
Reductions in insulin sensitivity occur during normal
pubertal development and are known to be greater
in those with Type I (insulin dependent) diabetes
mellitus [1, 2]. These changes have been attributed
to alterations in insulin action in peripheral tissues
[3], and are thought to occur secondary to puberty-as-
sociated increases in growth hormone (GH) secretion
[4] which are exaggerated in Type I diabetes [5]. Nev-

ertheless, the mechanisms that regulate insulin sensi-
tivity are not clearly defined and could involve fac-
tors that alter insulin action at the level of the insulin
receptor, as well as changes in post receptor signalling
events.

There are few data regarding insulin clearance
rates in patients with Type I diabetes and those that
have been reported refer to decreased [6], increased
[7] or unchanged [8] clearance when compared with
healthy control subjects. In healthy adult subjects
there is some evidence that insulin clearance rates
differ between the sexes and decline with age [9, 10],
as well as being influenced by factors such as the de-
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Abstract

Aims/hypothesis. We measured insulin clearance
rates in children and young adults with Type I (insu-
lin-dependent) diabetes mellitus to establish their re-
lation with insulin sensitivity and with factors such as
growth hormone secretion and body mass index.
Methods. We studied 46 subjects [mean (range) age
14.4 (9.8±24.6) years), body mass index 21.1 (15.8±
29.6)Kgm2] using an overnight (1800±0800 hours) va-
riable rate insulin infusion euglycaemic clamp proto-
col (5 mmol/l). Plasma free insulin concentrations
during steady-state euglycaemia were used as an in-
dex of insulin sensitivity and insulin clearance deter-
mined as a ratio of insulin infusion rate to plasma
free insulin.
Results. During steady-state euglycaemia (0500±
0730 hours), insulin sensitivity [mean (SEM) plasma
insulin 0.020 (0.002) mU/l] and insulin clearance rates
[19.1 (1.8) ml × kg±1 × min] varied with age non-linearly
and in a reciprocal fashion to each other (cubic re-
gression F = 4.09, p = 0.01; F = 3.55, p = 0.02, respec-

tively). Insulin sensitivity was negatively related to
BMI (r = ±0.37, p = 0.011) and mean overnight
growth hormone concentrations (r = ±0.40,
p = 0.007). Insulin clearance was only related to
growth hormone concentrations (r = ±0.37,
p = 0.014). These relations were still evident after
stepwise multiple regression analysis (potential de-
terminants: C peptide, sex, age, puberty stage,
HbA1 c, duration of diabetes): insulin sensitivity
r = 0.55, p < 0.001; insulin clearance r = 0.37, p < 0.02.
Conclusions/interpretation. Insulin clearance rates
vary with age in young subjects with Type I diabetes
and are highest during mid-adolescence when insulin
sensitivity is at its lowest. Both insulin sensitivity and
insulin clearance are related to circulating growth
hormone concentrations. [Diabetologia (2000) 43:
61±68]
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gree of obesity [11] and circulating GH concentra-
tions [12]. Furthermore, in adolescents with Type I di-
abetes changes in insulin clearance rates during the
night have been implicated in the aetiology of the
dawn phenomenon [13, 14]

Insulin clearance rates during puberty and early
adult life have not been defined in patients with
Type I diabetes. The aims of our study were to deter-
mine insulin clearance rates in a large cohort of chil-
dren and adolescents with Type I diabetes using eu-
glycaemic clamp techniques to establish relations
with measures of insulin sensitivity and with factors
such as obesity, puberty stage and GH secretion.

Subjects and methods

Subjects. Children and young adults (n = 46, 15 males) with
Type I diabetes took part in the study. All were in good health
with normal renal, hepatic and thyroid function and were on
combinations of intermediate (isophane) and short acting (sol-
uble) insulin given two to four times a day. Haemaglobin A1 c
and C-peptide concentrations (when blood glucose concentra-
tions were greater than 7.0 mmol/l) were determined at the
time of recruitment to the study. Patient characteristics are
summarised in Table 1. The Central Oxford Research Ethics
Committee approved the study protocol and informed consent
was obtained from subjects and, where appropriate, from their
parents. All studies were carried out at the John Radcliffe
Hospital in Oxford.

Research design. Before each study all intermediate insulin
was withdrawn for at least 36 h. Blood glucose concentrations
were controlled by four daily injections of soluble insulin; the
last being given between 1200 and 1300 hours on the day of
the study. Subjects were admitted to the ward at 1700 hours
and two intravenous cannulae inserted, one into a distal fore-
arm vein for blood sampling and the other into an antecubital
fossa vein for infiltrating fluids. A standardised carbohydrate
meal was given between 1730 and 1800 hours, and subjects
then fasted until at least 0800 hours the next day. Baseline
blood samples were taken at 1730 hours before commencing a
variable rate insulin infusion that was given continuously over-

night until 0800 hours the next morning. The rate of insulin in-
fusion was adjusted according to 15 min blood glucose mea-
surements to achieve and maintain a blood glucose concentra-
tion of around 5 mmol/l [15]. No glucose was given during this
period.

Throughout the entire study period (1730 to 0800 hours)
blood samples were taken at regular intervals for the measure-
ment of GH (15 min) and plasma free insulin (30 min). Blood
non-esterified fatty acids (NEFAs) were measured during the
period of steady-state euglycaemia (15 min). Blood samples
were taken from a continuously heparinised cannula inserted
into a distal forearm vein, which was covered in a heated blan-
ket to arterialise venous blood [16]. Blood sample volumes var-
ied between 0.1±5.0 ml, depending on requirements and ap-
proximately 225 mls of blood were obtained from each subject
during each study, which was replaced with an equivalent vol-
ume of normal saline. Subjects remained supine throughout
and had similar sleep patterns.

Assay methods. Free insulin concentrations were determined
by first mixing 1.0 ml of whole blood into a 25 % solution of
polyethylene glycol 6000 (Merck, Poole, Dorset, UK) to re-
move insulin antibodies [17]. This was then centrifuged at
3000 rev/min in a Beckman Model J-6B Centrifuge and the su-
pernatant separated and stored at ±20 °C until assayed with a
double antibody radioimmunoassay (Diagnostic Systems Lab-
oratories, Webster, Texas, USA.). The intra-assay coefficients
of variations were 8.2 %, 4.8 % and 6.3 % at 29, 106 and 328
pmol/l, respectively. The inter-assay coefficients of variation
were 11.2 %, 9.2 % and 4.7 % at 30, 97 and 318 pmol/l, respec-
tively.

Samples for GH analysis were initially kept at room tem-
perature until completion of each study, before being spun
and separated for storage at ±20 °C. Plasma GH was then mea-
sured by immunoradiometeric assay (NETRIA, St. Bartholo-
mew's Hospital, London, UK) using an international reference
standard 80/505. All samples from each subject were analysed
in the same batch. The intra-assay coefficients of variation at
growth hormone concentrations of 2.9, 14.3 and 69.4 mU/l
were 8.0, 2.0 and 3.4 %, respectively, while inter-assay coeffi-
cients of variation at GH concentrations of 3.5, 15.2 and
77.4 mU/l were 9.4, 7.7 and 10.5 % respectively. Assay sensitiv-
ity was quoted at 0.2 mU/l.

Plasma samples for NEFAs were stored at ±20 °C until as-
say with a Wako NEFA C kit (Alpha Laboratories, Eastleigh,
Hants, UK). The assay detection limit was 10 mmol/l and in-
ter-assay and intra-assay coefficients of variation were 2.5 %
at 500 and 1000 mmol/l.

Glycated haemoglobin levels (HbA1 c) were measured by
high pressure liquid chromatography (HPLC) (Diamat, Bio-
Rad Laboratories, Hemel Hempstead, UK). The intra-assay
coefficients of variation were 1.9 and 2.2 % at HbA1 c values
of 6.9 and 11.5 %, respectively. The inter-assay coefficients of
variation were 2.7 and 2.3 % at HbA1c values of 7.0 and
11.6 %, respectively. Normal range HbA1 c values were 4.3 to
6.1 %. Concentrations of C peptide were determined by a dou-
ble antibody radioimmunoassay (Diagnostic Products, Euro/
DPC, Llanberis, Caernarfon, Wales). Intra-assay coefficients
of variation were 3.4 and 3.0 % at C peptide concentrations of
294 and 2614 pmol/l, respectively and inter-assay coefficients
of variation were 10.0 and 1.9 % at C peptide concentrations
of 297 and 2929 pmol/l, respectively. Whole blood glucose was
measured at the bedside using a glucose oxidase method (YSI
analyser, Clandon Scientific, Farnbourgh, Hants, UK).
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Table 1. Subject characteristics

Puberty stage

I II III IV V

Total (n) 4 6 4 8 24
Sex (n) male/female 2/2 4/2 1/3 0/8 8/16

Median for whole group
(range)

Age (years) 14.4 (9.8 ±24.6)

Duration diabetes
(years)

6.3 (1.5 ±13.8)

C peptide (pmol/l) 0.06 (0.01±0.12)

Insulin dose
(U × kg�1 × day�1)

0.96 (0.57±1.69)

HbA1c (%) 11.0 (7.0 ±17.0)

BMI (kg/m2) 21.1 (15.8±29.6)



Data analysis. A period of steady-state euglycaemia was
deemed to be achieved when blood glucose concentrations
showed no statistically significant change with time within and
between subjects as determined by analysis of variance (ANO-
VA) for repeated measures. As a group this was achieved be-
tween 0500 and 0730 hours.

Plasma free insulin concentrations for the period of steady-
state euglycaemia were used as an index of insulin sensitivity.
Changes in insulin concentrations required to maintain eugly-
caemia during this fasting period in subjects with Type I diabe-
tes have been shown to be partly related to changes in periph-
eral insulin-stimulated glucose metabolism [18±20].

Metabolic clearance rates for plasma insulin (MCR-I) were
determined for the period of steady-state euglycaemia as a ratio
of insulin infusion rate to plasma free insulin concentration [21]:

MCR-I (ml ´ kg±1 ´ min±1) =
Insulin infusion �unit � kgÿ1 �minÿ1�

Plasma-free insulin �mU=l�
Statistics. All data are expressed as means ± standard error of
the mean (SEM) unless otherwise stated. Analysis of variance
with repeated measures was used to determine the period of
steady-state euglycaemia. The t test for independent samples
was used to detect differences in mean data between the sexes.
Cubic regression modelling was used to examine the non-lin-
ear relation between the dependent variables, insulin sensitivi-
ty and MCR-I, and age. Simple linear regression was used in
comparisons with all other independent variables. The deter-
minants of insulin sensitivity (as reflected by plasma free insu-
lin concentrations) and of MCR-I were examined using step-
wise (forwards) multiple regression analysis. We used SPSS
for MS Windows 95 (release 7.5.1 (SPSS, Chicago, Ill., USA)
for all analyses. P values less than 0.05 were considered to be
significant.

Results

Overnight blood glucose concentrations declined
steadily and concentrations approaching 5 mmol/l
were achieved in most subjects by 0100 hours. During

steady-state euglycaemia (0500± 0730 hours), mean
blood glucose concentrations for the group were
5.5 ± 0.1 mmol/l, with no significant differences be-
tween the sexes (males = 5.3 ± 0.1 mmol/l vs fe-
males = 5.7 ± 0.2 mmol/l) (Fig.1).

Plasma free insulin concentrations during steady-
state euglycaemia were 0.020 ± 0.002 mU/ml. No sig-
nificant differences in free insulin concentrations for
this period were observed when compared by sex
(males = 0.018 ± 0.003 mU/ml vs females = 0.021 ±
0.002 mU/ml). A non-linear relation between plasma
free insulin concentrations and age was seen, with
those for steady-state euglycaemia at their lowest in
the younger children and in the young adults, com-
pared with young people in the mid-teenage years
(Fig.2a). This relation was statistically significant
when examined by non-linear cubic regression mod-
elling (F = 4.09, p = 0.01).

Mean insulin infusion rates and calculated mean
MCR-Is during steady-state euglycaemia were
0.29 ± 0.02 units × kg±1 × min±1 and 19.1 ± 1.8 ml ×
kg±1 × min±1, respectively. The MCR-Is were similar
in male (18.7 ± 2.5 ml × kg±1 × min±1) and female sub-
jects (19.3 ± 2.4 ml × kg±1 × min±1). There was a signifi-
cant non-linear relation between MCR-Is and age, al-
though this was the reciprocal of that seen between
plasma free insulin and age (cubic regression
F = 3.55, p = 0.02) (Fig.2b). Predictably MCR-I's for
steady-state euglycaemia were significantly corre-
lated to plasma free insulin concentrations (r = 0.65,
p = < 0.001).

Mean plasma GH concentrations for the overnight
period between 2000 to 0800 hours were determined
for each subject and ranged from a maximum value
of 59.9 mU/l to a minimum of 6.2 mU/l (mean
21.8 ± 1.7 mU/l). No differences in mean values were
seen between male (22.4 ± 3.8 mU/l) and female sub-
jects (21.5 ± 1.9 mU/l). Mean plasma NEFAs during
steady-state euglycaemia ranged from 347 mmol/l to
1467 mmol/l (mean 808 ± 53 mmol/l) with no differ-
ences seen between the sexes (mean males
766 ± 92 mmol/l vs females 830 ± 65 mmol/l).

C. L. Acerini et al.: Insulin sensitivity and clearance in Type I diabetes 63

Fig.1. Means ± SEM blood glucose concentrations for all sub-
jects. represents blood glucose clamp target. The period of
steady-state euglycaemia between 0500 to 0730 hours is shown



Insulin sensitivity, as determined by steady-state
euglycaemia mean plasma free insulin concentra-
tions, showed a significant linear relation to BMI
(r = ±0.37, p = 0.011, Fig.3), mean overnight GH con-
centrations (r = ±0.40, p = 0.007, Fig. 4a) and puberty
stage (p = 0.004). In contrast, MCR-Is were only re-
ciprocally related to overnight GH (r = ±0.37,
p = 0.014, Fig.4b). These relations, with the excep-
tion of that between insulin sensitivity and puberty
stage, were still evident when examined by stepwise

(forward) multiple regression, in which all other vari-
ables thought to be potential determinants (including
NEFAs, C peptide, sex, HbA1c and duration of diabe-
tes) were entered into the model. The results of step-
wise linear multiple regression analysis are shown in
Table 2.

Discussion

We used plasma free insulin concentrations during a
period of steady-state euglycaemia as an index of pe-
ripheral insulin sensitivity. An association between
changes in plasma insulin concentrations and insulin
infusion requirements during the early morning peri-
od have been attributed to changes in insulin sensitiv-
ity and specifically to changes in insulin stimulated
glucose metabolism in subjects with Type I diabetes
[19, 20, 22]. We observed differences in insulin sensi-
tivity according to age, with values at their lowest
during the adolescent years (Fig.2a). This is in keep-
ing with previous reports that have noted reductions
in insulin sensitivity coinciding with puberty in sub-
jects with Type I diabetes [1, 2]. Variations were also
seen with age, with MCR-Is falling and reaching a na-
dir in the mid-teenage years, before rising again in
later life (Fig.2b). We have shown a relation between
insulin clearance and age in a large cohort of children
and adolescents with Type I diabetes. In adults with
diabetes this relation has not been previously report-
ed, although in healthy adults MCR-I has been vari-
ously observed as remaining unchanged [23] or de-
clining [9, 10] with advancing age. In these studies
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Fig.3. The relation between insulin sensitivity (represented by
steady-state euglycaemia plasma free insulin concentrations)
and body mass index (BMI). r = 0.37, y = 2.935 + 5.997 x,
p = 0.011. Individual mean concentrations/indexes for male
(R) and female (D) subjects are shown

Fig.2 A, B. The relation between age and (A) insulin sensitiv-
ity (represented by steady-state euglycaemia plasma free insu-
lin concentrations), (F = 4.09, p = 0.01) and (B) steady-state
euglycaemia metabolic clearance rate ± insulin (MCR-I)
(F = 3.55, p = 0.02) Individual mean concentrations/rates for
male (R) and female (D) subjects are shown



other age-related variables such as changes in physi-
cal activity and in metabolic rate could, however,
have had a role in determining insulin clearance rates
[24].

We determined insulin clearance rates in subjects
with Type I diabetes using a simple physiological
model, using a variable rate insulin infusion, eugly-
caemic clamp technique. By maintaining normogly-
caemia we have eliminated possible changes in insu-

lin clearance induced by either hyperglycaemia or hy-
poglycaemia [21]. Also, by infusing physiological
amounts of insulin, reductions in insulin clearance
brought about by insulin receptor saturation and
down-regulation, as encountered with supraphysio-
logical insulin treatment, were also avoided [25].

A positive relation between our measure of pe-
ripheral insulin sensitivity and overnight GH concen-
trations was observed. Similar findings have been re-
ported in subjects with Type I diabetes, where mea-
sures of early morning insulin sensitivity were strong-
ly related to overnight GH secretion [19, 26, 27, 28]. It
is has been suggested that reductions in insulin sensi-
tivity at this time are attributable to the effects of
GH on peripheral glucose metabolism [3]. The insu-
lin antagonistic effects induced by GH are thought
to be principally mediated in the peripheral tissues
[29, 30] yet the mechanisms for this effect are still ill
defined. Growth hormone could be acting directly
through its own receptor with interaction with insulin
signalling at a post receptor level, or be acting indi-
rectly through mobilisation of NEFAs from adipose
tissue. These have suppressive effects on peripheral
glucose metabolism by inhibiting peripheral glucose
oxidation and glycolysis [31, 32, 33] and have been
implicated in regulating hepatic glucose metabolism
and mediating the actions of insulin on the liver [34,
35].

We also observed a statistically significant nega-
tive linear relation between mean overnight GH con-
centrations and insulin clearance rates in keeping
with other reports. In dogs, exogenous GH treatment
results in reductions in insulin clearance [36] and in
Turner's syndrome raised insulin clearance rates
were decreased to normal with GH therapy [37].
Nevertheless, our results contrast with those seen in
studies of the dawn phenomenon in patients with
Type I diabetes, where raised early morning insulin
requirements have been linked to increases in insulin
clearance. This has been attributed to surges in noc-
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Fig.4A, B. The relation between mean overnight growth hor-
mone concentrations and (A) insulin sensitivity (represented
by steady-state euglycaemia plasma free insulin concentra-
tions) r = 0.40, y = 2.935 + 0.439 x, p = 0.007. and (B) steady-
state euglycaemia metabolic clearance rate ± insulin (MCR-I)
r = ±0.37, y = 27.275 ± 0.374 x, p = 0.014. Individual mean con-
centrations/rates for male (R) and female (D) subjects are
shown

Table 2. The results of stepwise linear regression analysis used
to assess determinants of insulin sensitivity (plasma free insu-
lin concentrations and metabolic clearance rate of insulin
(MCR-I) during steady-state euglycaemia

Dependent variable Coefficient SE
coefficient

p value

Insulin sensitivity
Growth hormone 0.039 < 0.001 0.002
BMI 0.002 < 0.001 0.005
Constant �0.145 10.49
r 0.548
Adjusted r2 0.300

MCR-I
Growth hormone �0.374 0.143 0.024
Constant 16.844 5.628
r 0.470
Adjusted r2 0.221



turnal GH secretion [13, 14], although this has not
been consistently observed [27, 38]. Methodological
differences could account for the discrepancies seen
between these and our studies, particularly as many
used fixed insulin rates and the use of closed-loop in-
sulin infusion devices (ªBiostator deviceº) which can
introduce error in the calculation of insulin clearance
rates [39, 40]. Moreover other factors, such as differ-
ences in the age of the subjects used and the presence
of higher circulating insulin antibody titres can also
affect insulin clearance [41]. Insulin antibodies were
not measured in our study but are unlikely to have
been present in our subjects given their young age
and likelihood that all had been treated with recom-
binant human insulin since diagnosis. A relation be-
tween BMI and insulin clearance rates has also been
reported [42] but was not seen in our study. This
could be explained by the lack of any extremes in
BMI values in our subjects, although a recent study
of patients with polycystic ovarian syndrome noted
that insulin clearance rates were reduced indepen-
dent of BMI [43].

Non-esterified fatty acids could be important in
explaining the relations seen between insulin sensitiv-
ity and insulin clearance with both GH and BMI. A
negative relation between BMI and insulin sensitivity
is recognised in obese subjects with and without dia-
betes [44, 45, 46], and there is evidence linking in-
creased concentrations of NEFAs to the develop-
ment of insulin resistance in subjects with increased
BMI [47, 48]. Small increments in BMI have also
been associated with reduced insulin clearance rates
and increased NEFAs in patients with glucose intol-
erance [42]. Experiments in rats suggests that NEFAs
reduce hepatic insulin uptake and insulin degradation
[49, 50]. Furthermore, in humans NEFA's have been
shown to alter hepatic insulin clearance and have
been implicated in the reduced insulin sensitivity as-
sociated with Type II (non-insulin dependent) diabe-
tes mellitus [51]. We did not see any relation between
mean steady-state euglycaemia plasma NEFA con-
centrations with GH, insulin sensitivity or insulin
clearance, although it cannot be entirely discounted.
Early morning fasting ketone and NEFA concentra-
tions seem to be determined by plasma insulin con-
centrations, whereas those during the early part of
the night are related to GH [52]. The concentrations
of NEFA in our study were measured from plasma
samples that were collected and stored in the pres-
ence of heparin, which is well known to cause the re-
lease of NEFAs in blood through the activation of li-
poprotein lipase activity and could have interfered
with our final results [53].

The relations seen in our study also raise the ques-
tion as to whether insulin clearance could be another
factor that regulates insulin sensitivity in patients
with Type I diabetes. In vitro, after insulin receptor
binding and internalisation into cells, insulin and the

enzymatic processes involved in its degradation can
have effects on the generation of insulin action [54,
55]. The liver is the primary site for the clearance of
insulin from the circulation [56, 57] and in liver dis-
ease states, decreases in insulin clearance have been
associated with reductions in hepatic insulin sensitivi-
ty [58]. In both non-diabetic insulin resistant patients
and healthy human subjects strong relations between
insulin sensitivity and insulin clearance have also
been reported [59, 60]. Although it cannot be dis-
counted that insulin clearance could be a determinant
of insulin sensitivity there are other explanations that
could account for this association. For example, re-
ductions in insulin receptor numbers at the tissues
would have an affect on both insulin clearance rates
and insulin action. There is some evidence that fac-
tors causing abnormalities in the post-receptor mech-
anisms that could be responsible for reduced insulin
sensitivity could also cause reductions in insulin re-
ceptor numbers and thus reduce insulin receptor me-
diated clearance [61].

In conclusion, our study has shown that insulin
clearance rates vary with age in young subjects with
Type I diabetes and are highest during mid-adoles-
cence when insulin sensitivity is at its lowest. Both in-
sulin clearance and insulin sensitivity are related to
circulating GH concentrations, whereas insulin sensi-
tivity alone is correlated with BMI values. Our study
highlights the complex inter-relations that exist be-
tween age, GH and BMI in the determination of insu-
lin sensitivity in subjects with Type I diabetes.
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