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Abstract

More than 30 years ago, Cox and Singer (1986) suggested that magmatic platinum-group element (PGE)-Ni-Cu deposits are
amongst the best understood of ore deposits, yet the origin of PGE mineralization in the Bushveld Igneous Complex (BIC)
remains controversial after a century of study. In the northern limb of the BIC, the unravelling of ore formation proved
particularly difficult due to relatively poor outcrop, which is typically affected by contamination of the intruding magmas with
the host rocks and expressed in the form of abundant xenoliths, footwall rafts and disturbance of magmatic stratigraphy. In this
thematic issue, we present contributions on the Flatreef, a recently discovered world-class PGE-Ni-Cu deposit constituting a
downdip extension of the mineralized unit of the Platreef of the northern limb. Two deep shafts are currently being sunk, making
the Flatreef one of the most significant new mine development on the Bushveld in several decades.

Stratigraphy of the Bushveld northern limb
and definitions of the Platreef and Flatreef

The detailed stratigraphic relationship between the Platreef
and the Flatreef and potential stratigraphic correlations be-
tween both horizons with the Upper Critical Zone (UCZ) in
the western and eastern limbs of the Bushveld Complex have
been debated for years. One reason for this is the lack of
consistent definitions for the terms Platreef and Flatreef. In
the following section, we first review the current use of both
terms in the context of the broader stratigraphic framework of
the Bushveld northern limb and then propose updated
definitions.

After nearly 100 years of study, it is now widely recognized
that in the northern limb (Figs. 1, 2) all major stratigraphic
zones constituting the Rustenburg Layered Suite (RLS) have
different thicknesses, chemical composition and mineralogy
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than equivalent units in the remainder of the Bushveld
Igneous Complex.

In the western and eastern Bushveld limbs, the
Marginal Zone comprises a compositionally and textur-
ally diverse suite of intrusives (gabbronorite, norite, py-
roxenite, harzburgite) forming either sills in the floor or
a contact layer at the base of the main Bushveld layered
body (Sharpe 1981; Cawthorn et al. 1981). The
Marginal Zone has been suggested to be relatively poor-
ly developed within the northern limb (Kinnaird et al.
2005; Grobler et al. 2019). However, this may be partly
due to terminology. Firstly, noritic and pyroxenitic sills
that likely represent the Marginal Zone have in the past
been included within the Platreef. Secondly, ultramafic
sills enclosed in sedimentary and granitic floor rocks
have been grouped into the Lower Zone. Thus, the low-
ermost parts of the Platreef (or the so-called Lower
Platreef; Manyeruke et al. 2005; Kinnaird et al. 2005;
Ihlenfeld and Keays 2011) that are bordered by sedi-
mentary rocks in their floor and roof could instead be
considered to be part of the Marginal Zone. Recent
work by Yudovskaya et al. (this volume) shows that
mafic sills underlying the Lower Zone are widespread
in the northern limb, and their relics are recognized as
the so-called brown norite and recrystallized norite, re-
spectively. However, the temporal relationships for spe-
cific sills remain unconstrained.
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The Lower Zone (LZ) is developed along most of the
strike of the northern limb and cannot be readily corre-
lated with the LZ elsewhere as it contains massive
chromitites and PGE-mineralized zones. Its thickness
has likely been influenced by floor topography and tec-
tonism. The zone reaches 1700 m on the farm Grasvally
(Hulbert and von Grunewaldt 1982) and over 800 m on
Turfspruit (Yudovskaya et al. 2013). At most localities,
the Lower Zone (rather than the Platreef) composes the
basal cumulate unit of significant thickness in the north-
ern limb, and it is separated from the overlying Platreef
by sedimentary inlayers or rafts up to 300-m thick
(Hulbert and von Gruenewaldt 1982; Maier et al.
2008; Yudovskaya et al. 2013). Where in direct contact
with the Platreef, the upper boundary of the LZ is de-
fined as the top of the uppermost thick plagioclase-poor
harzburgite, as has been suggested for the western limb
(Teigler and Eales 1996).

In the western and eastern limbs, the Critical Zone
hosts the 13 main chromitite seams of the Bushveld
Complex (lower group, middle group and upper group)
and the main PGE reefs (UG2 and Merensky Reef). In
those limbs, the Critical Zone is approximately 1000-m
thick and subdivided into a lower portion (LCZ)
consisting mainly of pyroxenite and harzburgite
(Cameron 1978; Teigler and Eales 1996) and an upper
portion (UCZ) featuring repetitive cyclic units of cumu-
lates that are progressively more evolved with height,
i.e. in the ideal case chromitite-harzburgite-pyroxenite-
norite-anorthosite (Eales et al. 1988). In the northern
limb, the LCZ appears to be absent, whereas the UCZ
that is now normally equated with the Platreef is much
more contaminated and sulfide enriched than elsewhere,
and somewhat depleted in chromite.

It is instructive to consider the evolving meaning of
the term Platreef. Hans Merensky, the discoverer of the
Bushveld PGE reefs in 1925, believed that the strati-
form PGE orebody of the northern limb represents a
thickened lateral equivalent of the Merensky Reef as
exposed in the western and eastern Bushveld (Wagner
1929; Cawthorn 2015). In contrast, van der Merwe
(1976) considered the mineralized interval, for which
he coined the term Platreef, to constitute the base of
the Main Zone, despite equating the Platreef with the
“Platinum Horizon” of Wagner (1929). With increasing
geological knowledge due to extensive exploration,
mining and research activities, particularly since the
opening of Mogalakwena mine in 1990, it became
clear that the Platreef may contain multiple concordant
and discordant sills and corresponds to a zone rather
than a layer. Thus, in the recent literature, the term
Platreef has been used to denote either the whole strat-
igraphic interval between the LZ and the Main Zone in
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the northern limb (Kinnaird and McDonald 2005;
McDonald and Holwell 2011) or only the mineralized
portion thereof (van der Merwe 1976, 1978; Viljoen
and Schurmann 1998).

One of the earliest definitions of the Platreef was
provided by Gain and Mostert (1982; p. 1396) who
described the Platreef as “composed of a complex se-
quence of medium- to coarse-grained pyroxenites,
melanorites, and norites, in places pegmatoidal and
serpentinized, containing metasedimentary xenoliths of
the floor rocks”. Using the data accumulated since the
1990s, Kinnaird and McDonald (2005; p. 196) defined
the Platreef as “Mafic units enriched in Ni-Cu-PGE that
occur between the Archaean granite-gneiss basement or
the Transvaal Supergroup and the gabbronorites of the
Main Zone, north of the Planknek Fault”. This defini-
tion essentially interprets the Platreef as the correlative
of the entire UCZ, but it excludes the Ni-Cu-PGE min-
eralization south of the Planknek—Ysterberg Fault
(termed the GNPA member by Hulbert and von
Gruenewaldt 1982), based on the fact that the stratigra-
phy in this area is more correlatable with the Bushveld
eastern and western limbs, including a massive
chromitite regarded as the UG2 equivalent (Hulbert
and Von Gruenewaldt 1982; Maier et al. 2008; Smith
et al. 2014; Kinnaird and Nex 2015). Given the pres-
ence of the UG2-like chromitite on Turfspruit (Grobler
et al. 2019; Langa et al. 2020) and Akanani
(Yudovskaya et al. 2011), this argument is not applica-
ble anymore, and, therefore, the GNPA member south
of the Planknek Fault should be accepted as a southern
facies of the Platreef and a stratigraphic equivalent of
the Upper Critical Zone (Kinnaird and McDonald 2018).

The definition by Kinnaird and McDonald (2005) al-
so did not include the mineralization occurring in the
northern portion of the northern Bushveld limb, notably
at the Aurora project on the farms Altona, Kransplaats,
La Pucella, Luge, Nonnenwerth, Non Plus Ultra and
Schaffhausen. This area is regarded as the northern
facies of the Platreef by Manyeruke (2007) and Maier
et al. (2008), whereas McDonald et al. (2017) and
McFall et al. (2019) argue that because the
geochemical and mineral characteristics are consistent
with Main Zone compositions, this mineralization
should not be included in the Platreef.

Maier et al. (2008) suggested that all mineralized
rocks at the base of the northern limb should be
termed “Platreef” arguing that this definition provides
a clear exploration guideline that can be applied in the
field, without the need of geochronology or geochem-
istry. However, this definition does not help distin-
guish between contact-style and internal reef-style
PGE mineralization that may occur at the basal and
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Fig. 1 Geological map of the
Rustenburg Layered Suite of the
Bushveld Igneous Complex (after
Mungall et al. 2016) showing
locations mentioned in this issue
and other relevant locations
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in the top parts of the Platreef, respectively, as seen in
the Flatreef sequence on Turfspruit (Grobler et al.
2019). In other areas of the northern limb, these two
types of mineralization are superimposed and may
form a thick high-grade orebody, as seen on
Sandsloot where high-grade ores occur both in intru-
sive and metasedimentary rocks (McDonald and
Holwell 2011; Klemd et al. 2016; Mwenze et al.
2019).

Other problems with the definitions by Kinnaird and
McDonald (2005) and Maier et al. (2008) are as follows:
(i) both encompass the PGE mineralization in the Lower
Zone, e.g. on Grasvally, Turfspruit and Uitloop, with
other areas remaining poorly explored; (ii) so far, the
known stratigraphy of the Platreef does not include un-
disputable Lower Critical Zone rocks, unless the
Akanani deeper sections could be considered to repre-
sent this (Mitchell and Scoon 2012; Scoon et al. 2020).
However, the presence of LCZ in the deep western por-
tions of the northern limb cannot be excluded, and any
definition of the Platreef (and Flatreef) should be flexible
enough to allow a potential inclusion of LCZ in the fu-
ture; (iii) both definitions do not include the thick

unmineralized or poorly mineralized portions of the
Platreef that can be a predominant constituent of the
sequence.

Scoon et al. (2020) suggested to use the term
“Platreef Unit” for the entire sequence correlative of
the Critical Zone (Mitchell and Scoon 2012), whereas
the term “Platreef” should be reserved for the mineral-
ized part or an orebody within the sequence. To our
mind this approach represents a useful compromise.
We thus propose the following new definition: The
Platreef Unit of the Bushveld northern limb is a com-
plex sequence composed of coalescing magmatic units,
some of which representing sills, with enclosed
metasedimentary inlayers that represents a contaminat-
ed analogue of the chromite-bearing Upper Critical
Zone of the western and eastern Bushveld and is over-
lain by chromite-free Main Zone rocks. It is pervasive-
ly, yet irregularly PGE mineralized, with economic
PGE deposits defined as Platreef deposits. The top
contact with the Main Zone is a key characteristic to
distinguish the Platreef Unit from mafic-ultramafic
marginal sills and satellite bodies crystallized from
Critical Zone magmas but emplaced completely into
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Fig. 2 Geological map of the northern limb after (after Ashwal et al.
2005) and the Waterberg extension (after Yudovskaya et al. 2018)
showing the area of study in this issue and several other relevant locations
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sedimentary wallrocks and not having the Main Zone
roof. The Flatreef Unit represents the deep western
facies of the Platreef Unit (or the Critical Zone as a
synonym, Grobler et al. 2019), characterized by a
change in dip, decreasing amount of contamination
and less disturbance of magmatic stratigraphy (Fig.
3). The Flatreef includes several lower-rank units and
sub-units, with some of the uppermost ones
representing the thick facies PGE reef correlatives of
the Merensky and Bastard reefs. This facies concept
has proven to be a useful tool to correlate layers in
the western and eastern limbs (Eales et al. 1988,
Viljoen 1999; Maier and Teigler 1995, Maier and
Eales 1997) and it should be further developed for
the northern limb with particular attention being paid
to regional markers aiming to see similarities rather
than differences which are often of a secondary
character.

The base of the 3-km-thick Main Zone (MZ) is usu-
ally delineated by a sharp contact to distinctive layers
of mottled (poikilitic) anorthosite which form the up-
permost unit of the UCZ. In the centre of the MZ is
the troctolite unit, which does not appear in the Main
Zone elsewhere in the Bushveld Complex (van der
Merwe 1976; Kennedy 2019). In contrast, the
Pyroxenite Marker (PM), which marks a pronounced
isotopic and trace element shift at the top of the
Main Zone in the eastern and western Bushveld, was
thought to be absent in the northern limb (Ashwal
et al. 2005; Tanner et al. 2019). However, Maier and
Barnes et al. (2010) correlate PGE rich layers on
Moorddrift with the PM, and Cawthorn (2020) sug-
gested that a lateral equivalent of the PM does exist
in the Bellevue drill core and reflects an addition of a
relatively unevolved magma (Fig. 2).

The Upper Zone (UZ) in the northern limb is < 1.2-km
thick (Ashwal et al. 2005) and contains ~32 discrete
magnetitite layers which can be traced along the strike of
the northern limb and within the Villa Nora fragment to the
northwest. Ashwal et al. (2005) suggested that the boundary
between the Upper and Main Zones should be identified by
a sharp increase in magnetic susceptibility that is caused by
the presence of significant modal magnetite. This approach
was adopted during the Waterberg project exploration to
postulate the presence of UZ (with PGE mineralization at
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Fig. 3 Representative cross section through the Platreef in the Turfspruit area showing the change in dip that defines the Flatreef (after Grobler et al.
2019). Two of the drillholes used in contributions to this issue are in bold

its base) in the uppermost portion of the exposed stratigra-
phy (Kinnaird et al. 2017, and Huthmann et al. 2018).

The Waterberg project is of particular note because, in
addition to the Flatreef, it represents a further example of a
recent discovery of significant new PGE deposits in the
Bushveld. In the Waterberg project, the RLS includes an
ultramafic portion with a composition very similar to that
of the uncontaminated ultramafic part of the Platreef (c.g.
on Turfspruit, Yudovskaya et al. 2017; Grobler et al. 2019)
and a gabbroic to troctolitic portion that has a homoge-
neous Sr isotope composition reminiscent of the UZ show-
ing progressively more UZ-like chemical characteristics up-
wards, such as increased disseminated magnetite contents
(Kinnaird et al. 2017; Huthmann et al. 2017). The possible
PGE fertility of the UZ magmas has previously been hy-
pothesized by von Gruenewaldt (1976). However, the UZ
of the Waterberg project areca lacks massive magnetite
which led Kinnaird et al. (2017) to suggest that the RLS
segment north of the Hout River Shear Zone (HRSZ) was
developed as a separate magmatic basin fed from a distinct
crustal sub-chamber at the rifted edge of the craton.

Both the ultramafic and the gabbroic-troctolitic por-
tions contain intervals of high-grade, low-sulfide PGE
mineralization, referred to as F zone (in the ultramafic
rocks) and T zone (in gabbroic rocks) (McCreesh et al.
2018). Preliminary data suggest that these two con-
trasting styles of mineralization are also recognizable
immediately south across the HRSZ on the farm

Harriet’s Wish (van Scheltema 2019). The T zone
can be potentially correlated with Main Zone-hosted
troctolite marker mineralization (van der Merwe 1976,
1978) studied on the farm Vogelstruisfontein (Kennedy
2019) and mineralized melagabbro and pyroxenite
layers on Moorddrift, 20 km to the S of Mokopane
(Maier and Barnes 2010).

Brief overview of petrogenetic models
for the Bushveld PGE reefs

A common thread of most of the previously published
petrogenetic models for the Bushveld PGE reefs is the
assumption that the PGE were originally concentrated
by magmatic sulfides. However, the trigger for sulfide
melt saturation and segregation remains debated. Two
main models can be distinguished: Advocates of
Model 1 suggest that sulfide melt saturation occurred
within the Bushveld magma chamber. Proposed triggers
for sulfide melt saturation include the following:

i. Chromite crystallization resulting in a decrease in Fe
content of the magma (Vermaak 1976). However,
the amount of chromite in the known exposures of
the Merensky Reef, Platreef and Flatreef is relatively
small (usually < 1-2%), and it is unclear whether the
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il.

resulting decrease in Fe content is sufficient to trig-
ger sulfide saturation.

Mixing of relatively light replenishing magma with
denser resident magma (Campbell et al. 1983;
Naldrett and von Gruenewaldt 1989). The sulfide
melt segregated through, and equilibrated with, a
large body of silicate melt, thereby achieving large
R factors (mass ratio of silicate melt to sulfide melt)
and high metal tenors. However, Li and Ripley
(2005) showed that magma mixing can trigger sul-
fide melt saturation only if both mixing end mem-
bers are nearly sulfide saturated, yet the available

iil.

data from the presumed parent magmas of the
Bushveld Complex suggest that the magmas were
strongly S undersaturated (Barnes et al. 2010).
Fractionation of the magma in the chamber leading to
saturation in a sulfide liquid and accumulation of the
sulfide liquid at the top of the cumulate pile (Barnes
et al. 2010). However, as the cotectic ratio of sulfides
forming from Bushveld magmas is likely < 1%
(Cawthorn 2005), a further step is required to concentrate
the sulfides to levels observed in the reefs (commonly 2—
4%:; Barnes and Maier 2002, McDonald and Holwell
2011).

Fig.4 Detailed geological map of
the area of study showing the
location of the drillholes
documented in this issue. The
location of Shaft #1 and the
boundaries of the Turfspruit and
Macalacaskop farms are also
shown
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iv. To address this problem, Maier et al. (2013) pro-
posed a hydrodynamic model in which sulfides
were concentrated by phase sorting and kinetic
sieving, in response to seismically induced
slumping and fluidization of crystal slurries during
filling of the magma chamber. The model was
experimentally tested by Forien et al. (2015) using
circular beads as crystal analogues, but it remains to
be examined whether lath-like particles that consti-
tute a closer analogue to plagioclase and pyroxene
crystals would behave differently.

v. Nucleation of sulfides at the crystallisation front near
the top of the cumulate pile and collection of PGE from
magma flowing past the sulfide (Latypov et al. 2017).
Similar challenges as for trigger mechanism (ii) apply,
i.e. known Bushveld magmas are strongly sulfide
undersaturated.

vi. Mobilization and concentration of early formed cu-
mulus sulfide and PGE by late magmatic fluids

(Boudreau and McCallum 1992). However, the
available evidence suggests that some of the PGE
concentrated in the reefs (notably Ir, Ru, Rh) are
highly immobile under normal magmatic conditions.

The proponents of Model 2 argue that sulfide saturation
was reached in a staging chamber below the main
Bushveld chamber, triggered by contamination and/or frac-
tionation. The sulfides were entrained and partially resorbed
during continued magma ascent, resulting in sulfide and
PGE rich magmas being emplaced into the Bushveld cham-
ber, followed by segregation of the sulfides to form the
reefs (Lee and Butcher 1990; Mitchell and Scoon 2007,
Naldrett et al. 2009; Latypov et al. 2017). The model has
been particularly popular for the Platreef (Lee 1996;
McDonald and Holwell 2007; Holwell et al. 2011) because
the total amount of PGE in the Platreef would require a
complementary magma column of up to 10 km of overly-
ing PGE depleted magma (at least in a simplistic 2D mod-
el). However, cumulates and residual liquids may have mi-
grated towards the interior or the periphery of the chamber.
Another problem with Model 2, as with some of the pro-
posed mechanisms listed under Model 1 above, is that there
is presently no evidence for PGE or sulfide-rich parent
magmas to the Bushveld Complex although numerous
fine-grained sills and several chilled margins have been
studied (Davies and Tredoux 1985; Barnes et al. 2010;
Wilson et al. 2015; Maier et al. 2016). However, the avail-
able data are all from the western and eastern Bushveld,
and thus more work is required to study the marginal suite
in the northern limb.

Contributions in this thematic issue

In the papers within this thematic issue, we present a
large amount of new data for the Flatreef based on the
study of the extensive drill core archive of Ivanplats.
The locations of the drillholes used in the studies in
this issue are shown in Figure 4. Most of the papers
are based on research presented first at the northern
limb session during the 13th International Platinum
Symposium held in Limpopo, South Africa, in June—
July 2018. The efforts of the organizing committee in
carrying out field excursions and coreyard visits are
gratefully acknowledged.

Maier et al. (2020) focus on the petrogenesis of the
most highly mineralized portion of the Flatreef, namely,
the interval between the MZ and the base of the
Merensky Reef. Based on a detailed examination of four
drill cores, they propose that the combination of several
favourable processes, including country rock assimila-
tion as well as hydrodynamic and hydromagmatic pro-
cesses, resulted in exceptionally thick mineralized inter-
vals (e.g. 22m at >8 ppm in UMT378).

Langa et al. (2020) compare the UG2 chromitite in
the Flatreef with a UG2 reference suite from the west-
ern Bushveld using a range of techniques including pe-
trography, electron probe microanalysis, laser ablation-
inductively coupled plasma-mass spectrometry and
Mossbauer spectroscopy. They conclude that whereas
semi-massive and disseminated chromitite may have a
variable composition due to equilibration with trapped
silicate melt, the massive portions of the seams have
overlapping compositions.

Yudovskaya et al. (2020) conducted a detailed petro-
graphic and compositional study of the interaction be-
tween the intruding Lower Zone magmas and the
anhydrite-rich country rocks in drill core UMT336.
The study shows that contact metamorphism and
partial melting may result in the formation of hybrid
rocks with Sr isotope characteristics similar to those of
the pristine magmatic counterparts.

The papers by Mayer et al. (2020) and Beukes et al.
(2020) present the first Sr isotopic profiles of the
Flatreef on the farms Turfspruit (Mayer et al.) and
Macalacaskop (Beukes et al.). Both studies document a
similar Sr isotopic stratigraphy and range in initial Sr
isotope ratio as previously documented in the Merensky
Reef interval of the western Bushveld by Kruger and
Marsh (1985).

Keir-Sage et al. (2020) present a detailed S isotopic
profile of the Flatreef as intersected in deep drill core
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UTM94. The authors show that the lower portion of the
Flatreef has 5**S values up to +8%o suggesting strong
contamination by the country rocks, whereas the upper
portions, including the proposed correlatives of the
Merensky and Bastard reefs, have 534S values of +2
to +4%o overlapping with the uppermost Critical Zone
of the western Bushveld.

In summary, papers in this thematic issue provide
support for correlation between the Flatreef of the
northern limb and the uppermost Critical Zone in the
remainder of the Bushveld Complex while also
documenting strong contamination of the Flatreef rocks
by the country rocks.

Open Access This article is licensed under a Creative Commons
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tation, distribution and reproduction in any medium or format, as long as
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