
Macrovascular complications such as myocardial in-
farction, angina pectoris and cerebrovascular acci-
dents are the major causes of mortality in diabetic pa-
tients [1, 2]. Although the maintenance of a good gly-
caemic control for a long period can decrease the risk
of the development of diabetic microangiopathy [3],
the development of diabetic macroangiopathy cannot

be prevented by glycaemic control [3, 4]. Therefore, it
is very important to establish the pathogenesis of dia-
betic macroangiopathy.

Various hypotheses including increased polyol
pathway activity, protein kinase C (PKC) activation,
increased oxidative stress and enhanced non-enzy-
matic glycation have been implicated in the patho-
genesis of diabetic microangiopathy such as retinopa-
thy, nephropathy and neuropathy [5, 6]. Hypergly-
caemia-induced metabolic alterations could also con-
tribute to the development of diabetic macroangiopa-
thy. Although the importance of the latter three met-
abolic deficits in the pathogenesis of diabetic macro-
angiopathy have been investigated precisely [7±12],
the relation between polyol pathway hyperactivity
and diabetic macroangiopathy remains unclear.
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Abstract

Aims/hypothesis. Although increased polyol pathway
activity has been implicated in the pathogenesis of dia-
betic microangiopathy, the relation with diabetic mac-
roangiopathy remains unclear. Galactose feeding is
known to stimulate the polyol pathway and to develop
abnormalites similar to those in diabetic microangio-
pathy. Our study was conducted to investigate wheth-
er an activation of polyol pathway by long-term treat-
ment with galactose produced morphological changes
in coronary arteries of dogs and the effect of an aldose
reductase inhibitor, epalrestat, was also studied.
Methods. Dogs received either normal chow or chow
containing 30% galactose with or without epalrestat
given orally (20 or 50 mg ×kg±1). After 44 months,
morphometric analyses of coronary arteries were car-
ried out and the galactitol contents in aortas were
measured.

Results. The ratio of areas of the intimal layer to those
of the medial layer, an indicator of intimal thickening,
was statistically significantly increased in galactose-
fed dogs compared with control dogs. Galactose-fed
dogs had a remarkable accumulation of galactitol in
their aortas. These morphological and biochemical
deficits were reduced by treatment with epalrestat.
Conclusion/interpretation. This report morphologi-
cally shows diabetes-like macrovascular abnormali-
ties in galactosaemic animals, suggesting that polyol
pathway hyperactivity is closely related to the devel-
opment of diabetic macroangiopathy, which could be
prevented by aldose reductase inhibition. [Diabetolo-
gia (1999) 42: 1404±1409]
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As the rate-limiting enzyme of the polyol pathway,
aldose reductase, can convert galactose to galactitol,
which is only poorly metabolized by sorbitol dehydro-
genase [13]. Galactose-feeding provides an enhanced
flux through the first step of the polyol pathway and
does not cause either hyperglycaemia, hypo-insulin-
aemia, hyperinsulinaemia or hyperlipidemia. There-
fore, the galactosaemic animal is a suitable model for
studying the effects of polyol pathway hyperactivity it-
self. The galactose model should also help to avoid
problems resulting from the limited life-span of exper-
imental animals and increased mortality associated
with long-standing diabetes. Previous studies have
shown functional, biochemical or morphological ab-
normalities in galactosaemic animals similar to those
in diabetic neuropathy, retinopathy or nephropathy
[14±20]. In addition, functional or biochemical deficits
in galactosaemic rat aorta or aortic smooth muscle
cells cultured with increased galactose concentrations
[8, 21] suggest that galactose feeding could also cause
diabetes-like macroangiopathy. Morphological analy-
ses of galactose-induced macroangiopathy have, how-
ever, never been reported.

Our study was conducted to investigate whether
activation of the polyol pathway by long-term treat-
ment with galactose produced morphological chan-
ges in coronary arteries and the effect of an aldose re-
ductase inhibitor, epalrestat [E-3-carboxymethyl-5-
(2E-methyl-3-phenylpropenylidene) rhodamine] [22,
23], was also studied.

Materials and methods

Animals. Healthy male beagle dogs (CSK Research Park, Na-
gano, Japan) aged 5 months were housed in separate cages
and divided at random into four groups as follows: (1) control
dogs, (2) galactose-fed dogs, (3) galactose-fed and low dose
epalrestat (20 mg × kg±1 × day±1)-treated dogs, (4) galactose-fed
and high dose epalrestat (50 mg × kg±1 × day±1)-treated dogs.
Control or galactose-fed dogs received normal dog chow (350
g × day±1) (Oriental Yest Co., Tokyo, Japan) containing 30 %
non-nutrient fibre or 30 % galactose, respectively. Epalrestat
(Ono Pharmaceutical Co., Osaka, Japan) was given by gavage
every day 1 h before feeding. The principles of laboratory ani-
mal care (NIH publication no. 85±23, revised 1995) were fol-
lowed as well as the Animal Experimentation Guide of Nag-
oya University School of Medicine.

Morphological analysis. After 44 months of treatment, dogs
were killed and the hearts and aortas were removed. Aortas
were immediately frozen in liquid nitrogen and stored at
±80 °C for assay of the galactitol content as described below.
Hearts were preserved in 10 % formaldehyde, followed by de-
hydration through a graded series of ethanol. The samples
were embedded in paraffin and the cross-sections (5 mm) at
the level of bifurcation of left coronary arteries were stained
with Elastica van Gieson for microscopic analysis using a com-
puterized image analysis system (C ´ imaging systems, Compix
Inc., Mars, Pa., USA). Morphometric analysis was done on
the intimal and medial layers of coronary arteries which had a

diameter of 300±800 mm. Six measurements in each sample
were carried out and the mean value was taken as the repre-
sentative. The personnel who quantified the change were
blinded to the treatment.

Assay of galactitol contents in aortas and erythrocytes. Blood
obtained at 42 months was centrifuged at 1000 ´ g for 10 min
at 4 °C and the separated erythrocytes were washed twice
with cold physiological saline and frozen at ±80 °C until assay.
Galactitol contents in aortas and erythrocytes were measured
by a trimethylsilylether-based gas-liquid chromatographic
method. The frozen aortas and erythrocytes were homoge-
nized in 0.2 N ZnSO4 containing 0.05 mmol a-methyl-d-manno-
side as an internal standard. The solution mixture was heated
at 50 °C for 10 min and deproteinization was completed by the
addition of 0.2 N Ba(OH)2. After centrifugation at 1000 ´ g
for 10 min at 4 °C, the supernatant was evaporated and dried
to a residue, which was silylcated with 0.1 ml of N-trim-
ethylsilylimidazol (GL-Sciences, Tokyo, Japan) at 37 °C for
1 h. The trimetylsilyc ethers formed were then assayed with
gas chromatograph (GC-17 A, Shimazu Co., Kyoto, Japan).

Biochemical assay. An aliquot of the serum obtained above
was subjected to biochemical analysis. Glucose was deter-
mined by an enzymatic analysis (the glucose C test, Wako
Pure Chemicals, Osaka, Japan). Total cholesterol concentra-
tions were also measured by enzymatic methods (Determiner
TC-S; Kyowa Medex, Tokyo, Japan). Erythrocyte HbA1 c val-
ues were measured by immunoassay (DCA-2000, Bayer-San-
kyo Co., Tokyo, Japan).

Statistical analysis. Results are presented as means ± SEM.
Differences among experimental groups were detected by
analysis of variance and the differences between groups was
assessed by Scheffe's S test. Significance was defined as a p val-
ue less than 0.05.

Results

Body weight and biochemical data. There were no sig-
nificant differences in body weight or serum concen-
trations of glucose and total cholesterol between con-
trol and untreated galactose-fed dogs (Table 1).
Erythrocyte HbA1c values in untreated galactose-fed
dogs were significantly higher than those in control
dogs (Table 1). Treatment of galactose-fed dogs with
either high or low dose epalrestat did not alter these
variables.

Morphology of coronary arteries. Representative
light photomicrographs of coronary arteries of con-
trol and galactose-fed dogs treated with or without
high-dose epalrestat are shown in Fig.1. Untreated
galactose-fed dogs showed remarkable intimal thick-
ening compared with control dogs (Fig.1). This thick-
ening was clearly diminished by treatment with high-
dose epalrestat (Fig.1). For the statistical analysis,
the area of intimal layer was measured. Although
there were no significant differences in the areas of
intimal layer between each experimental condition,
the areas of intimal layer in untreated galactose-fed
dogs (0.19 ± 0.02 mm2) were larger than those in con-

Y.Kasuya et al.: Diabetic macroangiopathy and polyol pathway 1405



trol dogs (0.15 ± 0.01) and treatment of galactose-fed
dogs with low and high dose epalrestat decreased the
areas of the intimal layer (low-dose: 0.16 ± 0.02,
high-dose: 0.14 ± 0.03) (Fig.2). The larger arteries
have larger areas of intimal layer and there was a
great variation in the diameters of the arteries used
for measurement of the areas of intimal layer. This
could result in no significant differences. Therefore,
the areas of medial layer were also measured to com-
pensate for the differences in the diameters of the ar-
teries, and the intimal thickness was expressed as the
ratio of the areas of intimal layer to those of medial
layer (IA:MA) as reported previously [24]. The
IA:MA in untreated galactose-fed dogs (0.76 ± 0.03,
p < 0.05) was significantly increased compared with
that in control dogs (0.39 ± 0.03). Treatment of galac-
tose-fed dogs with epalrestat significantly decreased
the IA:MA in a dose-dependent fashion (low-dose:
0.56 ± 0.03, high-dose: 0.46 ± 0.02, p < 0.05) (Fig.2).

Galactitol content in aortas and erythrocytes. Galacti-
tol was not detected in the aortas of control dogs. Un-
treated galactose-fed dogs had a remarkable accumu-
lation of galactitol in their aortas (0.68 ± 0.12
nmol × mg protein±1), which was significantly dimin-
ished by treatment with epalrestat in a dose-depen-

dent fashion (low-dose: 0.47 ± 0.1, high-dose:
0.22 ± 0.03, p < 0.05) (Fig.3). The effects of galctose
feeding and epalrestat on galactitol content in eryth-
rocytes were similar to those in aortas (Fig.3).

Discussion

Our study showed that galactose feeding of beagle
dogs for a long period caused intimal thickening in
coronary arteries and galactitol accumulation in aor-
tas and that these abnormalities were reduced by
treatment with an aldose reductase inhibitor, epalre-
stat.

There are a few animal models of diabetes, such as
mice [25], rabbits [26] and hamsters [27] which mor-
phologically show atherosclerotic lesions. In addi-
tion, diabetic animals have hyperlipidaemia, which is
one of the most important atherogenic factors.
Therefore, it is impossible to investigate the role of
hyperglycaemia itself in the development of athero-
sclerosis in diabetic animals. Previous studies have
shown that the galactose-fed animal would be a use-
ful model for investigating the pathogenesis of dia-
betic microangiopathy [14±20]. Pericyte ghost forma-
tion, microaneurysms and acellular capillaries in the
retinas, which are characteristic features of diabetic
retinopathy in humans, have been found in galac-
tose-fed dogs [14]. Diabetes-like preproliferative ab-
normalities such as intraretinal microvascular abnor-
malities, occluded arterioles, preretinal and intravi-
treal haemorrhage and neovascularization in optic
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Table 1. Body weight (BW), serum concentrations of glucose and total cholesterol (T- chol) and erythrocyte HbA1c values in con-
trol and galactose-fed dogs treated with or without epalrestat

n BW
(kg)

Glucose
(mmol × l�1)

HbA1c
(%)

T- chol
(mmol × l�1)

Control 4 9.6 ± 0.3 5.54 ± 0.16 3.5 ± 0.1 3.75 ± 0.49
Galactose 9 11.4 ± 0.8 5.51 ± 0.11 5.4 ± 0.1a 5.66 ± 0.59
Galactose + L-ARI 5 12.1 ± 0.7 5.81 ± 0.09 5.3 ± 0.1a 5.61 ± 0.54
Galactose + H-ARI 9 12.4 ± 0.6 5.62 ± 0.14 4.9 ± 0.2a 5.97 ± 0.16

Values are means ± SEM, L-ARI: low-dose (20 mg × kg�1) epalrestat, H-ARI: high-dose (50 mg × kg�1) epalrestat, a p < 0.05 vs con-
trol

Fig.1 A±C. Representative light photomicrographs of coro-
nary arteries. A control dogs, B galactose-fed dogs, C galac-
tose-fed dogs treated with high-dose (50 mg × kg±1) epalrestat



discs have also been observed in galactosaemic dogs
[15]. In addition, functional or morphological deficits
similar to diabetic nephropathy or neuropathy have
been detected in galactosaemic animals [16±20].
There are, however, few reports on macrovascular
abnormalities in galactose-fed animal models, only
biochemical or functional abnormalities of aortas
consistent with those in diabetic animals have been
reported [8, 21].

Galactose can be reduced to galactitol by aldose
reductase, a late-limiting enzyme of the polyol path-
way which converts glucose to sorbitol, but galactitol
is not a substrate of sorbitol dehydrogenase which ca-
talyses the conversion of sorbitol to fructose [13].
Therefore, galactosaemic animals have been used
mainly to investigate the pathogenesis of diabetic mi-
croangiopathy from the view point of polyol pathway
hyperactivity and the efficacy of aldose reductase in-
hibitors for preventing the development of diabetic
microangiopathy. Several reports [28±30], in which
the dose of an aldose reductase inhibitor, sorbinil,
was relatively low, could not find beneficial effects of
an aldose reductase inhibitor. Various studies have,
however, reported preventive effects of aldose reduc-
tase inhibitors on the development of diabetes-like
neuropathy [31], nephropathy [32], myopathy [31,
33] and retinopathy [34, 35] in galactose-fed animals.
As for macrovascular abnormalities, it was reported
that activation of the diacylglycerol (DAG)-PKC

pathway in galactosaemic aortas was not reduced by
an aldose reductase inhibitor [8]. On the other hand,
galactose-induced deficits in relaxation of aortas
were prevented by aldose reductase inhibition [21].
Moreover, polyol accumulation and osmotic stress
lead to compromised integrity of cell membranes
[36], which facilitates non-receptor-mediated uptake
of oxidized low-density lipoproteins which are impli-
cated in intimal thickening [37, 38]. Our study also
morphologically confirmed that the intimal thicken-
ing of coronary arteries of galactosaemic dogs can be
prevented by an aldose reductase inhibitor. Although
metabolic alterations due to hypergalactosaemia,
apart from an accumulation of intracellular galactitol
remain unclear, these observations suggest that al-
dose reductase inhibitor-sensitive metabolic altera-
tions are responsible for the development of diabe-
tes-like macroangiopathy as well as microangiopathy.

Initially, sorbitol accumulation which increases in-
tracellular osmolality was considered to have a key
role in the polyol pathway hyperactivity hypothesis.
In recent studies, polyol pathway-related metabolic
alterations such as myo-inositol depletion [39], in-
creased oxidative stress [40], glycation [41] or altered
PKC activity [5] rather than sorbitol accumulation it-
self have gained attention as the pathogenic factors of
diabetic complications. Previous observations de-
scribed above [31±35] and the results of this study
verify the importance of intracellular sorbitol accu-
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Fig.2 A, B. Morphometric analysis of the intimal thickening in
coronary arteries of control and galactose-fed dogs treat-
ed with or without epalrestat. A areas of intimal layer (IA),
B the ratio of the areas of intimal layer to those of medial layer
(IA:MA). Cont: control, Gal: galactose, L-ARI: low-dose
(20 mg × kg±1) epalrestat, H-ARI: high-dose (50 mg × kg±1)
epalrestat. Values are means ± SEM. *p < 0.05 vs untreated ga-
lactose-fed dogs

Fig.3A, B. Galactitol contents in (A) aortas and (B) erythro-
cytes of control and galactose-fed dogs treated with or without
epalrestat. Cont: control, Gal: galactose, L-ARI: low-dose
(20 mg × kg±1) epalrestat, H-ARI: high-dose (50 mg × kg±1)
epalrestat. ND: not detected. Values are means ± SEM.
*p < 0.05 vs untreated galactose-fed dogs



mulation for the development of not only diabetic mi-
croangiopathy but also macroangiopathy.

Increases in oxidative stress, glycation [42] and
DAG-PKC activity [43] have been implicated in the
pathogenesis of diabetic macroangiopathy. Polyol
pathway hyperactivity have been considered to be re-
lated to these metabolic deficits through an alteration
of the redox state [44] including a decrease in NAD-
PH:NADP+ and an increase in NADH:NAD+. The
latter causes an increase in DAG-PKC activity but
not in galactose-induced polyol pathway hyperactivi-
ty itself as described above. An increase in NADH:
NAD+ has, however, been found in galactosaemic an-
imals and was prevented by an aldose reductase in-
hibitor [45]. In addition, activation of the DAG-PKC
pathway has been shown in the galactosaemic aorta
[8]. Although the precise mechanism mediating an in-
crease in NADH:NAD+ and PKC activity in hyperga-
lactosaemia remains unclear and PKC activity was
not measured in this study, these observations and
that the aldose reductase inhibition prevented the in-
timal thickening suggest that galactose-induced inti-
mal thickening is mediated through polyol pathway-
induced activation of the DAG-PKC pathway.

A decrease in NADPH:NADP+ can be observed
not only in hyperglycaemia but also in hypergalactos-
aemia, resulting in an increase in oxidative stress
through a reduction in glutathione. Increased oxygen
radicals initiate lipid peroxidation, which, in turn,
stimulate protein glycation [46, 47]. Furthermore, ga-
lactitol can be metabolized to galactitol-2-phosphate
and galactitol-3-phosphate [48], which could be po-
tent protein-glycating agents like fructose-3-phos-
phate [49]. Therefore, increased oxidative stress and
the following acceleration of glycation in galactosa-
emia could be involved in the intimal thickening of
coronary arteries. In fact, epalrestat prevented an in-
crease in carboxymethyllysin, an advanced glycation
end product, in aortas of galactosaemic dogs [50].
This could strongly support the close relation be-
tween increased polyol pathway activity and glyca-
tion in the development of diabetic macroangiopathy.

In summary, an intimal thickening of coronary ar-
teries similar to that in diabetic macroangiopathy
was observed in galactose-fed dogs concomitant with
a remarkable accumulation of galactitol in their aor-
tas and treatment with an aldose reductase inhibitor,
epalrestat, significantly prevented these deficits.
These observations suggest that polyol pathway hy-
peractivity is closely related to the development of di-
abetic macroangiopathy, which could be prevented
by aldose reductase inhibition.
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