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Several monosaccharide esters were recently intro-
duced as new tools in biomedical research. [1]. These
esters seem to be able to cross the plasma membrane
without requiring the intervention of a specific carri-
er system. They then undergo intracellular hydrolysis
in esterase-catalysed reactions, so that their glucidic
moiety becomes readily available for further metabo-
lism or metabolic action [2, 3]. The major aim of this
brief review is to draw attention to the possible use
of some of these esters as new insulinotropic tools in
the treatment of such diseases as Type II (non-insu-
lin-dependent) diabetes mellitus, insulinoma or
persistent hyperinsulinaemia in childhood. In the
treatment of diabetes, they could be used in combina-
tion with other insulinotropic agents such as hypo-
glycaemic sulphonylureas [4±14], meglitinide ana-
logues [15±24], imidazolidine [25±32] and guanidine
[33±36] derivatives or glucagon-like peptide-1
[37±46].

Experimental findings

Esters of metabolized hexoses, such as a-d-glucose
pentaacetate or b-d-glucose pentaacetate, stimulate
insulin release from islets incubated either in the ab-
sence of any exogenous nutrient or in the presence of
such nutrient secretagogues as d-glucose and l-leu-
cine [47] or, as shown in Figure 1, the dimethyl ester
of succinic acid (SAD). Unexpectedly, however, some
esters of non-metabolized hexoses, such as a-l-glu-

cose pentaacetate and b-l-glucose pentaacetate also
show positive insulinotropic action, the most obvious
effect being in islets exposed to another nutrient secre-
tagogue, e. g. l-leucine or the dimethyl ester of succin-
ic acid (Fig.1). Even more surprisingly, monosaccha-
ride esters that inhibit d-glucose metabolism (such as
d-mannoheptulose hexaacetate or 2-deoxy-d-glucose
tetraacetate) and suppress d-glucose-stimulated insu-
lin release [48, 49], were found to enhance the beta
cell secretory response to non-glucidic nutrients, e.g.
the dimethyl ester of succinic acid (Fig.1). When test-
ed in suitably low concentrations, the tetraacetate es-
ters of 2-deoxy-d-glucose even enhance insulin release
stimulated by d-glucose [49].

Detailed investigations on the metabolic fate of b-
l-glucose pentaacetate in isolated pancreatic islets
and its effects on variables such as protein biosynthe-
sis, cyclic AMP formation, generation of inositol phos-
phates, intracellular pH, 86Rb efflux and bioelectrical
activity, 45Ca net uptake and efflux, cytosolic Ca2+ con-
centration and insulin release suggest that the esters of
non-metabolized monosaccharides with positive insu-
linotropic action may directly interact with a receptor
system, resulting in a decrease in K+ conductance,
plasma membrane depolarization and induction of
electrical activity [50]. This model is thought to have
analogies with the recognition of bitter compounds
by taste buds [51]. Purified islet beta cells indeed con-
tain the a-gustducin G-protein involved in this recog-
nition process (unpublished observation).

The findings mentioned above also raise the idea
that some monosaccharide esters, especially those of
l-glucose, can be used as insulinotropic tools to stim-
ulate insulin release in Type II diabetes. They are in-
deed likely to bypass those site-specific defects in d-
glucose transport, phosphorylation and further me-
tabolism currently held responsible for a preferential
alteration of the diseased beta cell response to d-glu-
cose in Type II diabetes [52].
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In light of such a proposal, the effects of several
monosaccharide esters upon insulin secretion were
compared in islets from either control rats or heredi-
tarily diabetic Goto-Kakizaki rats (GK rats).

As illustrated in Figure 2 (upper panel), the rate of
insulin release evoked by either 8.3 mmol/l d-glucose
or 10.0 mmol/l l-leucine is much lower (p < 0.001) in
islets from GK rats than in islets from control animals
[53]. Relative to such a secretory rate, the enhancing
action of 2-deoxy-d-glucose tetraacetate (1.7 mmol/l)
upon glucose-stimulated insulin output and that of
a-d-glucose pentaacetate (also 1.7 mmol/l) upon leu-
cine-induced insulin release was more pronounced
(p < 0.025 or less) in the diabetic animals than in the
control rats (Fig.2B). Likewise, in islets exposed to
the dimethyl ester of succinic acid, the absolute value
for insulin release is lower (p < 0.001) in GK rats than
in control animals (Fig.3A), but the relative magni-
tude of the enhancing action of either d-mannoheptu-
lose hexaacetate or b-d-glucose pentaacetate (both
1.7 mmol/l) is higher (p < 0.02 or less) in GK rats
than control animals (Fig.3B).

Relative to the paired reference value recorded in
the presence of the dimethyl ester of succinic acid
(10.0 mmol/l) alone, the output of insulin found in is-
lets exposed to both the succinic acid ester and a-l-
glucose pentaacetate (1.7 mmol/l) was again higher
in GK rats than in control animals, although such a
difference failed to achieve statistical significance
(p < 0.11). For b-l-glucose pentaacetate (also
1.7 mmol/l), the relative magnitude of enhancing ac-
tion of the ester upon insulin release evoked by the
dimethyl ester of succinic acid was even lower
(p < 0.001) in GK rats than in control animals. In

fact, the b-anomer of l-glucose pentaacetate failed
to enhance significantly (p < 0.3) insulin output.

Inactivation of glycogen phosphorylase a by glu-
cose could explain these findings [54]. It was indeed
previously documented (i) that glycogen accumulates
in the beta cell in situations of long-term hyperglycae-
mia [55], (ii) that d-glucose inactivates glycogen phos-
phorylase a in pancreatic islets as in liver [56], (iii)
that such an enzymatic event coincides with a glu-
cose-induced inhibition of glycogenolysis in glyco-
gen-rich islets [57, 58], (iv) that the latter metabolic
event may, in turn, result in a paradoxical inhibition
of insulin release in response to a rise in d-glucose
concentration [55, 59], (v) that the interaction of
phosphorylase a with d-glucose shows a-stereospeci-
ficity [60], (vi) that, likewise, a-d-glucose seems
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Fig. 1. Effects of a-d-glucose pentaacetate, b-d-glucose penta-
acetate, a-l-glucose pentaacetate, b-l-glucose pentaacetate,
2-deoxy-b-d-glucose tetraacetate and d-mannoheptulose hexa-
acetate (all tested at 1.7 mmol/l concentration) upon insulin re-
lease evoked by 10.0 mmol/l succinic acid dimethyl ester
(SAD) in pancreatic islets isolated from normal rats. Mean val-
ues ( ± SEM) refer to 24±216 individual determinations. The
vertical dotted line indicates the mean secretory rate recorded
in the sole presence of SAD (n = 216). glu = glucose, PA= pen-
taacetate, TA= tetraacetate, HA= hexaacetate

Fig. 2. A Absolute values for insulin release evoked by
8.3 mmol/l d-glucose (left) or 10.0 mmol/l l-leucine (right) in
islets from either control (open columns) or GK (lightly shad-
ed columns) rats. B Effects of 2-deoxy-d-glucose tetraacetate
(1.7 mmol/l; darkly shaded or black columns) upon insulin re-
lease evoked by 8.3 mmol/l d-glucose (left) and of a-d-glucose
pentaacetate (1.7 mmol/l; darkly shaded or black columns)
upon insulin output caused by 10.0 mmol/l l-leucine (right) in
islets from either control or GK rats, all results being ex-
pressed relative to the corresponding reference value found,
within the same experiment, in the absence of the tested ester
(open or lightly shaded columns). Mean values ( ± SEM) refer
to the number of individual observations indicated at the bot-
tom of each column. glu = glucose, DOG = deoxy-d-glucose,
TA= tetraacetate, PA= pentaacetate



more efficient than b-d-glucose in suppressing glyco-
genolysis in glycogen-rich islets [55], and (vii) that,
probably as a result, the anomeric specificity of the
beta cell secretory response to d-glucose is disturbed
in Type II diabetic subjects [61] and in animal models
of Type II diabetes [62±65], the normal preference for
a-d-glucose being attenuated, suppressed or even re-
versed as a function of the severity and duration of
the hyperglycaemic state [66]. Because the conforma-
tion of b-l-glucopyranose resembles that of a-d-glu-
copyranose at the level of the C1 hemiacetal group
[67], the more pronounced insulinotropic action of
a-l-glucose pentaacetate (as compared with b-l-glu-
cose pentaacetate) in islets from GK rats might thus

reflect the greater inactivation of glycogen phospho-
rylase a by the l-glucose b-anomer, which is produced
by hydrolysis of its pentaacetate ester in the islet cells.

In conclusion, a-l-glucose pentaacetate can, there-
fore, be proposed as a novel insulinotropic tool in the
treatment of Type II diabetes. This ester would offer
the advantages of (i) bypassing the site-specific de-
fects in d-glucose handling in the beta cell of diabetic
patients, (ii) minimizing the inhibition of glycogenol-
ysis otherwise attributable to interaction of b-l-glu-
cose with phosphorylase a in the beta cell, and (iii)
avoiding the stimulation of hepatic gluconeogenesis
that may result from treatment with insulinotropic es-
ters such as succinic acid dimethyl ester or d-glucose
pentaacetate [68, 69]. This proposal is consistent
with the recent observation that when normal rats
were injected intravenously with no more pentaace-
tate ester of l-glucose than 8.8 nmol/g body weight,
a sizeable increase in plasma insulin concentration
was provoked within 2 min [70].

Note that the stimulation of insulin release by the
polyacetate esters of monosaccharides cannot be at-
tributed to the catabolism of their acetate moiety. In-
deed, some esters that are as efficiently taken up and
hydrolysed in pancreatic islets as a-d-glucose penta-
acetate or b-l-glucose pentaacetate, e.g. b-d-galac-
tose pentaacetate, have no positive insulinotropic ac-
tion [47, 71].

Some of these esters may even inhibit nutrient-
stimulated insulin release [72, 73]. This is illustrated
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Fig. 3. A Absolute values for insulin release evoked by
10.0 mmol/l succinic acid dimethyl ester (SAD) in islets from
either control (open columns) or GK (lightly shaded column)
rats. B Effects of d-mannoheptulose hexaacetate, a-l-glucose
pentaacetate, b-l-glucose pentaacetate and b-d-glucose penta-
acetate (1.7 mmol/l; darkly shaded or black columns) upon in-
sulin release caused by SAD in islets from either control (C)
or GK rats all results being expressed relative to the corre-
sponding reference value found, within the same experiments,
in the sole presence of SAD. Mean values ( ± SEM) refer to
number of individual determinations indicated at the bottom
of each column (upper panel) or as n at the top of the lower
panel. MH = mannoheptulose, HA= hexaacetate, PA= penta-
acetate, glu = glucose
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Fig. 4. Effects of a-d-galactose pentaacetate and b-d-galactose
pentaacetate (1.7 mmol/l each) upon insulin release evoked by
either 10.0 mmol/l l-leucine (A) or 10.0 mmol/l succinic acid
dimethyl ester (SAD; B) in pancreatic islets isolated from nor-
mal rats. The first columns to the left illustrate the basal insulin
output. Mean values ( ± SEM) refer to 30±60 individual deter-
minations. gal = galactose, PA= pentaacetate



in Figure 4, which indicates that a-d-galactose penta-
acetate inhibits insulin release evoked by either l-
leucine or the dimethyl ester of succinic acid, whilst
b-d-galactose pentaacetate inhibits less strongly ± or
even fails to noticeably affect ± the secretory re-
sponse to the non-glucidic nutrients. The pentaace-
tate ester of a-d-galactose (1.7 mmol/l) also inhibits
d-glucose-stimulated insulin release [78].

The findings summarized in Figure 4 suggest that
the receptor system mediating the beta cell functional
response to the esters of non-metabolized or poorly
metabolized monosaccharides could convey either a
positive or negative message to the insulin-releasing
effector machinery. These findings also led us to pro-
pose that the a-anomer of d-galactose pentaacetate
could conceivably be used to prevent excessive insu-
lin release in conditions such as persistent hyperinsu-
linaemia in childhood or insulinoma [72, 73].

The possible use of monosaccharide esters as insu-
linotropic agents is supported by recent findings doc-
umenting their insulinotropic action after intrave-
nous injection into anaesthetized rats [70, 74, 75].
Monosaccharide esters may also be used to potenti-
ate the beta cell secretory response to agents such as
gliquidone or repaglinide [74]. They seem to have no
undesirable side effects and have been used safely in
human subjects (unpublished observation). New mo-
dalities for giving them orally might be required,
however, to achieve a stimulation of insulin release
comparable with that found after intravenous injec-
tion [74].

Concluding remark

Recent studies have shown that monosaccharide es-
ters represent new tools to interfere specifically with
a given biochemical reaction in intact cells [76, 77] or
for antitumoural therapy [78±81]. The information
briefly reviewed here indicates that the introduction
of these esters also allows the detection of a novel
modality for (in)activation of the pancreatic islet
beta cells and might lead, therefore, to the develop-
ment of new agents for the treatment of hypoinsu-
linaemic or hyperinsulinaemic diseases.
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