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Interleukin-103 inhibition of insulin release in rat pancreatic islets:
possible involvement of G-proteins in the signal transduction

pathway
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Summary In vitro exposure of rat pancreatic beta
cells to interleukin-1f3 (IL-1B) inhibits glucose-stimu-
lated insulin release (2140+239 and 323+80
pg - islet™ - h™! at glucose levels of 16.7 mmol/l in con-
trol and IL-1B-exposed islets, respectively, n=7,
p <0.001). Cholera toxin (2 ug/ml) or pertussis toxin
(0.5 pg/ml) potentiated, as expected, glucose-induced
insulin release in control islets, but, in addition, when
added together with IL-1§3, were able to prevent the
IL-1B mediated inhibition of glucose-stimulated insu-
lin secretion (2087 +301 and 1662 + 173 pg - islet™ -
h, respectively, p < 0.05 vs islets exposed to IL-1§
alone). To investigate the mechanism by which the
toxins prevent the IL-1p effect, we then measured ni-
trite levels, glucose oxidation and Ca?* uptake. Ni-
trite levels in the culture medium were 4.2 + 1.4 and
24.0+5 pmol - islet! - 24 h™! in control islets and in
IL-1B-exposed islets, respectively (n =6, p = 0.05).
In islets exposed to IL-1B and cholera or pertussis
toxins, nitrite levels were 9.1+3 and 124%6
pmol - islet™ - 24 h7!, respectively (n =6, NS vs con-
trol islets). Glucose oxidation at 16.7 mmol/l glucose
was 31.1£2.9 pmol - islet™ - 120 min! in control is-
lets and 16.8 £ 2.7 pmol - islet™! - 120 min ' in TL-1j3-
treated islets (p < 0.05). The addition of cholera or

pertussis toxins simultaneously to IL-13 prevented
the inhibition of glucose oxidation at 16.7 mmol/l
glucose (329138 and 31.7+3.3 pmol - islet?-
120 min! in the presence of cholera or pertussis
toxins, respectively). Glucose-stimulated “Ca?* up-
take was also significantly inhibited in IL-1B-treat-
ed islets when compared to control islets (7.1 £0.9
and 16.8+3.2 pmol-islet - 20 min™!, respectively,
p <0.05). This inhibition was prevented by the pre-
sence of cholera or pertussis toxins (14.0+3.8 and
11.242.7 pmol-islet? .20 min™!, respectively). In
conclusion, our data show that cholera and, to a les-
ser extent, pertussis toxins are able to partially pre-
vent the IL-1B-induced increase in nitrite levels and
block the inhibitory effects of IL-1p on different
steps leading to glucose-induced insulin secretion.
These findings support the possibility that in pancrea-
tic beta cells, G-proteins may be involved or interfere
with the cytokine signal transduction. [Diabetologia
(1995) 38: 779-784]
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Interleukin-1f (IL-1B) is believed to play a role in the
process leading to beta-cell dysfunction [1-3]. Several
in vitro studies have shown that chronic exposure of
rat pancreatic islets and purified beta cells to IL-1§
inhibits glucose-induced insulin release [4-10]. The
exact biochemical mechanism whereby IL-13 affects
insulin secretion, however, is still under debate. Re-
cent data indicate that IL-1p activates the inducible
form of nitric oxide synthase (iNOS), with the subse-
quent accumulation of nitric oxide (NO) [11-14].
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The increased NO levels are likely to play a major
role in rat islets and purified beta cells in mediating
the IL-1B-induced inhibition of insulin secretion and
glucose oxidation, since these effects are prevented
by inhibitors of NO synthase [15]. Moreover, a com-
plete recovery of insulin secretion is observed 8 h
after inhibition of NO synthase [16].

IL-1B, as well as several hormones and secretago-
gues, exerts its biological effects on pancreatic islets
by binding to a specific IL-receptor [17-20]. IL-1f re-
ceptors have been identified in normal rat pancreatic
beta cells [21], and in the insulinoma cells RIN-mSF
and HIT [22, 23]. In a variety of cell types, including
fibroblasts and T- and B-lymphocytes, the biological
effects of IL-1P are pertussis toxin sensitive, suggest-
ing the involvement of a Gi-like protein in IL-1p sig-
nalling [24-26]. G-proteins seem to play an impor-
tant role as modulators of insulin secretion [27].
They link the hormone binding surface receptor to
its effector system such as adenylate cyclase, phos-
pholipases and ion channels located in the intracellu-
lar surface of the plasma membrane [28, 29]. Little is
known about the intracellular signalling mechanism
for the IL-1B/IL-1B receptor complex in pancreatic
beta cells and the involvement of G-proteins in IL-
1PB effects on these cells has never been demonstrat-
ed.

In the present study we investigated whether G-
proteins might be involved in the inhibitory effects
of IL-1B on beta-cell function. For this purpose, rat
pancreatic islets were pre-exposed to IL-1f alone or
in combination with cholera (CT) or pertussis (PT)
toxins, two agents commonly used for studying the
G-protein function. In these cells nitrite levels (as an
indicator of NO production) and glucose-induced in-
sulin secretion were measured, as well as two impor-
tant steps in the cascade of intracellular events lead-
ing to glucose-induced insulin release: glucose oxida-
tion and Ca?* uptake.

Materials and methods

Materials. Crude collagenase was obtained from Boehringer
Mannheim (Mannheim, Germany). Culture medium CMRL-
1066, heat inactivated fetal calf serum (FCS), glutamine and
gentamycin were obtained from Gibco (Glasgow, UK). Hu-
man recombinant interleukin-1B (IL-1PB) (specific activity
5x 108 U/mg), ¥CaCl, (25 mCi/mg) and p-[U-"C]glucose
were from Amersham (Amersham, Bucks., UK). Cholera and
pertussis toxins, and Antimycin A were purchased from Sigma
(London, UK). Silicone oil (density 1.040) was from Merck
(Darmstadt, Germany). All other chemicals were of analyti-
cal grade.

Islet preparation and culture conditions. Pancreatic islets were
isolated by the collagenase method from 200- to 250-g fed
male Wistar rats injected i.p. with 0.2 ml of a 0.2% pilocar-
pine solution 2 h before killing by decapitation. With this tech-
nique, 300400 islets were isolated from each pancreas [30].

The whole procedure was completed within 120 min. Purified
islets were cultured in CMRL-1066 medium (5.5 mmol/l glu-
cose) containing 10 % FCS, 2 mmol/l L-glutamine and genta-
mycin at 37°C in a 95 % air/5 % CO, atmosphere with or with-
out IL-18 + CT or PT for 24 h. After this period, either insulin
secretion, nitrite levels, glucose oxidation or *Ca?*up-
take were studied.

Insulin secretion. To study insulin secretion, triplicate groups of
five purified islets were incubated in Krebs-Ringer Hepes buf-
fer (KRHB, containing mmol/l 115 NaCl, 5.4 KCl, 2.38 CaCl,,
0.8 MgSO,, 1 Na,HPQ,, 10 Hepes, 0.5 % bovine serum albu-
min, pH 7.35) containing either 2.8 (basal) or 16.7 mmol/l glu-
cose. Insulin in the medium was measured by radioimmunoas-
say after 1 h incubation at 37°C. Results are expressed as insu-
lin released in the medium (pg - islet™ - h?).

Nitrite determination. Nitrite, the stable end product of NO,
was determined in culture medium as described by Welsh
et al, [13]. Briefly, 150 islets were incubated in 0.6 ml of cul-
ture medium for 24 h. Triplicate samples of 90 ul were then re-
moved from the medium and added to 10 ul of 0.5% N-(1-
naphtyl)ethylendiamine dihydrochloride (NED), 5% sulpha-
nilamide in a 25 % H;PO,solution, prepared less than 12 h be-
fore use. The reaction was carried out at 60°C for 2 min, and
the absorbance at 546 nm was measured in a Packard spectro-
photometer (Packard, Groningen, The Netherlands) against a
standard curve. The detection limit was 50 pmol, and the varia-
bility of the assay was less than 5 %.

Glucose oxidation. Glucose oxidation was determined by mea-
suring the formation of *CO, from [U-*C]glucose [31]. After
24 h preincubation with or without 50 U/ml IL-18 + CT or PT,
groups of 15 islets were incubated in 100 ul of Krebs-Ringer
bicarbonate buffer [(mmol/1) 118 NaCl, 4.8 KCl, 2.5 CaCl,, 1.2
MgSO,, 12 KH,PO,, 25 NaHCO,] supplemented with
10 mmol/l Hepes (pH 7.4) containing 3 uCi p-[U-1*C]glucose
(specific activity, 270 mCi/mmol) plus non- radioactive glu-
cose to a final concentration of either 1.5 or 16.7 mmol/l. The
vials, suspended in standard 20-ml glass scintillation flasks,
were gassed with air: CO, (95:5) and capped air tight. The
flasks were then shaken continuously at 37°C for 120 min.
The metabolism was stopped by injecting 100 ul of 0.05 mmol/
1 Antimycin A (dissolved in 70 % ethanol) into the centre vial.
This was immediately followed by an injection of 250 ul hya-
mine hydroxide (New England Nuclear, Boston, Mass., USA)
into the outer flasks. *CO, was liberated from the incubation
medium by a subsequent injection into the centre vial of
100 wl of 0.4 mmol/l1 Na,HPO, solution adjusted to pH 6.0.
After 1 h at room temperature (to allow the liberated CO,
to be trapped by the hyamine hydroxide) 10 ml of a scintilla-
tion fluid was added to each flask and the radioactivity deter-
mined in a liquid scintillation counter.

Calcium uptake. **Ca’* uptake was measured according to the
method described by Henquin and Lambert [32]. After a 24-h
pre-incubation with or without 50 U/ml IL-1fB + CT and/or PT,
groups of 15 islets were transferred into 50 ul Krebs-bicarbo-
nate buffer modified by replacing phosphate and sulphate
with equimolar amounts of chloride [33] and layered on sili-
cone oil. The uptake period was started by adding 50 ul of
medium containing 3Ca?* (2.5 mmoV/1) and glucose (final con-
centration 2.8 or 16.7 mmol/l). The reaction was stopped by
centrifuging the islets for 2 min in a microfuge (Beckman In-
struments, Palo Alto, Calif., USA) through the layer of sili-
cone oil. The bottoms of the 400-ul tubes (Beckman) were
then cut and the radioactivity of the pellet counted by liquid
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Table 1. Effect of IL-1f with or without either CT (2 ug/ml) or PT (0.5 ug/ml) on insulin secretion (pg - islet ! - h!) induced by dif-

ferent stimuli

Culture conditions

Control

IL-1B CT

CT+IL18  PT PT +IL-1p

Glucose 2.8 mmol/l 117 + 32 126 + 39
Glucose 16.7 mmol/l 2140 + 239 323 + 80°

198 + 43
2975 + 271¢

176 + 28 157 + 28
2087 + 301 3090 1 225°

145 + 38
1662 + 173

Data represent mean + SEM of seven separate experiments.
2p < 0.05;°p < 0.001 vs control islets

scintillation. Tubes without islets were run as blanks. The up-
take of [U-1*C]-sucrose was measured to correct for label in
the extracellular space.

Statistical analysis

Statistical significance was assessed by Student’s ¢-test for un-
paired comparison.

Results

Insulin release. In control rat islets insulin release in
the presence of a non-stimulatory glucose concen-
tration (2.8 mmol/l) was 117132 pg-islet™ - h7,
(mean £ SEM, n=7), and increased significantly in
response to 16.7 mmol/l glucose (2140 +239, n=7).
In islets pre-exposed for 24 h to 50 U/ml IL-1p, basal
insulin was not significantly affected (Table 1) but
glucose-stimulated insulin release was markedly re-
duced (323 £ 80, p < 0.001 vs control islets, n = 7).

When increasing concentrations of either CT
(dose range 0.1-5 ug/ml) or PT (0.1-2 pg/ml) were
added simultaneously to 50 U/ml IL-1P at the begin-
ning of the 24-h culture period, the inhibition of glu-
cose-stimulated insulin release was progressively pre-
vented (Fig.1). The 50% of maximal effect was
reached at a concentration of approximately 0.5 ug/
ml for CT and 0.2 pg/ml for PT. The maximal effect
was observed at 2 pg/ml CT and 0.5 pg/ml PT (glu-
cose-stimulated insulin release 2087 =301, and
1662+ 173 pg-islet™ - h™!, respectively). In islets
treated for 24 h with 2 ug/ml CT or 0.5 pg/ml PT
alone basal insulin release was unchanged, but glu-
cose-stimulated insulin secretion was potentiated
(Table 1).

To examine the possibility that the CT and PT ef-
fect on IL-1P inhibition of insulin release could be re-
versed by agents that increase cAMP levels without
affecting G-proteins, we incubated groups of islets in
the presence or the absence of IL-1f and forskolin
(an agent known to increase cAMP levels by directly
activating the enzyme adenyl cyclase). Unfortunate-
ly, in islets incubated for 24 h in the presence of for-
skolin (5 umol/l) glucose-stimulated insulin release
was reduced (690 pg-islet-h™', n=4, p<0.01 vs

3000

2000

Insulin secretion
(pg -islet™ - h™)

Insulin secretion
(pg -islet™ - h™)

IL-18 - + +
PT - - 0.1

+ + o+ o+

02 05 1 2

Fig.1. Glucose-stimulated insulin release in rat pancreatic is-
lets cultured for 24 h in the absence or presence of 50 U/ml
IL-1B plus increasing concentrations of CT (upper panel) or
PT (lower panel). At the end of the 24 h pre-incubation peri-
od, islets were washed three times and incubated for 1 h at
37°C in KRHB containing 16.7 mmol/l glucose. Resuits
(mean + SEM of four separate experiments) are expressed as
insulin released in the medium (pg - islet™ - h'!). **p < 0.05,
*p < 0.005 vs islets treated with IL-1f alone

control islets), thus making the interpretation of the
results difficult. In islets exposed to IL-1f (50 U/ml)
and forskolin (5 umol/l) glucose-stimulated insulin
release was 489 pg - islet™ - hl (n = 4).

Nitrite levels. Nitrite levels in the culture medium
were 4.2+ 1.4and24.0 + 5 pmol - islet™ - 24 h! in con-
trol islets and in IL-1B-exposed islets, respectively
(n =6, p <0.05). In islets exposed to IL-13 and CT or
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Table 2. Effect of IL-1B with or without CT and/or PT on glucose oxidation (pmol - islet™ - 120 min™

Culture conditions

Control IL-1B CT IL-18+CT  PT IL-1B + PT
Secretagogues
Glucose 1.5 mmol/l 73 4+ 08 9.0 + 1.2 109 + 1.4 113 + 2.1 88 + 1.0 81+ 11
Glucose 16.7 mmol/l 311+ 29 16.8 + 2.72 334 + 40 329 + 38 325+ 36 31.7 + 33
2 p < 0.005 in respect to control islets
T 20 Ca®* uptake. In control islets, “Ca?* uptake was
= 2.6 0.4 pmol - islet™? - 20 min™! (mean + SEM, n = 6)
2 CE._, under basal conditions (i.e. in the presence
8« of 28 mmol/l glucose) and increased to 16.8+
S 101 . 3.2 pmol-islet’-20min? in the presence of
S = 16.7 mmol/l glucose. In pancreatic islets pre-exposed
o 1 to 50 U/ml IL-1B, calcium uptake under basal condi-
v - tions was higher than in control islets (4.4+0.5
30 - pmol - islet™ - 20 min, p < 0.05), but only slightly in-
g_ Control IL-18 'LSTG + IL;TB + creased after 16.7mmol/l glucose stimulation

Fig.2. Basal () and glucose-stimulated (§) Ca?* uptake in
rat pancreatic islets cultured for 24 h in the absence (control)
or in the presence of 50 U/ml IL-1f, with or without CT (2 pg/
ml) or PT (0.5 ug/ml). At the end of the 24-h pre-incubation
period, islets were washed three times and incubated for
20 min at 37°C in buffer containing either 2.8 or 16.7 mmol/l
glucose. Ca’* uptake is expressed as pmol-17-islet?
-20 min™!. Data represent mean = SEM of six separate experi-
ments. *p < 0.005 vs control islets

PT, nitrite levels were 9.1 £ 3 and 12.4 + 6 pmol - is-
let™l- 24 h7!, respectively (n = 6, NS vs control islets).
In islets exposed to CT or PT alone, in the absence of
IL-1B, nitrite levels were not different from control is-
lets (4.6 £2.0 and 4.8 + 1.9, respectively).

Glucose oxidation. In control islets cultured in the
absence of IL-1B, glucose oxidation increased
from 7.3+ 0.8 pmol - islet™ - 120 min™! at 1.5 mmol/l
glucose to 31.1+£2.9 pmol-islet?- 120 min! at
16.7 mmol/l of glucose. In islets cultured for 24 h
with 50 U/ml IL-1p, glucose oxidation at 1.5 mmol/l
glucose was similar to the control value, but the re-
sponse to 16.7 mmol/l glucose was significantly im-
paired (Table 2).

When islets were cultured in the presence of both
IL-1B and either CT or PT, the basal oxidation rate
(at glucose 1.5 mmol/l) was slightly higher than that
observed in control islets, although the difference
was not significant (Table 2). Moreover, in these is-
lets glucose oxidation in the presence of 16.7 mmol/l
glucose was similar to control islets (Table 2). Nei-
ther toxin had a significant effect on glucose oxida-
tion in the absence of IL-1B (Table 2).

(7.1£0.9 pmol - islet™! - 20 min™!, p < 0.005 vs control
islets) (Fig.2). When 2 ug CT or 0.5 ug PT were ad-
ded simultaneously to IL-1B, both basal and glucose-
induced calcium uptake were similar to control islets
(3.7£0.3 and 3.7+ 0.4 pmol - islet™ - 20 min!, basal
values, and 14.0+3.8 and 11.2+2.7 pmol-is-
let! - 20 min~!, glucose-stimulated values in the pre-
sence of CT or PT, respectively, Fig.2). Neither CT
nor PT alone modified basal or glucose-stimulated
4Ca’* uptake (data not shown).

Discussion

The present study confirms that IL-1f is able to in-
crease NO production, as measured by the nitrite
levels, and to inhibit glucose oxidation, glucose-sti-
mulated Ca®* uptake and the glucose-induced insu-
lin secretion in isolated rat pancreatic islets. Our
data also demonstrate that the presence of CT or PT
together with IL-1B prevents all the inhibitory ef-
fects of the cytokine, therefore suggesting that they
are mediated by CT and PT substrates. Since both
toxins prevent, at least partially, the IL-1B-induced
increase in nitrite levels, they probably interfere with
IL-1P signal transduction, and are not mainly acting
by stimulating insulin secretion.

The free radical NO has been proposed to play a
major role in mediating the IL-1B-induced inhibition
of insulin secretion in rat islets [11-14]. NO is
formed by a cytokine-inducible NO synthase, and in-
hibits key enzymes involved in glucose metabolism
and energy production [13]. As a consequence, sig-
nals arising from it and coupling glucose metabolism
and insulin secretion are impaired. In the cascade of
intracellular events leading to insulin secretion, glu-
cose metabolism is an early step that (by increasing
the ATP content) leads to membrane depolarisation
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and subsequent Ca?* influx, the suggested trigger for
insulin release. The impaired Ca’* uptake and insu-
lin release observed after islet exposure to IL-1P
may, therefore, be secondary to the cytokine inhibi-
tory effect of NO on glucose metabolism. In our ex-
periments, CT and PT, by partially preventing the in-
crease in NO levels, may hinder the inhibition of glu-
cose oxidation and restore the signalling pathway
that leads to glucose-induced Ca®* uptake and, even-
tually, insulin release. This possibility is supported by
the observation that in IL-1B-exposed islets both
Ca’* uptake and insulin release are normal in re-
sponse to glyburide [34]. Therefore, since in IL-1p-
exposed islets Ca?* uptake and insulin release in re-
sponse to a stimulation different from glucose are
normal, it is likely that the IL-1f inhibitory effect at
the level of glucose metabolism is the primary dys-
function caused by the cytokine in pancreatic beta
cells.

Our study is unable to precisely identify the effec-
tor system involved in the transmission signal of the
IL-1f/IL-1P receptor complex. The G-proteins seem
to play an important role as modulators of insulin se-
cretion [27, 35, 36]. They specifically mediate the in-
hibitory effects of several hormones such as somatos-
tatin, galanine and epinephrine. These effects are
prevented by beta-cell treatment with PT [37-40].
CT and PT have been reported to specifically and ir-
reversibly activate different G-proteins (Gi;_;, Go, ,)
[35, 41]. The observations that both CT and PT are
able to prevent the IL-1B-induced effects and that
CT is more effective than PT suggest that multiple
G-proteins are involved in the signal transmission of
the IL-1P receptor, and that the activation of CT and
PT substrate pathway may overcome the block. How-
ever, it has been previously reported that the G-pro-
tein bound to the IL-1P receptor may be a common
substrate for both CT and PT [25], and that CT can ri-
bosylate PT-sensitive substrates [41]. As an alternate
possibility G-proteins may not be directly involved
in IL-1B signal transmission, but the CT and PT ef-
fects may be mediated by an increase in cAMP
levels. We tried to examine this possibility by incubat-
ing islets with forskolin (an agent known to increase
cAMP levels by directly activating the enzyme ade-
nyl cyclase), in the presence or absence of IL-1P.
These results, however, are difficult to interpret be-
cause in forskolin-exposed islets glucose-induced in-
sulin release was decreased. Similar results have
been previously obtained [42], and may be due to is-
let desensitization [43].

Previous studies were unable to demonstrate an
effect of PT on IL-1p inhibition of insulin secretion
in fetal [44], adult rat islets [45] or RIN cells [46].
However, the experimental design was quite differ-
ent. In particular, in the study by Sjéholm [44] the fe-
tal islets were treated for 24 h with PT prior to the ad-
dition of IL-1B; in the study by Eizirik et al. [45], islets

were exposed for 1 h to IL-1P and studied 12 h later.
Our study shows that the contemporary presence of
CT and PT together with IL-1f during the 24-h cul-
ture period is necessary to prevent the inhibitory ef-
fects of the cytokine. The different results in RIN
cells [46] may be due to the large difference in glu-
cose metabolism between normal and tumoural cells.
This difference may be of critical significance, mito-
chondrial glucose metabolism being among the pro-
posed targets of IL-1f action in pancreatic beta cells.

In conclusion, our data confirm that IL-1f has an
inhibitory effect on glucose-induced insulin release
in pancreatic beta cells and show that this effect may
be prevented by the presence of CT or PT, suggesting
the involvement of a G-protein-dependent pathway.
The effector system involved, however, remains un-
known.
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