
Keywords Insulin, Insulin resistance, Platelets, Vas-
cular Smooth Muscle, Calcium, cGMP, cAMP, Nitric
oxide, Prostacyclin.

1. Introduction

The relationships between insulin, insulin resistance
and atherosclerosis are still a matter of intense debate
[1±4] even though it was suggested as long as 30 years
ago that insulin is involved in the pathogenesis of ath-
erosclerosis [5]. It is not clear whether insulin plays
the role of a culprit, an innocent bystander, a factor
involved in the attenuation of some steps in the
atherogenic process or an agent with multifaceted ac-
tions having different and possibly contrasting ef-
fects. The question is: is the prevalence of atheroscle-
rosis in the insulin-resistant states due to hyperinsu-
linaemia or to the presence of cellular resistance to
some anti-atherogenic insulin actions? To answer we
need to know the mechanisms by which insulin influ-
ences the cells involved in the pathogenesis of athero-
sclerosis.

In this review we examine the way in which insulin
affects platelet function. Platelets are essential ele-

ments in the thrombotic and atherosclerotic process-
es because of their own functional properties and
their ability to interact with endothelial and vascular
smooth muscle cells (VSMC) [6]. As VSMC share
common features in their contractile structure and
its regulation with platelets [7] we also compare the
effect of insulin and insulin resistance on these two
types of cells. In particular we lay emphasis on the
modulation of calcium fluxes, cyclic nucleotide con-
centrations, nitric oxide and prostacyclin actions.

2. Basic information on platelet physiology

Some information on platelet physiology is necessary
to understand the insulin effects on platelets [8±12].

Main events in platelet activation

According to the ªresponse to injury hypothesisº [6]
atherosclerosis develops as a response to endothelial
damage due to: hypercholesterolaemia, oxidized
LDL, arterial hypertension, diabetes, cigarette smok-
ing, hyperhomocysteinaemia, etc. When endothelial
cells are damaged or lost, they are unable to produce
vasodilating, anti-aggregating and antithrombotic
substances such as prostacyclin (PGI2), nitric oxide
(NO), adenosine and heparin. In these conditions,
platelets:

i) adhere to subendothelium by interacting with
exposed collagen and other cytoadhesive proteins of
basal membranes through specific surface glycopro-
teins;

ii) lose their resting dish-like shape, becoming
sphere-like cells with pseudopods (shape change);

iii) metabolize the phospholipid-derived arachi-
donic acid into different eicosanoids, in particular,
into thromboxane A2 (TXA2) which causes fibrino-
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gen binding to platelets, aggregation, granule secre-
tion and vasoconstriction;

iv) show an activation of phospholipase C, acting
on the membrane phospholipid phosphatidylinositol
4,5-bisphosphate (IP2) to produce the second messen-
gers inositol 1,4,5-trisphosphate (IP3) and diacylglyc-
erol (DAG). IP3 increases cytosolic free calcium
(Ca2 + ) via a direct action on the Ca2 + stores con-
tained in the dense tubular system and thereby acti-
vates Ca2 + /calmodulin-dependent protein kinases,
whereas DAG directly activates protein kinase C
(PKC) and, via PKC, phosphorylates proteins in-
volved in the release reaction and increases cytosolic
pH;

v) interact with other platelets by forming aggre-
gates;

vi) release their granule content in the extracellu-
lar space through the canalicular system and microtu-
bular contractile proteins (release reaction);

vii) contribute to the activation of the coagulation
cascade, since some intrinsic coagulation reactions
occur preferentially on their surface;

viii) modulate fibrinolysis, since they contain both
plasminogen activators and inhibitors;

ix) induce chemotaxis and proliferation of
VSMC, since proteins contained in platelet granules
exert chemotactic and proliferating effects on these
cells;

x) modulate vasomotion, since they release both
vasodilating ± such as adenosine-diphosphate (ADP)
and adenosine-triphosphate (ATP) ± and vasocon-
stricting substances (TXA2 and serotonin).

Platelets are involved both in the early stages of
atherosclerosis (VSMC chemotaxis, migration to the
intima and proliferation) and in the advanced lesions:
after plaque formation, they contribute to vessel oc-
clusion by promoting vasoconstriction, activation of
the coagulative system and intravascular thrombus
formation. Platelets can be activated not only by
components of the subendothelial layer but also by
other physiologic mediators able to bind to specific
receptors, such as ADP, thrombin, catecholamines,
5-hydroxytryptamine, arginine vasopressin (AVP),
angiotensin II (AT II), platelet activating factor
(PAF) and TXA2.

Role of cyclic nucleotides in the modulation of platelet
function

Intraplatelet Ca2 + is the final mediator of platelet
functional changes [8±15]. Platelet agonists induce
depletion-refilling of Ca2 + stores: i) by generating
IP3, which promotes Ca2 + release from intracellular
stores in the cytosol, followed by Ca2 + re-accumula-
tion into the stores via a Ca2 + -Adenosine triphospha-
tase (Ca2 + -ATPase); ii) by inducing an influx of Ca2 +

from the extracellular space, directly by interaction

with agonist receptors and indirectly by depletion of
intracellular stores [13±15]. Similarly, Ca2 + fluxes
are the main regulators of VSMC contraction
[16±17].

Cyclic adenosine monophosphate (cAMP) and cy-
clic guanosine monophosphate (cGMP), the main in-
hibitory second messengers for platelet activation
acting predominantly via specific protein kinases
[18], reduce cytosolic Ca2 + by different mechanisms.
In particular, cAMP: i) decreases binding of thrombin
to its receptors [19]; ii) inhibits activation of phospho-
lipase C, with a consequent reduction of IP3 and
DAG [20±21]; iii) interferes with processes distal to
phospholipase C [21]; iv) by stimulating the Ca2 + -
ATPase, enhances Ca2 + extrusion from platelets
[22] and Ca2 + uptake by the dense tubular system
[23]. cAMP, therefore, decreases intraplatelet Ca2 +

by promoting its uptake into the internal stores and
its extrusion from the cells.

Similarly, cGMP: i) inhibits agonist-induced Ca2 +

mobilization from intracellular stores and Ca2 + in-
flux determined by store depletion [24]; ii) reduces
the activation of phospholipase C also at the level of
G-proteins [25], iii) modifies processes following pro-
tein phosphorylation close to the effector system [26].

Furthermore, both cAMP and cGMP: i) prevent
Ca2+-releasing activity of IP3 from stores by inducing
phosphorylation of IP3 receptors [27]; ii) inhibit
thrombin-dependent Ca2+ influx [28], and, via this
mechanism, modulate the Na+/H+ antiporter and re-
verse the thrombin-evoked alkalinization [29]. Owing
to the importance of Ca2 + fluxes in platelet function,
it is not surprising that the increase of either cAMP
or cGMP should prevent the main platelet responses:
phosphoinositide metabolism, Ca2 + elevation, pro-
tein phosphorylation, platelet aggregation and re-
lease reaction [20, 30±31]. Similar effects of cyclic nu-
cleotides on Ca2 + fluxes in VSMC mediate their va-
sodilating properties [32±35].

Modulation of cyclic nucleotide synthesis
and catabolism

It is useful to summarise the mechanisms of synthesis
and catabolism because of the relevance of cyclic nu-
cleotides in platelet function.

cAMP and cGMP are synthesized by adenylate cy-
clase and guanylate cyclase from ATP and guanosine
triphosphate (GTP), respectively.

Adenylate cyclase is activated by substances cou-
pled to specific Gs-proteins: prostaglandins, such as
prostaglandin E1 (PGE1) and PGI2, through specific
receptors [36±38]; adenosine through the purinergic
receptor A2 [39]; catecholamines through b2 adrener-
gic receptors [40] and D1 dopaminergic receptors
[41]. The catalytic subunit of adenylate cyclase can
be activated directly by forskolin [42]. Adenylate cy-
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clase is inhibited by substances activating receptors
coupled to Gi-proteins; in particular, a2-adrenergic
receptors [43] and D2 dopaminergic receptors [41].
Physiological substances able to stimulate adenylate
cyclase activity, such as PGE1 and PGI2, exert anti-ag-
gregating and vasodilating properties by increasing
cAMP both in platelets and in VSMC [44] and play a
key role in the prevention of atherosclerosis and
thrombosis [45].

cGMP is synthesized in platelets through a soluble
guanylate cyclase, inhibited by methylene blue and
activated by nitro-vasodilators and NO [46]. NO, a
diffusible substance with a half-life of a few seconds
formed from l-arginine by oxidation of its guani-
dine-nitrogen terminal [47], is the main endothelial-
derived relaxing factor [48] and a powerful platelet
inhibitor [49, 50]. It is able to reduce platelet adhe-
sion to the vessel wall [51], platelet aggregation [52],
and platelet surface glycoprotein expression, includ-
ing P-selectin and activated glycoprotein IIb-IIIa
complex [53]. As in endothelium, NO is constitutively
produced by a cytosolic NO-synthase (NOS) requir-
ing calmodulin, Ca2 + and NADPH, in platelets and
megakaryocytes [54±58]. The aminoacid sequence of
human platelet NOS has been identified [59].
Through their NOS activity, platelets produce detect-
able amounts of NO [60±61] able to exert physiologi-
cal effects such as inhibition of additional platelet re-
cruitment after platelet activation [62]. Analogues of
l-arginine, such as l-NG-monomethyl arginine (l-
NMMA), inhibit NO synthesis in a stereospecific
manner [63]. NOS is also inhibited by methylene
blue [64], a guanylate cyclase inhibitor [46]. With the
help of NOS inhibitors it was possible to determine
that platelet-derived NO regulates platelet function,
the activation of which is enhanced in vivo by infu-
sion of NOS inhibitors [65] and reduced by l-argin-
ine, the NOS-substrate [66].

In human platelets, PGI2 and NO, which modulate
cAMP and cGMP respectively, act synergistically to
inhibit aggregation [67±69]. This synergism is further
enhanced in vivo, since NO activates cyclo-oxygenase
via a cGMP-independent mechanism leading to the
endothelial release of PGI2 and therefore promoting
the synthesis of cAMP [70].

Both cAMP and cGMP are catalysed by phospho-
diesterases, enzymes subdivided into at least seven
families, with family-specific agonists and inhibitors,
able to hydrolyse selectively cAMP and cGMP or
both [71±72]. Platelets contain different phosphodi-
esterase families, among them: i) the cGMP-stimulat-
ed cAMP phosphodiesterase which hydrolyses both
cAMP and cGMP; ii) the low Km cGMP-inhibited
cAMP phosphodiesterase which is the most abundant
in platelets and hydrolyses cAMP more effectively
than cGMP; iii) the cGMP-specific phosphodi-
esterase [71]. Substances that increase cAMP by
means of adenylate cyclase activation, such as PGE1,

PGI2, Iloprost (a PGI2 analogue) and forskolin, stim-
ulate cAMP phosphodiesterase activity in platelets
with a negative feed-back mechanism which regulates
cAMP concentrations: this is particularly so in the
case of the cGMP-inhibited cAMP phosphodi-
esterase [71]. Furthermore, nitro-vasodilators, which
stimulate the production of cGMP by activating the
soluble guanylate cyclase, cause a dose-dependent in-
crease of cAMP also, since cGMP reduces cAMP ca-
tabolism by inhibiting the cGMP-inhibited cAMP
phosphodiesterase [73].

In summary, platelet aggregation is deeply in-
volved in atherothrombosis and requires important
changes in platelet Ca2 + fluxes, with a final increase
in intracellular Ca2 + content.

The cyclic nucleotides cAMP and cGMP, the
platelet content of which is determined by a balance
between the activity of anabolic and catabolic en-
zymes, are physiological inhibitory modulators of
Ca + fluxes and, therefore, also of platelet aggrega-
tion. For this reason, the main mechanism by which
platelet antagonists reduce platelet function is to in-
crease cyclic nucleotide concentrations. A similar
modulation of cyclic nucleotides regulates Ca2 + flux-
es in VSMC and mediate vasodilation.

3. Insulin influence on platelet function

Insulin receptors in platelets

The insulin receptors in human platelets have a con-
centration per surface area similar to that described
in other cells [74] and have a beta-subunit phosphory-
lated by the hormone itself [75±76]. In patients with
Type II diabetes mellitus, the platelet insulin receptor
number and affinity are reduced [77]. Platelets, there-
fore, are a site of the insulin action and can be subject
to variation of insulin sensitivity.

Insulin influence on platelet aggregation

We observed that, if human platelets are incubated
with physiological concentrations of insulin for short
periods of time (3±20 min), they have a reduced ag-
gregating response to agonists: ADP, thrombin,
adrenaline, PAF, collagen and sodium arachidonate
[78±83]. Similar results have been obtained by other
authors who observed that insulin reduces AT II-
and thrombin-induced platelet aggregation and at-
tenuates AT II ability to increase thrombin-stimulat-
ed platelet aggregation [84]. The same insulin-in-
duced reduction of platelet responses to agonists can
be reproduced in vivo by a euglycaemic hyperinsulin-
aemic clamp or similar techniques [79, 81, 85, 86].

Some authors, however, did not observe a direct
insulin action on platelet aggregation in vitro
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[87±89]. Others, using huge, supra-physiological
amounts of insulin (100 nmol/l), even noted an insu-
lin-induced pro-aggregating effect [90] which was
confirmed in our laboratory [91].

The physiological role of insulin in inhibiting
platelet function could play a protective role in the
prevention of thrombus formation and in the release
of vasoactive mediators and chemotactic/mitogenic
substances, thus contributing to reduce the pathologi-
cal events of thrombosis, hypertension and athero-
sclerosis. Furthermore, if platelets were a site of insu-
lin resistance, the associated loss of insulin's benefi-
cial effects could play a role in the increase in cardio-
vascular risk [92, 93]. This intriguing hypothesis has
been confirmed experimentally. In effect, in the insu-
lin-resistant states of obesity, obese Type II diabetes
mellitus and arterial hypertension, the anti-aggregat-
ing effect exerted by insulin is attenuated or lost [83,
84].

Insulin and Ca2 + fluxes in platelets:
similarities with VSMC

Insulin attenuates the action of different agonists
able to activate platelets with different receptor and
post-receptor events [78, 79, 84]. This means that the
hormone interplays with very basic mechanisms of
platelet function.

We have already mentioned that a rise in intracel-
lular Ca2 + is a crucial aspect of platelet activation
[8±15]. In these cells, the AT II-stimulated increases
in intracellular Ca2 + are attenuated by a 5-min in vit-
ro incubation with physiological insulin concentra-
tions (70 mU/ml); furthermore, insulin reduces the in-

crease in cytosolic pH induced by AT II and by endo-
thelin 1 (ET-1); finally, the insulin effects on Ca2 +

fluxes are accompanied by a concomitant reduction
of platelet aggregation in response to thrombin [84].
Interestingly, the same study shows that insulin,
when added alone to platelets, induces a rapid and
transient rise in free Ca2 + [84].

In cultured VSMC and mesangial cells, that are
structurally similar to platelets as far as the Ca2 + -reg-
ulated contractile processes are concerned [7, 16], in-
sulin, even at physiological concentrations, attenu-
ates Ca2 + fluxes and contractile responses to differ-
ent vasoconstrictors (AT II, AVP, noradrenaline, se-
rotonin, and ET-1) [94±107]. This direct insulin ac-
tion, together with VSMC-endothelium interactions
[106], could take part in the insulin-induced vasodila-
tion documented by many studies in vivo, consider-
ation of this is beyond the scope of this review.

Sites at which insulin acts in modulating intracellular
Ca2 + content: evidence from studies in VSMC

To understand the mechanisms by which insulin re-
duces Ca2 + fluxes in platelets, we should consider
similar effects in VSMC.

Since insulin inhibits Ca2 + responses elicited by
different agonists [95, 98, 101, 104, 107], it is possible
that its effects occur at a common point in the trans-
membrane signalling cascade: therefore, insulin
probably does not interplay primarily with receptor
binding of the different agonists. The vasoconstric-
tors tested generate IP3, which interacts with specific
receptors in the sarcoplasmic reticulum membrane
of VSMC, opening Ca2 + channels and permitting
Ca2 + contained in the intracellular stores to diffuse
from the sarcoplasmic reticulum to the cytosol [17,
108, 109]. Insulin, therefore, could reduce the in-
crease of intracellular Ca2 + induced by agonists by
attenuating Ca2 + release from the IP3-sensitive intra-
cellular stores. This hypothesis has been confirmed
experimentally in cultured rat VSMC, when a 20-
min insulin incubation did not alter basal intracellular
Ca2 + concentrations, but reduced AT II-induced IP3-
releasable Ca2 + flux, through a mechanism mimicked
by treatment with the cGMP analogue 8-bromo-
cGMP or with sodium nitroprusside, and blocked by
the NOS inhibitor l-NMMA [102]. Interestingly, in-
sulin did not modify AT II receptor affinity and den-
sity, AT II-stimulated phospholipase C activity or IP3
production [102] which demonstrates that it simply
reduces the sensitivity of Ca2 + stores for IP3. Similar
effects have been documented in porcine coronary
artery VSMC [107]. The ability of insulin to reduce
cytosolic Ca2 + by interplaying with intracellular
Ca2 + fluxes stimulated by agonists is further con-
firmed by the persistence of insulin effects in the ab-
sence of extracellular Ca2 + [102, 107]. In our labora-
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Table 1. Effects of insulin in platelets

± Activation of insulin receptors (a)

± Increase of cGMP (NO-mediated) (a), as in VSMC

± Increase of cAMP (NO-mediated, possibly via cGMP), as in
VSMC

± Increased effects on cAMP of adenylate cyclase activators (NO-
mediated), as in VSMC

± Reduced Ca2+ fluxes elicited by Ca2+-mobilizing agents (a), as in
VSMC

± Reduced agonist-elicited platelet aggregation (a)

± Increased antagonist-induced platelet anti-aggregation

± Increased binding of anti-aggregating prostanoids to platelets
via receptor up-regulation, with an increase of their effects

± Decreased binding of catecholamines to platelets via a2-adre-
nergic receptor down-regulation, with reduction of adrenaline-
induced aggregation

± Increased platelet uptake of magnesium

± Increased platelet release of plasminogen activator

(a) it has been demonstrated that this insulin effect is reduced
in the insulin-resistant states



tory, it has been observed that the insulin-induced
platelet anti-aggregating effect is also maintained in
a Ca2 + -free medium [80].

Insulin is also able to decrease Ca2 + influx in
VSMC by stimulating the Na + -K + ATPase pump
[110±112], a transport system that is inhibited by oua-
bain. Based on the exchange of intracellular K + with
extracellular Na + , stimulation of Na + -K + -ATPase
results in hyperpolarization of the cell membrane
and subsequent closure of voltage-dependent Ca2 +

channels, resulting in a decrease of intracellular
Ca2 + [113]. An insulin effect on this ion pump has
been reported in different cell types in vitro [114,
115] and has been described in in vivo experiments
[116]. In human platelets, ouabain increases both cy-
tosolic Ca2 + and Na + by blocking Na + -K + counter-
transport [117]. By analogy it could also be hypothe-
sized that insulin affects this cellular pump also in
platelets. In the rare condition of thyrotoxic periodic
paralysis, hyperinsulinaemia is accompanied by an el-
evated Na + -K + ATPase activity in platelets [118].

The insulin role in the regulation of the different
Ca2 + transport systems in VSMC has been reviewed
recently [119]. In any case, insulin reduces intracellu-
lar Ca2 + both in platelets and in VSMC, and, by this
basic mechanism, attenuates both platelet activation
and VSMC constriction.

Attentuation of the insulin effects on platelet Ca2 +

fluxes in insulin-resistant states: similarities with
VSMC

First, platelets from insulin-resistant animals and man
(e.g. affected by arterial hypertension, obesity or
Type II diabetes mellitus) exhibit increased cytosolic
free Ca2 + concentrations in resting and stimulated
conditions [84, 120±128]. A positive correlation be-
tween resting intracellular Ca2+ and serum insulin
concentrations, an indirect marker of insulin resist-
ance, has been observed [128]. The abnormalities in
Ca2 + handling in platelets from insulin-resistant sub-
jects could be due to a defective insulin action on
Ca2 + fluxes. In particular: i) platelets from hyperten-
sive subjects show higher basal and AT II-stimulated
intracellular Ca2 + concentrations; ii) in the presence
of arterial hypertension, the insulin-induced attenua-
tion of Ca2 + responses to AT II is impaired; iii) serum
insulin concentrations, a marker of insulin resistance,
are correlated positively with the increases in intra-
cellular free Ca2 + elicited by AT II in the presence of
insulin, meaning that the greater insulin resistance is,
the less effective insulin is in the attenuation of AT
II-stimulated Ca2 + fluxes [84]. These results suggest
that an attenuated insulin-induced inhibition of plate-
let responses stimulated by agonists is a manifestation
of insulin resistance, potentially involved in platelet
hyperactivity occurring in arterial hypertension [84].

Similar results have been obtained in obese, hyper-
tensive Type II diabetic patients. In these subjects,
the reduced ability of insulin to attenuate AT II-stim-
ulated free Ca2 + concentrations is corrected by
12 weeks of antihypertensive treatment with Ca2 + -
channel blockers (isradipine or diltiazem). These re-
sults demonstrate that the removal of abnormalities
in Ca2 + fluxes restores insulin sensitivity in platelets
and suggest that increased cytosolic Ca2 + can be
both a cause and consequence of insulin resistance
[129].

Furthermore, in contrast to insulin sensitive sub-
jects, providing insulin-resistant, hypertensive and
hyperinsulinaemic subjects with insulin increases
their platelet Ca2 + concentrations, suggesting that in-
sulin resistance extends to the regulation of platelet
Ca2 + metabolism [130].

A resistance to the insulin effects on Ca2 + fluxes
has also been observed in VSMC of insulin-resistant
animals, such as spontaneously hypertensive rats
(SHR) and Zucker obese rats [97, 98, 131]. These
data indicate that insulin resistance at the VSMC lev-
el contributes to the increased intracellular Ca2 + re-
sponse to vasoconstrictors and to the enhanced vas-
cular reactivity of the insulin-resistant states
[132±134]. An altered VSMC intracellular Ca2 + me-
tabolism, therefore, may be a fundamental abnormal-
ity linking hypertension and insulin resistance [135].

These findings, both in platelets and in VSMC,
support the hypothesis that a defect in the regulation
of intracellular Ca2 + accompanies the reduction of
insulin action and leads to an increase in vascular re-
sistance, to arterial hypertension and to platelet hy-
peraggregability, features commonly observed in in-
sulin-resistant states [127, 136±138].

Insulin, cyclic nucleotides and NO in platelets:
similarities with VSMC and alterations in the insulin-
resistant states

Some studies investigated in platelets the insulin ef-
fects on cAMP and cGMP, the main inhibitory sys-
tems of platelet activation. In other cell types, insulin
reduces platelet levels of cAMP by inhibiting adeny-
late cyclase [139] and by stimulating cAMP phospho-
diesterases [140±141]. In adipose cells, this mecha-
nism accounts for the anti-lipolytic effect of the hor-
mone [142]. On the other hand, both in adipose and
in liver cells, insulin induces a prompt increase of
cGMP (with a maximum effect at 2 and at 6 min, re-
spectively) [143]. Finally, in rats with streptozotocin-
induced diabetes mellitus, there is a decreased hepat-
ic guanylate cyclase activity [144].

The first effect noted of insulin on cyclic nucle-
otides in platelets is an increase in the activity of
phosphodiesterases [76, 145]: insulin activates, via a
serine phosphorylation, the cGMP-inhibited cAMP
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phosphodiesterase, that represents more than 75% of
cAMP phosphodiesterase activity in a platelet extract
[145]. The biological meaning of this insulin action
could be a reduction of cyclic nucleotides, and in par-
ticular of cAMP. This has never been observed in
platelets, indicating that other biochemical events
also modulate the insulin action on cyclic nucleotides
in these cells.

Studies from our laboratory on platelet-rich plas-
ma show that insulin increases platelet concentra-
tions of cGMP [82]. This effect is mediated by the
phosphorylation of the insulin receptor, being blunt-
ed by genistein, a tyrosine kinase inhibitor [82], and
is completely blocked by methylene blue [82] and by
l-NMMA [146]. These last observations induced us
to speculate that insulin increases cGMP in platelets
via NO [146]. Recent studies of our group demon-
strated that insulin increases the synthesis of NO,
measured by the 3H-arginine/3H-citrulline method,
in human platelets [147]. This is one of the very few
studies demonstrating a direct insulin action on NO
synthesis in human cells in vitro, and the first one in
platelets. An insulin-induced increase of NO produc-
tion has been demonstrated in endothelial cells [148].

The insulin action on cGMP in platelets shows a
plateau between 2 and 20 min, declines after 20 min
but is still significant at 120 min [147]. The decline
with time of the cGMP response to insulin is not sur-
prising, since insulin increases cGMP via NO. Also
pretreatment of tissues with nitro-vasodilators results
in a molecular desensitization of soluble guanylate
cyclase [149, 150], and the NO-induced activation of
guanylate cyclase is reversible over time [151, 152].

We also demonstrated that insulin increases plate-
let concentrations of cAMP in a very short time
[147]. These results do not conflict with those of other
authors who were unable to demonstrate an insulin
effect on platelet cAMP after at least 120 min of incu-
bation [87] because the insulin action on cAMP
reaches a plateau between 2 and 20 min, declines af-
ter 20 min and is no more significant at 60 min [147].
Interestingly, the insulin effect on cAMP is inhibited
by methylene blue and by l-NMMA, demonstrating
that it is a NO-mediated event [147]. This phenome-
non is not surprising, since nitro-vasodilators, that
are NO-donors, also enhance both cGMP and
cAMP in platelets [69, 73, 153]. Actually, the increase
of cGMP they induce blunts the cGMP-inhibited
cAMP phosphodiesterase, thus decreasing cAMP
catabolism and increasing cAMP concentrations
[73]. Since insulin increases cGMP via NO, a similar
phenomenon could take place after insulin incuba-
tion. In this case, insulin should be able to indirectly
inhibit, through cGMP, the same cAMP phosphodi-
esterase that it activates per se [145].

Another possible interpretation of the insulin-in-
duced increase of platelet cAMP derives from the ob-
servation that, when guanylate cyclase is stimulated

by NO donors, it shows striking alterations in its
properties, becoming able to synthesize not only
cGMP but also cAMP [154]. A similar mechanism
could explain the insulin-induced increase of cAMP,
since insulin enhances NO in platelets [147] and stim-
ulates platelet guanylate cyclase via NO.

Finally, we observed that a 8 min-insulin incuba-
tion enhances dose-dependently the effects on
cAMP of substances able to activate adenylate cy-
clase with a receptor-dependent mechanism, such
as Iloprost, a PGI2 analogue [37], or with a recep-
tor-independent mechanism, such as forskolin [42]
and that these effects are also NO-mediated, being
blunted by l-NMMA [147]. As a consequence, insu-
lin dose-dependently enhances the anti-aggregating
effects of these substances [147]. Thus, insulin in-
creases the influence on cAMP of adenylate-cyclase
stimulating agents because it increases cAMP per se
via a NO-mediated mechanism [147]. The ability of
insulin to increase the anti-aggreating effects of
PGI2 explains the very effective platelet modulating
action exerted by the hormone in vivo [79, 81, 85],
where PGI2 is released into the circulation by en-
dothelial cells. PGI2 and NO, in fact, act synergisti-
cally to reduce platelet aggregation [67±69], and in-
sulin interplays with both of these physiological
anti-aggregating substances by enhancing NO syn-
thesis and, through NO, by increasing PGI2 effects
[147].

The relevance of cyclic nucleotides in the anti-ag-
gregating effect exerted by insulin is further support-
ed by the fact that insulin does not reduce platelet
sensitivity to agonists in the presence of methylene
blue, a substance able to inhibit both guanylate cycla-
se and NOS [82].

Data from our laboratory demonstrate that insulin
increases both cGMP and cAMP through NO also in
human VSMC, as in platelets, since its effects are
blunted by l-NMMA [155±156]. Furthermore, in
VSMC insulin enhances the effects on cAMP of ade-
nylate cyclase activators, such as Iloprost [155], fors-
kolin [155] and b-adrenergic agonists [156] with a
mechanism mediated by NO, being inhibited by l-
NMMA [156]. Very recently, we observed that hu-
man VSMC show a NOS activity able to be stimula-
ted within a few minutes by the Ca2+ ionophore iono-
mycin and by insulin and to induce, via NO, rapid in-
creases of cyclic nucleotides [157]. Together with oth-
er recent evidence, these data support the contention
that VSMC have not only an inducible, Ca2 + -inde-
pendent NOS, responsible for a delayed release of
NO following activation by cytokines, but also a
Ca2 + -dependent NOS, that could be a constitutive
isoform, able to be activated within a few minutes by
insulin [119, 157]. Thus, insulin-induced vasodilation
could be attributed not only to the effects on VSMC
of endothelium-derived NO but also to that exerted
by insulin directly on VSMC.
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Figure 1 shows the similarities in the NO-mediated
insulin actions on cyclic nucleotides in platelets and
in VSMC.

Further studies are needed to clarify the mecha-
nisms by which insulin stimulates NOS activity in
platelets and in VSMC. In platelets, insulin activates
the cGMP-inhibited cAMP phosphodiesterase via a
serine phosphorylation [145]. A putative insulin ef-
fect on NOS, which is to be proven experimentally,
could be a serine phosphorylation, which would re-
sult in its activation [158].

In the insulin-resistant states of obesity and obese
Type II diabetes mellitus, we observed that the ability
of both insulin and the NO donor glyceryl-trinitrate
(GTN) to increase cGMP and to reduce platelet acti-
vation is blunted [83, 159], whereas lean Type II dia-
betic patients show a normal cGMP response to both
insulin and GTN [159]. Similarly, in platelets from pa-
tients affected by essential hypertension which is an
insulin-resistant condition [93], the inhibition of
platelet Ca2 + fluxes induced by another NO donor,
sodium nitroprusside, is impaired [160]. Thus, insu-
lin/NO and NO/cGMP pathways are altered in the in-
sulin-resistant states.

In summary, insulin activates NOS activity, both in
platelets and VSMC; via NO, it rapidly increases the
intracellular content of both cGMP and cAMP and
enhances the effects of cAMP-increasing substances;
through cyclic nucleotides, it decreases intracellular
Ca2 + , and therefore reduces platelet activation and
vasoconstriction. These insulin effects in platelets
are blunted in the insulin-resistant subjects.

We have mentioned that a putative mechanism by
which insulin reduces Ca2 + fluxes is the activation of
Na + -K + ATPase [110±112]. This insulin effect could
also be mediated by NO, since it stimulates Na + -K +

ATPase activity [161, 162], a phenomenon accounting
for the NO-induced depolarization of vascular smooth
muscle [163]. Furthermore, NO directly activates
Ca2 + -dependent K + channels, which reduce Ca2 + in-
flux through voltage-operated Ca2 + channels [164].

Insulin and platelet binding of prostanoids and
catecholamines

Insulin up-regulates prostacyclin binding and down-
regulates a2-adrenergic receptors in human platelets,
thus attenuating platelet responses. In particular,
studies carried out by incubating platelet prepara-
tions with insulin for at least 2 h at 23 °C demonstrat-
ed that the hormone increases PGE1 binding to plate-
lets, and thereby enhances platelet sensitivity to the
inhibitory effect of the prostanoid through the in-
creased formation of cAMP [87]. The time course of
the insulin effect on PGE1/PGI2 receptor number fol-
lows that of the insulin binding to platelets [87]. Fur-
ther studies of the same research group confirmed
that insulin interacts with the binding of PGE1/PGI2
with prostanoid receptors [165], by a mechanism in-
volving G-proteins [166]. Insulin also amplifies the
antiaggregatory effect of PGE1 in rat platelets [167].

Experiments carried out in vivo by an iv bolus in-
jection of insulin followed by a 2.5 h insulin infusion,
with plasma glucose kept constant by a simultaneous
glucose infusion, demonstrated that insulin increases
PGE1 and PGI2 binding to platelets by two- to three-
fold over control. This is due to an increase of both
high and low affinity receptor number, with small
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changes in receptor affinity. This increased binding
was associated with more than a twofold decrease in
the minimum prostanoid concentrations needed to
inhibit platelet aggregation through cAMP formation
[86]. Other authors demonstrated that a 2-h insulin
infusion during a euglycaemic insulin clamp results
in a 65% increase of PGE1-stimulated cAMP con-
centrations [168]. Infusion of insulin in vivo without
changing blood glucose concentrations not only in-
creases prostanoid binding to platelets, but even en-
hances PGI2 in plasma, compatible with an increased
synthesis by endothelial cells [86].

During acute spontaneous angina and acute is-
chaemic heart disease, platelet hyperactivation plays
a pivotal role in vessel occlusion [169, 170]. This phe-
nomenon is in part due to a reduced platelet sensitiv-
ity to vasodilating prostanoids [171], owing to a re-
duction of their specific receptors [172, 173]. These
alterations can be corrected by treating platelets
with insulin: a 3-h incubation of platelets with the
hormone, in effect, resulted in increased specific
binding of PGI2 in 75% of patients with acute myo-
cardial infarction or unstable angina [174]. This effect
was due to an increase of both high- and low-affinity
receptor number, without changes in affinity [174].
An increase in cAMP corresponded to the increase
in binding [174]. These data suggest that giving insu-
lin after an acute ischaemic event inhibits, at least in
part, thrombus formation by the restoration of the
prostanoid receptor activity. The same authors veri-
fied this intriguing hypothesis and found that giving
insulin to patients with unstable angina pectoris or
acute myocardial infarction returned to normal the
impaired response of platelets to PGE1/PGI2 and the
synthesis of PGI2 [175].

During acute ischaemic heart disease, there is also
a transient decrease of insulin binding to platelets,
which is related to changes in the sensitivity to PGE1
[176]. Thus, acute alterations in the insulin-platelet
inter-relationships are involved in the prothrombotic
state accompanying acute vascular events. Similarly,
in subjects with chronic spinal cord injury, in whom
coronary artery disease is a leading cause of death,
PGI2 fails to inhibit the platelet-stimulated thrombin
generation owing to the loss of high-affinity receptor
sites for the prostanoid [177]. These platelet defects
are corrected with platelet treatment with insulin
[177].

Thus, these studies support the conclusion that in-
sulin interplays with prostanoid effects on platelets
not only by enhancing within a few minutes the in-
crease of cAMP they induce via its own, NO-mediat-
ed, effect on cAMP [147] but also by enhancing pro-
stanoid binding to platelets after 2 h.

In vitro studies also demonstrated that incubation
of human platelets with insulin for 2.5 h at 23 °C in-
creases their resistance to adrenaline aggregating ef-
fects and inhibits the potentiating effect of adrenaline

on ADP-induced aggregation [88]. These phenomena
have been attributed to a decrease by insulin of the
number of a2-adrenergic receptors that account for
the aggregating response to adrenaline [88]. A possi-
ble explanation for the insulin-induced up-regulation
of prostanoid receptors and down-regulation of a2-
adrenergic receptors is an insulin influence on cell
membrane properties [178].

In summary, when platelets are exposed to insulin
for a period of 120±150 min, both in vivo and in vitro,
they show an up-regulation of prostanoid receptors
and a down-regulation of a2-adrenergic receptors re-
sulting in anti-aggregation. Furthermore, platelet
binding to anti-aggregating prostanoids is impaired
during acute cardiovascular events and restored by
insulin.

Insulin and magnesium fluxes in platelets

Insulin dose- and time-dependently increases platelet
uptake of Mg2 + from the extracellular space with a
maximal effect achieved by incubation with 200 mU/
ml insulin for 30 min [179]. This effect is mediated
by insulin receptors being blunted in the presence of
an anti-insulin receptor monoclonal antibody [179].
The insulin effects on Ca2 + and Mg2 + could be in-
ter-related since decreases in Mg2 + concentrations
lead to an increase in intracellular Ca2 + and to en-
hancement of platelet aggregation [180]. Insulin re-
sistance states are characterized by decreased intra-
cellular Mg2 + and increased intracellular Ca2 + [127,
181]. This fact could be attributed to lack of physio-
logical insulin action on Mg2 + and Ca2 + handling.

Insulin and platelet-mediated modulation
of fibrinolysis

Platelets modulate fibrinolysis since they show both
anti-fibrinolytic and pro-fibrinolytic activities, con-
taining both plasminogen activator inhibitor I (PAI-
I) [182] and plasminogen activators [183, 184].

It has been demonstrated that: i) incubation of
washed platelets with insulin (200 mU/ml) at 37 °C
for 3 h results in a 3-fold increase in plasminogen acti-
vator activity in the supernatant; ii) treatment of plas-
ma membranes with insulin also enhances the release
of platelet plasminogen activator, a phenomenon
completely blunted by agents able to increase platelet
cAMP [185]. Since platelets do not synthesize pro-
teins, this insulin effect could be ascribed to enzyme
activation or its release from platelet membrane or
both. The insulin action on platelets, therefore, could
account for an increase of the fibrinolytic activity sug-
gesting that both insulin deficiency and insulin resis-
tance can increase the incidence of thrombosis in dia-
betic patients.
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Interestingly, in Type II diabetic patients, fasting
plasma insulin is correlated with platelet PAI-1, dem-
onstrating an influence of insulin per se, or of insulin
resistance, in platelet anti-fibrinolytic activity [186].
In VSMC, insulin stimulates PAI-1 secretion and
gene expression [187].

4. Conclusion

Platelets, as VSMC, are targets of insulin action and
subject to changes in insulin sensitivity. The main in-
sulin effect in these cells is to inhibit Ca2 + fluxes, es-
pecially those from internal stores to cytosol, with a
consequent reduction of agonist-stimulated platelet
aggregation and vessel contraction.

The insulin effects on Ca2 + fluxes are regulated
in both cell types by the cyclic nucleotides cGMP
and cAMP, that insulin increases via NO, which
thus becomes the key to understanding insulin ac-
tion on platelet and VSMC function. Even if the
insulin-induced vasodilation occurring in vivo is
mainly attributable to the influence on VSMC of
endothelium-derived NO, insulin also exerts direct
effects on these cells. Furthermore, both in plate-
lets and in VSMC, insulin increases via NO the in-
fluence on cAMP of other anti-aggregating and
vasodilating substances (i. e. prostacyclin and b-adr-
energic agonists), thereby enhancing their biologi-
cal effect.

Finally, insulin increases platelet binding of anti-
aggregating prostanoids, and decreases platelet bind-
ing of a2-adrenergic agonists, with a final anti-aggre-
gating effect.

In the insulin-resistant states, insulin effects on
platelet cyclic nucleotides are attenuated, and the in-
sulin-dependent reduction of Ca2 + fluxes is impaired
both in platelets and in VSMC. These changes might
explain why the insulin resistance syndrome is char-
acterized by an altered intracellular ionic milieu, by
an enhanced platelet activation and by a great preva-
lence of arterial hypertension, which can account for
the increased vascular risk [93].

However, the described vasoprotective effects ex-
erted by insulin on platelets and VSMC are only
some of the many aspects of the influence of insulin
on factors involved in atherogenesis and arterial hy-
pertension: we should also remember the stimulatory
role exerted by insulin on VSMC proliferation [188,
189], and on the sympathetic tone and sodium reab-
sorption [93].

Finally, this review offers some elements to better
understand the role of insulin deficiency and of insu-
lin resistance in determining the platelet alterations
described in diabetes mellitus, which play a major
role in the pathogenesis of diabetic angiopathy [190].
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