite increases. In addition 
to chalcopyrite, inclusions of galena and minor tetrahedrite-
tennantite, pyrite, and greenockite were identified (Fig. 7a).

Galena is a common sulfide at all elevations; two textural 
types were distinguished. Anhedral, semi-massive galena 
1 (gn1) occurs together with sphalerite, chalcopyrite, and 
py1/2 (Fig. 7a, g, k) and it commonly hosts inclusions of 
chalcopyrite, pyrite, tetrahedrite-tennantite, and tellu-
rides. Galena 2 (gn2) forms small, euhedral grains and is 
associated with bornite, chalcocite-digenite, covellite, and 
greenockite along the grain boundaries of chalcopyrite and 
sphalerite (Fig. 7j).

Minor tellurides occur as inclusions in py1 (Fig. 7h), 
gn1, and sphalerite at 267 m elevation within the most 
massive sulfide mineralization (Fig. 5c), whereas they are 
rare or absent at all other elevations. EPMA analyses iden-
tified hessite (Ag2Te) as the main telluride phase (ESM2, 
Table S6) with rare petzite (Ag3AuTe2). High Au contents 
in the absence of Ag or Te were detected by EDS in micro-
inclusions hosted by goethite surrounding euhedral quartz 
in some shallow So-type veins (Fig. 7f).

Sulfide chemistry

A wide range in trace element contents was observed 
between different sulfides and their sub-types, while con-
tents also vary with elevation. The Au contents of pyrite, 
chalcopyrite, and galena overlap, but galena shows the high-
est median Au contents (Fig. 8a). Galena shows the highest 
contents of Ag, Te, Sb, Se, Tl, and Bi (Fig. 8b-e). Sphalerite 
is enriched in Ga, Ge, Mn, Sn, In, and Cd compared to the 
other sulfides (Fig. 8f), while chalcopyrite also has high In, 
Ge, and Sn, and the highest Mo concentrations. Pyrite is 
enriched in As, Co, and Ni compared to the other sulfides 
(Fig. 8g-h).

The gn2 associated with bornite-chalcocite-covellite 
was too fine grained for trace element analysis by LA-
ICP-MS. Galena 1 shows increasing Ag, Sb, and Tl, but 
decreasing Te, Au, Se, Ge, and Bi concentrations from 
deep to shallow levels (Figs. 9a-b, 10a-b). The composi-
tion of galena displays a positive correlation of Ag and 
Sb (R2 = 0.72) at a Sb/Ag mass ratio of ~ 1 (Fig. 10a). The 
Ag, Sb, and Au concentrations of galena from Profitis Ilias 
overlap with those from the other vein mineralizations in 
northwest Milos (Schaarschmidt et al. 2021a), whereas the 

Fig. 5   Photographs of mineralized samples from Profitis Ilias. (a) 
Several cm thick Eq-type vein with quartz, chalcedony, and sulfides 
(MI1817, surface sample). (b) So-type vein with altered host rock 
fragments overgrown by goethite, quartz, and pyrite (PD05-91, 642 m 
elevation). (c) Thick Em-type vein with massive sulfides and brecci-
ated host rock fragments (PD12-319, 267  m elevation). (d) Altered 
dacite crosscut by a sulfide (Em-type) vein that joins a quartz (S-type) 
vein (PD12-348, 245  m elevation). brt = barite, ccd = chalcedony, 
ccp = chalcopyrite, gn = galena, py = pyrite, qz = quartz, sp = sphalerite

py3
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Fig. 6   Paragenetic sequence of the Profitis Ilias mineralization 
adapted from Kilias et al. (2001). The line width represents the rela-
tive abundance of the minerals in the different stages of ore formation
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Te concentrations in galena from Profitis Ilias are signifi-
cantly higher (Fig. 10a-b). Sphalerite has variable Fe con-
tents between 0.1 and 1 wt. % Fe (corresponding to 0.2 to 
2 mol. % FeS) with a tendency toward lower Fe contents at 
higher elevations (Fig. 10d). Sphalerite shows increasing Ag 
and Sb concentrations, analogous to galena, and decreas-
ing Co and Te concentrations with elevation (Fig. 9c, d). 
Sphalerite at Profitis Ilias generally has similar trace element 
content ranges, but higher Mn/Fe ratios > 0.1 (Fig. 10d) and 

higher Co concentrations up to 30 μg/g in the deep stock-
work compared to the mineralizations of Kondaros-Vani 
and Triades on Milos Island (Fig. 10e; Schaarschmidt et al. 
2021a). Trace element contents in chalcopyrite from Profitis 
Ilias show little variation with elevation, except for occasion-
ally high As concentrations up to 2000 μg/g and lower Au/
As and Sb/As ratios at low elevations (Fig. 10c).

The pyrite compositions at different elevations mostly 
overlap, but pyrite from shallower levels tends to show 
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Fig. 7   Microphotographs of the sulfide mineralization at Profitis 
Ilias in the shallow (a-f) and deep (g-l) stockwork. Reflected light, 
except for two back-scattered electron (BSE) images (f, i). (a) Domi-
nant sphalerite enclosing galena and minor chalcopyrite and being 
partly transformed to greenockite (CdS). (b) Subhedral pyrite (py1) 
associated with chalcopyrite that is almost completely replaced by 
covellite. (c) Pyrite and chalcopyrite surrounded by chalcocite in 
a quartz vein. (d) Disseminated pyrite (py0) within the altered host 
rock around the veins. (e) Large anhedral pyrite (py3) associated with 
barite and Fe oxides. (f) Vein quartz overgrown by goethite with Au-
bearing microinclusions detected by SEM–EDX. (g) Typical sulfide 
assemblage at 267 m elevation consisting of porous and non-porous 
pyrite (py1 and py2), sphalerite, galena, and chalcopyrite surrounded 

by secondary Cu phases. Roundish holes are laser ablation craters. 
(h) Enlarged image of porous pyrite with inclusions of chalcopyrite 
and hessite. (i) BSE image of a zoned pyrite grain with a porous core 
(blue dashed line) and a non-porous overgrowth. The core has submi-
croscopic hessite inclusions. (j) Secondary transformation of chalco-
pyrite to bornite, covellite, digenite, and related fine grained galena 
(gn2). (k, l) Sulfide assemblage at 178  m elevation consisting of 
large porous pyrite (py1), followed by sphalerite, galena, non-porous 
pyrite (py2) and abundant chalcopyrite that is minorly replaced by 
covellite. bn = bornite, cct = chalcocite, ccp = chalcopyrite, cv = cov-
ellite, dg = digenite, gn = galena, hs = hessite, py = pyrite, qz = quartz, 
sp = sphalerite
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higher median Ag/Co (Fig. 9e) and Ag/Te ratios (Fig. 11a), 
as well as higher Tl concentrations (Fig.  11c). Some 
pyrite compositions reveal high Ag and Te concentra-
tions > 100 μg/g, likely indicative of a combined ablation 
of pyrite and submicroscopic telluride inclusions (Fig. 11a; 
mineral inclusions marked with bold border). The Ag/Te 
ratio of ~ 1.7 indicates that these inclusions are dominated 
by hessite, but the inclusions are also partly enriched in Pb 
and Au (Fig. 11b, c).

The different pyrite generations (py0, py1, py2, py3) 
exhibit distinct trace element compositions as a function of 
sampling elevation (Fig. 11). Pyrite 1 and 2, which are both 
associated with chalcopyrite, sphalerite, and galena, overlap 
in their trace element composition (Fig. 8), and are, thus, 
not distinguished in Fig. 11. For the deeper drill core sec-
tions (< 300 m), the disseminated pyrite (py0) overlaps with 
the trace element composition of py1/2 (Fig. 11). By con-
trast, py0, py1/2, and py3 from the shallower part (> 300 m) 
show trace element compositions that are best distinguished 
based on the Tl/Pb ratio (Fig. 11c). The Tl/Pb, Tl/Cu, and 
Sb/Pb ratios increase from py1/2 to py0 to py3 (Fig. 11c, 
d). Pyrite 0 also has higher Co/Ni ratios than py1/2, while 
py3 has very low Co, Ni, Se, Sn, and Ge concentrations 
below the minimum detection limit (< 0.5 μg/g; Fig. 11e). 
Disseminated py0 has elevated Hg concentrations of up to 
13 μg/g at 470 m elevation that correlate with increasing Tl/
Pb ratios (Fig. 11f). The As concentration of pyrite varies 
from < 1 μg/g to 1.3 wt. %, but does not vary systematically 
with elevation or between pyrite generations (Fig. 11b). 
The trace element composition of pyrite from Profitis Ilias 
largely overlaps with that from the other Milos hydrother-
mal mineralizations (Fig. 11), with the exception of a Te 

enrichment at Profitis Ilias (Fig. 11a) and a depletion in Tl 
and Sb in pyrite from the deeper sections (Fig. 11c).

Sulfide Pb and S isotopic composition

The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of sphalerite 
separates show a narrow range centered around 18.855, 15.688, 
and 39.001, respectively (Table 2; ESM1, Fig. S2). The Pb iso-
tope ratios of sphalerites from Profitis Ilias lie within the range 
of published sulfide data from Kondaros-Katsimouti and Triades 
in northwest Milos (Schaarschmidt et al. 2021a). The Profitis 
Ilias sphalerite has slightly lower 207Pb/204Pb values (15.6875 
to 15.6897 compared to > 15.6914 at Kondaros-Katsimouti-
Triades), but this difference is within the external uncertainty 
(± 0.003, ESM1, Fig. S2).

The δ34S values of pyrite range from -0.1 to 5.3‰ 
(Fig. 9f; ESM2, Table S7). The sulfur isotope analyses 
comprise different elevations and different pyrite types. 
The median δ34S values of each sample decreases with 
increasing elevation from 3.5‰ at 178 m to 2.4‰ at 681 m 
(Fig. 9f). The δ34S values of the different pyrite types (py0 
to py3) overlap and do not show any systematic trend.

Discussion

Metal(loid) budget of the Profitis Ilias 
mineralization

Metals in the Profitis Ilias mineralization are mostly con-
centrated in the sulfides in the Em- and Eq-type veins, but 
the altered volcanic host rocks also possess a significant 
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Fig. 8   Statistical trace element composition of pyrite (py0: n = 43, 
py2: n = 48, py1: n = 72, py3: n = 4), galena (n = 37), sphalerite 
(n = 59), and chalcopyrite (n = 54) (ESM2, Table S7). Analyses with 

evidence for micro-inclusions are excluded. Analyses that lay below 
the minimum detection limit are included at half the detection limit
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enrichment of Zn, Cd, Cu, As, Au, Ag, Sb, Te, and Pb 
relative to UCC (Fig.  4b). The similar chalcophile ele-
ment characteristics of the altered volcanic rocks and the 
sulfides (Fig. 4b, c) implies the presence of small sulfide 
veinlets and disseminated base metal sulfides. In order to 
quantify the element flux during hydrothermal alteration of 
the Profitis Ilias host rocks, the Ishikawa alteration index 
(AI) and the chlorite-carbonate-pyrite index (CCPI) were 
calculated (Ishikawa et al. 1976; Large et al. 2001). Both 
indices range between 60 and 98% for nearly all volcanic 
and volcaniclastic rocks; only two samples from high eleva-
tions (~ 500 m) have lower indices < 40% (weak to moder-
ate alteration; Fig. 12a). The least altered sample (PD12-
14.6) is located ~ 15 m beneath the surface and is most distal 
(> 200 m) to the central ore body. Dacite plots along the path 
of chlorite-pyrite alteration, whereas ignimbrite shows vari-
able degrees of chloritic and sericitic alteration (Fig. 12a) in 

accordance with petrographic observations. There is no trend 
of the alteration indices with elevation. However, the pres-
ence of chlorite-sericite alteration with minor clays at depth 
and argillic alteration at the surface (Alfieris et al. 2013) is 
consistent with upwards decreasing fluid temperatures and a 
high water–rock ratio (White and Hedenquist 1990).

The composition of altered rocks relative to their unal-
tered precursors can be used to quantify the element flux 
during host rock alteration (Ague 2003; Mathieu 2018). In 
lieu of unaltered Profitis Ilias ignimbrite sample for com-
parison, we use two alternative references as unaltered 
rock compositions, (i) a dacitic lava from Mavros Kavos 
(MI1819; ESM2, Table S4) located 3 km northwest of Prof-
itis Ilias (Fig. 1), and (ii) the least altered Profitis Ilias ign-
imbrite sample (PD12-14.6; Fig. 12a). The altered volcanic 
rocks from Profitis Ilias yield a general enrichment of Zn, 
As, Tl, Sn, and Pb and a weak depletion of Au, Ag, Cu, and 
Te relative to the least altered ignimbrite sample (Fig. 12b). 
However, the altered samples show a strong enrichment of 
Pb, Au, Ag, Cu, and Te relative to the unaltered Milos lava 
(Fig. 12b), which has only ~ 10 μg/g Pb and Cu and very 
low Ag, Au, and Te concentrations below the detection 
limit (< 0.08, < 0.002, < 0.001 μg/g, respectively; ESM2, 
Table S4). The metal concentrations of the least altered 
ignimbrite sample are, therefore, likely affected by some 
hydrothermal and/or supergene alteration and were initially 
lower, similar to the unaltered lavas. Trace element ratios of 
metals versus immobile elements such as Pb/Ti or Cu/Nb 
also show an increase by a factor of 30 to 70 from unaltered 
to altered rocks at relatively constant Ti and Nb concentra-
tions (ESM2, Table S4). Thus, the uniform enrichment of 
As, Sb, Tl, Pb, Au, Ag, Cu, and Te during the alteration 
process suggests that these elements were enriched in the 
hydrothermal fluid and in the host rocks during fluid-rock 
interaction relative to the precursors.

The metamorphic basement schists show a weaker, but 
similar enrichment of As, Au, Ag, Sb, and Te relative to the 
UCC, whereas Pb and Cu are rather depleted (Fig. 4b). The 
absence of evidence for a primary enrichment of these ele-
ments in metasedimentary schists suggests a hydrothermal 
alteration overprint, in accordance with secondary mineral 
assemblages in basement rocks in the Zephiria graben in east-
ern Milos (Liakopoulos et al. 1991). The basement rocks at 
Profitis Ilias contain relatively high amounts of Na2O (44% 
albite), low amounts of K2O (no adularia), and minor amounts 
of disseminated pyrite (ESM1, Fig. S1), indicating only minor 
hydrothermal alteration. We suggest that this is related to a 
lower permeability of the schists relative to the overlying 
volcaniclastic and volcanic rocks. We further conclude that 
diffuse and focused flow of hydrothermal fluids caused the 
deposition of base metal sulfides, resulting in the observed 
enrichment of Zn, Cu, Pb, As, Au, Ag, Te, and Sb in both the 
altered host rocks and the veins. This also implies, that the 
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metals concentrated in the veins were not mainly leached from 
the directly surrounding volcanic rocks; rather their source 
must be located below the deepest drill core section.

Metal and sulfur sources

The uniform Pb isotope ratios of galena and sphalerite from 
Profitis Ilias, Triades, and Kondaros-Katsimouti (Table 2; 
ESM1, Fig. S2; Schaarschmidt et al. 2021a) imply a uniform 
lead source for all hydrothermal systems over an area of > 30 
km2. Since the direction of hot fluid flow is upwards and the 
mineralization occurs near the contact to the basement meta-
morphic rocks, we expect that the metal enrichment of the 
fluid has been derived either through leaching of metamor-
phic and subvolcanic units beneath the drilled depth level or 
the input of magmatic volatiles that exsolved from a shal-
low intrusion at deeper levels. The metamorphic basement 
at Milos is heterogeneous in composition, ranging from mica 
schists to quartzites and gneisses (Liakopoulos et al. 1991). 
Lead isotope data of metamorphic basement rocks and vol-
canic rocks from Milos and neighboring islands exhibit a wide 
range, e.g., between 18.6 and 19.0 for 206Pb/204Pb (Schaar-
schmidt et al. 2021a; Stouraiti et al. 2017; Wind et al. 2020). 

Thus, local leaching of basement and subvolcanic rocks could 
have generated the observed Pb isotope composition of the 
sulfides. Although geochronological data suggest that the 
mineralizing events of western Milos occurred temporally 
unrelated to each other between 2.8 and 1.5 Ma (Miles 2021), 
the narrow range in the Pb isotope composition of sulfides 
(e.g. 206Pb/204Pb of 18.852 to 18.862) indicates, that Pb and 
perhaps other base metals were derived from a similar source. 
This can be explained by repeated fluid circulation through 
a large-scale fault network that crosscuts the basement and 
that was reactivated for focused fluid flow during the volcanic 
emergence of the island.

In contrast to Profitis Ilias, tellurides were not observed at 
Kondaros-Vani and Triades, and galena and pyrite have much 
lower Te contents, near or below the LA-ICP-MS detection limit 
(< 0.5 μg/g; Figs. 10b, 11a) (Schaarschmidt et al. 2021a). The 
distinct enrichment of Te at Profitis Ilias compared to the other 
Milos hydrothermal mineralizations (Figs. 10b, 11a) does not 
appear to be primarily controlled by specific fluid parameters, 
because the hydrothermal fluid temperature, fS2, fO2, and pH 
conditions (Fig. 10f) are similar at all locations (Naden et al. 
2005; Alfieris et al. 2013; Smith et al. 2018; Schaarschmidt et al. 
2021a). Tellurium has the highest gas–melt partition coefficient 
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Fig. 10   (a-e) Major and trace element composition of sulfides 
from different elevations at Profitis Ilias. Sulfide composition data 
from mineralizations in northwest Milos are shown for compari-
son (Schaarschmidt et  al. 2021a). Analyses that lay below the min-
imum detection limit are shown as small symbols at half the mini-
mum detection limit. Analyses with evidence for micro-inclusions 
are marked with bold outline. (a-b) Galena from shallow levels has 
higher Ag and Sb, but lower Te and Au concentrations than galena 

from deep levels. (c) Chalcopyrite shows variable Au/As ratios at dif-
ferent elevations. (d-e) Sphalerite shows distinct Fe, Mn, and Co con-
centrations in different samples. (f) Estimated fluid evolution (temper-
ature vs. sulfur fugacity) from deep to shallow levels at Profitis Ilias 
based on fluid inclusion temperatures (Kilias et al. 2001) and the FeS 
content in sphalerite (Scott 1983). The conditions at the Kondaros-
Vani mineralization are taken from Schaarschmidt et al. (2021a)
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of all trace metals in volcanic systems (Zelenski et al. 2021) and 
is typically enriched in hydrothermal systems with an input of 
magmatic fluids (Berkenbosch et al. 2019; Kadel-Harder et al. 
2020; Falkenberg et al. 2022). Therefore, we propose a model 

whereby the enrichment of Te at Profitis Ilias is due to an input 
of ascending volcanic gases exsolved from a shallow magma 
reservoir beneath Profitis Ilias.

The in-situ δ34S values of pyrite from Profitis Ilias (0 
to + 5‰; Fig. 9f) overlap with previous S isotope data of 
sulfides from Milos (Marschik et al. 2010; Schaarschmidt 
et al. 2021a), though we found no negative δ34S values as 
have been observed in pyrite at Kondaros-Katsimouti. 
Altogether, the S isotopes of sulfides from Milos neither 
exclude, nor support the input of magmatic S and can also 
be explained by thermochemical seawater sulfate reduction 
and leaching of S from host rocks (Shanks et al. 1981; Marini 
et al. 2011; Schaarschmidt et al. 2021a). A minor input of 
magmatic fluids at Profitis Ilias providing H2S with poten-
tially negative δ34S values derived from disproportionation 
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Fig. 11   Trace element composition of pyrites from different eleva-
tions and generations (py0, py1/2, py3) at Profitis Ilias. Analyses 
below the detection limit are shown as small symbols at half the 
detection limit. Analyses with evidence for micro-inclusions are 
marked with bold outline. Sulfide composition data from mineraliza-
tions in northwest Milos are shown for comparison (Schaarschmidt 
et  al. 2021a). (a) The Ag/Te ratio in pyrite increases from deep to 
shallow levels. High Te and Ag concentrations at a Ag/Te ratio of ~ 1 
represent mix analyses of pyrite and sub-microscopic telluride inclu-
sions. (b) The As concentrations of all pyrite generations largely 

overlap. Some telluride inclusions also contain Au (Reich et  al. 
2005). (c-d) The Tl/Pb and Sb/Pb ratios in pyrite at high elevations 
increase from py1/2 (vein-type) to py0 (disseminated) and py3 (anhe-
dral). The grey shaded field and the blue square displays the compo-
sitional range of pyrite that formed under boiling conditions (Román 
et  al. 2019; Falkenberg et  al. 2021). (e) Variable Co, Ni concentra-
tions and Co/Ni ratios. (f) Some disseminated pyrites at 480 m ele-
vation have elevated Hg concentrations that correlate with the Tl/Pb 
ratio

Table 2   Lead isotope composition of sphalerite separates from Prof-
itis Ilias

Sample elevation (m) 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb

PD12-315,3 270 18.8534 15.6885 39.0009
PD12-317,5 268 18.8600 15.6897 39.0045
PD12-318,5 267 18.8525 15.6882 39.0011
PD12-328,15 260 18.8515 15.6875 38.9984
PD12-348 245 18.8579 15.6875 39.0012
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of magmatic SO2 (Herzig et al. 1998; Martin et al. 2020) 
could have been strongly diluted by H2S with δ34S values > 0 
derived from the host rocks and from reduced seawater sul-
fate. This is in accordance with fluid δ18O and δD values 
that indicate a dominance of seawater and a minor input of 
magmatic fluids in both the Milos fossil and active hydro-
thermal systems (Naden et al. 2005; Dotsika et al. 2009). We 
conclude that Te was likely introduced by volcanic gases that 
exsolved from a shallow magma chamber beneath Profitis 
Ilias, while most other metal(loids) are likely sourced from 
the metasedimentary basement.

Temporal and vertical evolution

Previous studies have shown that the evolution of the Profitis 
Ilias mineralization is divided into a hypogene stage and a 
later supergene oxidation stage (Kilias et al. 2001; Alfieris 
et al. 2013). An updated paragenetic sequence including our 
petrographic observations and interpretations is presented 
in Fig. 6. Both stages show vertical mineralogical and geo-
chemical trends related to different fluid conditions and pro-
cesses (Fig. 13) that will be discussed in the following.

Primary hydrothermal mineralization

The hypogene assemblage is characterized by early inclu-
sion-rich pyrite (py1) followed by chalcopyrite, sphalerite, 
galena, and py2 (Fig. 7g-l). Inclusions of hessite and minor 
petzite, tetrahedrite-tennantite, and native gold occur as 
inclusions in pyrite (py1 and py2), galena, sphalerite, and 

chalcopyrite. Tellurides are only abundant in porous cores 
of py1 in the thickest (> 5 cm) Em-type veins at ~ 267 m 
elevation (Figs. 7g, h, 11a; ESM2, Table S6), but are absent 
below that level and only rarely occur at higher elevations 
(Fig. 7c). This suggests an abrupt change of the fluid condi-
tions at ~ 267 m, most likely caused by vigorous boiling that 
triggered the co-precipitation of Te, Ag, Au, and base metal 
sulfides. The transition of Em-type veins at deeper levels to 
Eq-type veins above 300 m displays decreasing precipitation 
of base metal sulfides in accordance with decreasing base 
metal abundances caused by fluid boiling in a geothermal 
well (Clark and Williams-Jones 1990).

The alteration assemblage and gangue mineralogy is 
dominated by quartz, adularia, chalcedony, barite, sericite, 
pyrite (py0), and minor clay minerals, which suggests neu-
tral pH values, typical for both low and intermediate sulfi-
dation epithermal systems (Hedenquist et al. 2000). The 
high abundance of base metal sulfides and the Fe content 
of sphalerite (0.2 to 2 mol. % FeS) support an intermedi-
ate sulfidation state during the hypogene stage (Scott 1983; 
White and Hedenquist 1990) similar to the Kondaros-Vani 
mineralization (Alfieris et al. 2013; Schaarschmidt et al. 
2021a). Slightly lower Fe concentrations in sphalerite at 
high elevations (Fig. 10d) suggest a slight increase within 
the intermediate sulfidation state from deeper to shallow 
levels during the hypogene stage (Scott 1983). Combined 
fluid inclusion thermobarometry (Kilias et al. 2001; Naden 
et al. 2003) and Fe contents of sphalerite suggest an evolu-
tion from log fS2 = -11 at 250 °C in the deep stockwork to 
-14 at < 180 °C during fluid ascent (Fig. 10f). The decreas-
ing log fS2 values are in accordance with boiling of the 
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Fig. 12   (a) Ishikawa alteration index (AI) versus chlorite-carbon-
ate-pyrite-index (CCPI) (Ishikawa et  al. 1976; Large et  al. 2001) of 
Profitis Ilias volcanic units and lavas from other locations at Milos 
Island. The unaltered lavas and one ignimbrite sample (PD12-14.6) 
plot inside the least altered box and are therefore used as precursor. 
The altered samples (grey field) display strong sericite-chlorite-pyrite 
alteration (blue arrow). (b) Multielement plot of the concentration of 

chalcophile elements (for hydrothermal environments) in the altered 
Profitis Ilias rocks relative to an unaltered Milos lava sample and rela-
tive to the least altered Profitis Ilias sample, respectively. Ranges of 
all samples and median values are shown. The elements are ordered 
from slightly chalcophile (left) to strongly chalcophile (right) (Barnes 
2018)
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hydrothermal fluid and an increasing vapor/liquid ratio 
from deeper to shallow levels (Kilias et al. 2001; Naden 
et al. 2003) due to the transfer of H2 and H2S to the vapor 
phase (Reed and Spycher 1984; Cooke and McPhail 2001). 
Fluid boiling may also be responsible for the lower median 
δ34S values with increasing elevation (Fig. 9f) due to the 
preferential oxidation of 34S (McKibben and Eldridge 1990; 
Marini et al. 2011). A similar vertical trend to lower δ34S 
values associated with fluid boiling was observed in a geo-
thermal system in Central Mexico (González-Partida et al. 
2005). The dominance of sulfides and absence of sulfates in 
the hypogene mineral assemblage indicate relatively reduc-
ing conditions and minor influx of seawater. The stability 
of hessite at 267 m elevation at ~ 250 °C suggests log fTe2 
values between -13 and -15 (Afifi et al. 1988; Plotinskaya 
et al. 2006).

Low Tl/Pb and Sb/Pb ratios of vein pyrite (py1/2) over-
lapping with published geothermal pyrite data (Fig. 11d; 
Román et al. 2019) support boiling-induced precipitation 
during the hypogene stage at all depth levels in accord-
ance with textural observations. In the deep stockwork, the 
composition of vein pyrite (py1/2) and that of disseminated 
pyrite (py0) largely overlap (Fig. 11), suggesting that the 
hydrothermal fluid infiltrated the permeable host rock with-
out causing any distinct geochemical changes. By contrast, 
in the shallow stockwork increasing Tl/Pb, Tl/Cu, Sb/Pb, 

and Co/Ni ratios (Fig. 11c-e) from vein pyrite (py1/2) to dis-
seminated pyrite (py0) record the fluid evolution from fluid 
boiling in the veins towards a boiling-derived high-salinity 
fluid that infiltrated the host rocks. This is in accordance with 
published trace element data of pyrite that suggest elevated 
Tl/Pb and Tl/Cu ratios for boiled liquids relative to those 
ratios at the time of a boiling event (Simmons et al. 2016; 
Román et al. 2019; Falkenberg et al. 2021; Schaarschmidt 
et al. 2021a). Furthermore, high Co/Ni ratios in pyrite were 
shown to reflect high fluid salinities or temperatures due to 
the higher sensitivity of Co species to salinity and tempera-
ture changes (Brugger et al. 2016). High Hg and Bi concen-
trations in pyrite have been associated with vapor-rich flu-
ids (Pokrovski et al. 2013; Simmons et al. 2016; Nestmeyer 
et al. 2021; Schaarschmidt et al. 2021a). The positive cor-
relation between Hg (> 2 μg/g), Bi (> 2 μg/g), and Tl/Pb in 
several disseminated pyrite grains (py0) at 480 m elevation 
indicates a local enrichment of Hg and Bi by vapor conden-
sation (Fig. 11f). This is in agreement with the occurrence of 
low-salinity, vapor-rich fluid inclusions at the same elevation 
(Kilias et al. 2001). We propose that a combined increase in 
Hg and Bi concentrations in pyrite documents vapor conden-
sation above a local boiling zone, while elevated Tl/Pb ratios 
apply for both the boiled liquid and condensed vapor fluids.

Based on the boiling curve of the hydrothermal fluid 
(Fig. 2b; Kilias et al. 2001) the sea level at the time of 
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Fig. 13   Schematic profile of the Profitis Ilias mountain demonstrating 
the processes that controlled the formation of the mineralization dur-
ing the hypogene stage (I) and the supergene stage (II) after exhuma-
tion to subaerial levels. The trace metal(loid) contents in galena show 

major vertical variations, whereas the trace element composition of 
pyrite show different characteristics for disseminated pyrite (py0), 
vein pyrite (py1/2) from the hypogene stage, and anhedral pyrite 
(py3) from the supergene stage (cf. Figure 6)
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hydrothermal activity was located at present-day elevations 
between ~ 650 and 700 m (Fig. 13). There is no evidence 
for extensive acid-induced alteration caused by vapor con-
densation above zones of fluid boiling in the exposed depth 
levels at Profitis Ilias. However, boiled-off gases may have 
generated the argillic alteration near the summit (White and 
Hedenquist 1990). Besides the decreasing temperature, fS2, 
and the variable fluid salinities (Kilias et al. 2001), which are 
all related to isenthalpic fluid boiling (Cooke and McPhail 
2001), a strong vertical variation of pH or fO2 in the fluid 
chemistry during the hypogene stage is absent in accordance 
with the monotonous alteration assemblage. However, there 
is evidence for local fluctuations of the sulfidation state, 
redox conditions, and metal supply during sulfide precipita-
tion, such as Fe zoning within large grains of sphalerite or 
element and textural zoning in py1 (Fig. 7i).

Supergene mineralization and secondary Au enrichment

During a supergene mineralization stage (Fig. 6) chalcopy-
rite from the hypogene stage was successively transformed 
to bornite, chalcocite, digenite, and covellite (Fig. 7b, c, g, j), 
while sphalerite was partly transformed to greenockite (CdS; 
Fig. 7a). In contrast to Kilias et al. (2001), we suggest that 
bornite formed as a secondary mineral during the supergene 
stage. This is supported by the texture of bornite and other Cu 
sulfides, which surround and replace chalcopyrite along cracks 
and grain boundaries (Fig. 7g, j) up to a complete replacement 
by secondary Cu sulfides (Fig. 7b). The abundance of sec-
ondary Cu sulfides relative to primary chalcopyrite increases 
with increasing elevation where the least overprinted chalco-
pyrite-dominated mineralization was found at 178 m elevation 
(Fig. 7). This mineral transformation is typical for weathered 
sulfide deposits and records the downward migration of super-
gene Cu-rich fluids into the reducing environment below the 
paleo-water table (Sillitoe 2005; Guilbert and Park 2007). At 
the same time, the occurrence of goethite, hematite, Mn and 
Ti oxides, jarosite, barite, and Cu-Pb-Zn carbonates in the 
near-surface sections (uppermost 20 to 100 m, Table 1; Kilias 
et al. 2001) is typical for the leached zone of weathered sulfide 
deposits due to the infiltration of oxidizing meteoric water 
above the paleo-water table (Sillitoe 2005; Guilbert and Park 
2007). Pseudomorphs of Fe oxides replacing euhedral dissemi-
nated pyrite record the oxidation of Fe2+ and dissolution of S 
by neutral pH meteoric waters (Butt 1998). Thus, the primary 
hydrothermal mineralization was overprinted by supergene 
processes at Profitis Ilias, generating a secondary vertical 
zonation that can be divided into the leached zone above the 
paleo-water table and the enriched zone below the paleo-water 
table, transitioning downwards into the hypogene mineral 
assemblage (Fig. 13). The occurrence of anhedral pyrite (py3) 
associated with supergene Fe oxides at 642 m (Fig. 5b) indi-
cates fluctuating redox conditions. The secondary Cu sulfides 

are partly accompanied by fine grained galena (gn2), suggest-
ing minor dissolution and reprecipitation of galena during the 
supergene stage. Sharp decreases in the Co, Ni, Ge, In, and Sn 
contents in py3 compared to hypogene py (Fig. 11e) support 
precipitation from cold, metal-poor meteoric water during the 
supergene stage. However, relatively high contents of Au, Ag, 
and Sb in py3 (Fig. 8) record remobilization of precious and 
semi-precious metals by supergene fluids.

The occurrence of native Au, electrum, and silver halides at 
Profitis Ilias in association with supergene goethite (Fig. 7f), 
covellite, and Cu oxides indicates a supergene enrichment of 
gold at > 400 m elevation. The dissolution and reprecipitation 
of Au and Ag is a common feature of weathered porphyry, 
epithermal, or massive sulfide deposits with a supergene 
enrichment of Au and Ag around the paleo-water table (Butt 
1998; Milési et al. 1999; Páez et al. 2016; DeMatties 2018). 
Similarly to Profitis Ilias, the leached zone in such environ-
ments is characterized by silver halides and native Au, while 
the enriched zone exhibits coarse grains or nuggets of native 
Au and electrum (Milési et al. 1999; Guilbert and Park 2007; 
Páez et al. 2016; Arfè et al. 2016). The extensive supergene 
mineralization at Profitis Ilias requires tectonic uplift of sev-
eral hundred meters to subaerial levels, in accordance with the 
volcano-tectonic evolution of the island (Stewart and McPhie 
2006; Zhou et al. 2021). The maximum bulk rock Au concen-
trations are recorded at 610 to 640 m elevation (this study; 
Kilias et al. 2001) suggesting that the water table was located 
around that level during the supergene stage (Fig. 13). We 
conclude that the shallow Au enrichment at Profitis Ilias was 
enhanced by supergene processes and that it is not due to 
fluid boiling during the hypogene stage, which on the contrary 
caused decreasing Au and Te contents from deep to shallow 
levels (Fig. 10b).

Transport and deposition of Te, Au, Ag, and trace 
metal(loid)s

The vertical distribution of metal(loid)s in the hypogene base 
metal sulfide-telluride assemblage provides insight into the 
transport and precipitation processes that were active during 
fluid ascent. Both the cooling and boiling of the hydrothermal 
fluid, as indicated by fluid inclusion and stable isotope data 
(Fig. 2b, c) may affect the metal fractionation and deposition 
during fluid ascent (Reed and Palandri 2006; Simmons et al. 
2016; Grant et al. 2020; Falkenberg et al. 2021; Schaarschmidt 
et al. 2021a). The decreasing Te, Au, Se, Bi, and Co and 
increasing Ag, Sb, and Tl concentrations in galena and sphal-
erite with increasing elevation (Figs. 9, 10) record the con-
trasting behavior of the two groups of elements during fluid 
flow from deeper to shallow levels (Fig. 13). Pyrite provides 
a similar, more continuous vertical trend towards increas-
ing Ag/Te and Ag/Co ratios from 180 to 720 m elevation 
(Figs. 9e, 11a). Trace element systematics of hydrothermal 
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pyrite and bulk ore show that high Tl and Sb contents are 
related to lower fluid temperatures, whereas Se, Bi, and Co 
are typically enriched at higher fluid temperatures (Huston 
et al. 1995; Schmidt et al. 2007; Maslennikov et al. 2009; 
Keith et al. 2018b; Wind et al. 2020), which is in accord-
ance with the element distribution at Profitis Ilias. Experi-
mental and natural data suggest that the precipitation of Te 
and Au is not primarily affected by temperature changes, but 
is strongly controlled by H2S loss and redox changes during 
processes like fluid boiling or fluid-rock interaction (Drum-
mond and Ohmoto 1985; Clark and Williams-Jones 1990; 
Grundler et al. 2013; Keith et al. 2018b, 2020). This is in 
accordance with high Te and Au contents in galena at deeper 
levels, where sulfide precipitation is triggered by boiling. By 
contrast, Sb and Tl are less sensitive to boiling and either 
remain in the liquid or partition into the vapor phase, result-
ing in the enrichment of Sb and Tl at shallow levels above 
zones of fluid boiling (Simmons et al. 2016; Román et al. 
2019; Nestmeyer et al. 2021). Silver is expected to precipi-
tate during fluid boiling due to the destabilization of metal 
complexes triggered by vapor phase extraction, similar to the 
behavior of Au, Te, Cu, and Pb (Seward et al. 2014; Simmons 
et al. 2016). This indicates that the localized precipitation of 
Ag(-Au) tellurides at 267 m followed by massive base metal 
sulfides is related to fluid boiling. In contrast the upwards 
increasing Ag/Au ratios of galena imply a different behavior 
of the two precious metals during fluid ascent. We conclude 
that the solubility of Ag remains relatively high at ~ 250 °C, 
only decreasing at lower temperature or with increasing pH 
induced by vigorous boiling.

Similar increases in the Ag, Sb, and Tl concentrations of 
sulfides towards the upper part of the boiling zone have been 
reported from the Kondaros-Vani mineralization in north-
west Milos (Schaarschmidt et al. 2021a). Those authors pre-
dicted higher Co, Ni, and Se concentrations at deeper levels, 
analogous to vertical trends observed in geothermal wells 
in New Zealand (Simmons et al. 2016) and Iceland (Grant 
et al. 2020). This is confirmed by generally higher Co and 
Ni contents (1 to > 100 μg/g) in pyrite (Fig. 11e) and higher 
Se contents (> 20 μg/g) in galena from the deep stockwork 
at Profitis Ilias. Galena from the shallow stockwork shows 
lower Se and Au concentrations that overlap with galena 
from Kondaros-Vani (Fig. 10b), which confirms that the 
shallow veins of the Profitis Ilias mineralization resemble 
the Kondaros-Vani system. Thus, we conclude that the verti-
cal trends of metal(loid) concentrations in sulfides at Prof-
itis Ilias are related to combined cooling and boiling of the 
hydrothermal fluid during ascent.

The initial mineral deposition during the hypogene stage 
at 267 m is recorded by porous, inclusion-rich cores of py1 
(Fig. 7h, i) that formed during rapid crystallization triggered 
by vigorous fluid boiling (Román et al. 2019; Börner et al. 
2021). The non-porous, euhedral pyrite grains (py2) and py1 

overgrowths (Fig. 7g-i) record a shift towards more stable 
fluid conditions during mineral growth with less mineral 
inclusions. Nonetheless, rare telluride inclusions in py2, 
galena, sphalerite, and chalcopyrite imply that Te oversatu-
ration persisted after the initial boiling event. We conclude, 
that the pressure release during the ascent of a ~ 250 °C 
hydrothermal fluid along subvertical fractures caused vig-
orous boiling at ~ 270 m elevation, triggering the abrupt pre-
cipitation of pyrite, Ag(-Au)-tellurides, and native Au, fol-
lowed by base metal sulfides (Fig. 13). This is in accordance 
with the fluid model suggested by Kilias et al. (2001) and 
points out, how fluid boiling directly influences the vertical 
distribution of major and trace metals in hydrothermal sys-
tems. Consequently, sulfide precipitation in the E-type veins 
at levels below 270 m was apparently triggered by gentle 
boiling and/or a more gradual cooling that did not provoke 
the deposition of tellurides. A partitioning of Te into the 
vapor phase during boiling, as has been reported at mod-
erately reducing conditions in neutral pH fluids (Grundler 
et al. 2013; Keith et al. 2020), is not observed at Profitis 
Ilias. There is no Te enrichment at high elevations, where 
the vapor/liquid ratio would have been higher and where 
the vapor would have condensed into the groundwater. The 
similar behavior of Te and Au during fluid boiling and cool-
ing at Profitis Ilias implies that the physicochemical condi-
tions promoted co-precipitation of Te and Au rather than a 
decoupling of the two elements.

Conclusions

The petrographic and geochemical study of drill core sam-
ples down to 550 m depth transecting the Profitis Ilias Pb-
Zn-Cu-Ag-Au mineralization generally supports and refines 
the existing genetical models by Alfieris et al. (2013), Kilias 
et al. (2001), and Naden et al. (2005). However, most impor-
tantly it provides a detailed understanding of the processes 
that control the vertical distribution of metals and metalloids 
in shallow-crustal hydrothermal systems. The mineralogy 
and geochemistry of the host rocks reveal intense hydro-
thermal alteration dominated by chlorite, pyrite, sericite, 
adularia, and minor clay minerals that is most intense in the 
central part of the mineralization and decreases distal to the 
mineralization (Fig. 13). A comparison of the metal contents 
of altered Profitis Ilias volcanic rocks and unaltered lavas 
from Milos suggests an enrichment of most chalcophile ele-
ments, in particular Zn, Pb, Cu, Au, Ag, and Te, during fluid 
circulation and fluid-rock interaction. Uniform Pb isotope 
ratios of sulfides point towards a common metal source in 
the basement rocks beneath western Milos that was repeat-
edly leached during the volcanic emergence of the island. 
The enrichment of Te in sulfides and the presence of tellu-
rides at Profitis Ilias is distinct, indicating the addition of Te 
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from volcanic gases to Profitis Ilias which, in turn, requires 
a shallow magma chamber beneath southwest Milos. We 
cannot exclude that this magmatic fluid also provided other 
elements such as As, Se, or Bi to the hydrothermal system, 
however, in contrast to Te, the concentration of these ele-
ments shows little variation in the shallow parts of all vein 
systems in western Milos.

The formation of the Profitis Ilias mineralization and the 
deposition of metals and metalloids was affected by (i) the 
ascent of a 250 to 150 °C, metal-rich hydrothermal fluid 
along subvertical faults and fractures and (ii) the downwards 
migration of oxidized meteoric water through open veins 
(Fig. 13). Fluid cooling and boiling during ascent of the 
hydrothermal fluid triggered base metal sulfide precipitation 
and caused a distinct vertical distribution of metal(loid)s. We 
observe an increase of Ag, Sb, and Tl and a decrease of Au, 
Te, Se, Bi, and Co concentrations in the sulfides from deeper 
to shallow levels (Fig. 13), which are related to decreasing 
fluid temperatures and to fluid boiling. This model resolving 
the vertical distribution of metal(loid)s may be transferred to 
the upflow zones of other epithermal, geothermal, or shallow 
submarine hydrothermal systems, where boiling of relatively 
low-temperature (< 300 °C) fluids controls the deposition of 
ore minerals.

Different pyrite generations record the fluid evolution 
from the onset of vigorous boiling (low Tl/Pb ratios, porous 
textures, Ag(-Au)-telluride inclusions) towards a boiled, 
high-salinity fluid (higher Tl/Pb, Co/Ni ratios) infiltrating 
the host rocks. The local occurrence of Hg- and Bi-rich 
pyrite reflects precipitation from vapor-rich fluids above 
local boiling horizons. The later oxidation of disseminated 
and vein-related sulfides above the paleo-water table caused 
a remobilization of Au and Cu that resulted in the deposi-
tion of native Au associated with quartz, barite, and metal 
oxides around the paleo-water table while also transforming 
chalcopyrite to secondary Cu phases in the enriched zone 
(Fig. 13). We conclude that the Au enrichment of the Profitis 
Ilias mountain is genetically subdivided into an upper part 
(> 400–500 m elevation), where native Au precipitated due 
to supergene processes, and a lower part (< 300 m), where 
Au is hosted by abundant base metal sulfides (up to 2 μg/g 
Au) and Ag-Au-telluride inclusions in early vein pyrite that 
precipitated during fluid boiling.

In summary, the evolution of the low- to intermediate 
sulfidation epithermal Profitis Ilias mineralization in combi-
nation with the other hydrothermal mineralizations on Milos 
Island provides unique insights into the transport and pre-
cipitation behavior of Au, Ag, Te, and related metal(loid)s 
by various fluid processes occurring in large, shallow-crustal 
hydrothermal systems.
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