Skip to main content

Advertisement

Log in

ACSF2 and lysine lactylation contribute to renal tubule injury in diabetes

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims

Lactate accumulation is reported to be a biomarker for diabetic nephropathy progression. Lactate drives lysine lactylation, a newly discovered post-translational modification that is involved in the pathogenesis of cancers and metabolic and inflammatory disease. Here, we aimed to determine whether lysine lactylation is involved in the pathogenesis of diabetic nephropathy.

Methods

Renal biopsy samples from individuals with diabetic nephropathy (n=22) and control samples from individuals without diabetes and kidney disease (n=9) were obtained from the First Affiliated Hospital of Zhengzhou University for immunohistochemical staining. In addition, we carried out global lactylome profiling of kidney tissues from db/m and db/db mice using LC-MS/MS. Furthermore, we assessed the role of lysine lactylation and acyl-CoA synthetase family member 2 (ACSF2) in mitochondrial function in human proximal tubular epithelial cells (HK-2).

Results

The expression level of lysine lactylation was significantly increased in the kidneys of individuals with diabetes as well as in kidneys from db/db mice. Integrative lactylome analysis of the kidneys of db/db and db/m mice identified 165 upregulated proteins and 17 downregulated proteins, with an increase in 356 lysine lactylation sites and a decrease in 22 lysine lactylation sites decreased. Subcellular localisation analysis revealed that most lactylated proteins were found in the mitochondria (115 proteins, 269 sites). We further found that lactylation of the K182 site in ACSF2 contributes to mitochondrial dysfunction. Finally, the expression of ACSF2 was notably increased in the kidneys of db/db mice and individuals with diabetic nephropathy.

Conclusions

Our study strongly suggests that lysine lactylation and ACSF2 are mediators of mitochondrial dysfunction and may contribute to the progression of diabetic nephropathy.

Data availability

The LC-MS/MS proteomics data have been deposited in the ProteomeXchange Consortium database (https://proteomecentral.proteomexchange.org) via the iProX partner repository with the dataset identifier PXD050070.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACSF2:

Acyl-CoA synthetase family member 2

DRP1:

Dynamin-related protein 1

ESRD:

End-stage renal disease

FerrDb:

Ferroptosis database

HBSS:

Hanks’ balanced salt solution

IHC:

Immunohistochemical

K182la:

Lysine lactylation at site 182

KEGG:

Kyoto Encyclopedia of Genes and Genomes

Kla:

Lysine lactylation

LCFA:

Long-chain fatty acids

MFN2:

Mitofusin 2

Pan-Kla:

Pan-antibody of lactylation

PAS:

Periodic acid–Schiff

PI3K:

Phosphoinositide 3-kinase

PMSF:

Phenylmethylsulfonyl fluoride

ROS:

Reactive oxygen species

TCA:

Tricarboxylic acid

TFAM:

Mitochondrial transcription factor A

UACR:

Urine albumin/creatinine ratio

WT:

Wild-type

References

  1. Umanath K, Lewis JB (2018) Update on diabetic nephropathy: core curriculum 2018. Am J Kidney Dis 71(6):884–895. https://doi.org/10.1053/j.ajkd.2017.10.026

    Article  PubMed  Google Scholar 

  2. Cheng HT, Xu X, Lim PS, Hung KY (2021) Worldwide epidemiology of diabetes-related end-stage renal disease, 2000–2015. Diabetes Care 44(1):89–97. https://doi.org/10.2337/dc20-1913

    Article  PubMed  Google Scholar 

  3. Fioretto P, Pontremoli R (2022) Expanding the therapy options for diabetic kidney disease. Nat Rev Nephrol 18(2):78–79. https://doi.org/10.1038/s41581-021-00522-3

    Article  CAS  PubMed  Google Scholar 

  4. Lee DY, Kim JY, Ahn E et al (2022) Associations between local acidosis induced by renal LDHA and renal fibrosis and mitochondrial abnormalities in patients with diabetic kidney disease. Transl Res 249:88–109. https://doi.org/10.1016/j.trsl.2022.06.015

    Article  CAS  PubMed  Google Scholar 

  5. Kugathasan L, Darshi M, Srinivasan Sridhar V et al (2023) 12-OR: Urine lactate is a disease biomarker for diabetic kidney disease. Diabetes 72(Supplement_1):12-OR. https://doi.org/10.2337/db23-12-OR

    Article  Google Scholar 

  6. Azushima K, Kovalik JP, Yamaji T et al (2023) Abnormal lactate metabolism is linked to albuminuria and kidney injury in diabetic nephropathy. Kidney Int 104(6):1135–1149. https://doi.org/10.1016/j.kint.2023.08.006

    Article  CAS  PubMed  Google Scholar 

  7. Wang N, Wang W, Wang X et al (2022) Histone lactylation boosts reparative gene activation post-myocardial infarction. Circ Res 131(11):893–908. https://doi.org/10.1161/circresaha.122.320488

    Article  CAS  PubMed  Google Scholar 

  8. Xiong J, He J, Zhu J et al (2022) Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell 82(9):1660-1677.e10. https://doi.org/10.1016/j.molcel.2022.02.033

    Article  CAS  PubMed  Google Scholar 

  9. Yu J, Chai P, Xie M et al (2021) Histone lactylation drives oncogenesis by facilitating m(6)A reader protein YTHDF2 expression in ocular melanoma. Genome Biol 22(1):85. https://doi.org/10.1186/s13059-021-02308-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang D, Tang Z, Huang H et al (2019) Metabolic regulation of gene expression by histone lactylation. Nature 574(7779):575–580. https://doi.org/10.1038/s41586-019-1678-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xie B, Lin J, Chen X et al (2023) CircXRN2 suppresses tumor progression driven by histone lactylation through activating the Hippo pathway in human bladder cancer. Mol Cancer 22(1):151. https://doi.org/10.1186/s12943-023-01856-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jia M, Yue X, Sun W et al (2023) ULK1-mediated metabolic reprogramming regulates Vps34 lipid kinase activity by its lactylation. Sci Adv 9(22):eadg4993. https://doi.org/10.1126/sciadv.adg4993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Irizarry-Caro RA, McDaniel MM, Overcast GR, Jain VG, Troutman TD, Pasare C (2020) TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc Natl Acad Sci U S A 117(48):30628–30638. https://doi.org/10.1073/pnas.2009778117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang J, Yang P, Yu T et al (2022) Lactylation of PKM2 suppresses inflammatory metabolic adaptation in pro-inflammatory macrophages. Int J Biol Sci 18(16):6210–6225. https://doi.org/10.7150/ijbs.75434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang Z, Yan C, Ma J et al (2023) Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat Metab 5(1):61–79. https://doi.org/10.1038/s42255-022-00710-w

    Article  CAS  PubMed  Google Scholar 

  16. Yang D, Yin J, Shan L, Yi X, Zhang W, Ding Y (2022) Identification of lysine-lactylated substrates in gastric cancer cells. iScience 25(7):104630. https://doi.org/10.1016/j.isci.2022.104630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang X, Fan W, Li N et al (2023) YY1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2. Genome Biol 24(1):87. https://doi.org/10.1186/s13059-023-02931-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. An S, Yao Y, Hu H et al (2023) PDHA1 hyperacetylation-mediated lactate overproduction promotes sepsis-induced acute kidney injury via Fis1 lactylation. Cell Death Dis 14(7):457. https://doi.org/10.1038/s41419-023-05952-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xue M, Fang T, Sun H et al (2021) PACS-2 attenuates diabetic kidney disease via the enhancement of mitochondria-associated endoplasmic reticulum membrane formation. Cell Death Dis 12(12):1107. https://doi.org/10.1038/s41419-021-04408-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gan B (2021) Mitochondrial regulation of ferroptosis. J Cell Biol 220(9):e202105043. https://doi.org/10.1083/jcb.202105043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao M, Yi J, Zhu J et al (2019) Role of mitochondria in ferroptosis. Mol Cell 73(2):354-363.e353. https://doi.org/10.1016/j.molcel.2018.10.042

    Article  CAS  PubMed  Google Scholar 

  22. Naaman SC, Bakris GL (2023) Diabetic nephropathy: update on pillars of therapy slowing progression. Diabetes Care 46(9):1574–1586. https://doi.org/10.2337/dci23-0030

    Article  CAS  PubMed  Google Scholar 

  23. Forbes JM, Thorburn DR (2018) Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol 14(5):291–312. https://doi.org/10.1038/nrneph.2018.9

    Article  CAS  PubMed  Google Scholar 

  24. Han Y, Xu X, Tang C et al (2018) Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol 16:32–46. https://doi.org/10.1016/j.redox.2018.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Q, Liao J, Chen W et al (2022) NAC alleviative ferroptosis in diabetic nephropathy via maintaining mitochondrial redox homeostasis through activating SIRT3-SOD2/Gpx4 pathway. Free Radic Biol Med 187:158–170. https://doi.org/10.1016/j.freeradbiomed.2022.05.024

    Article  CAS  PubMed  Google Scholar 

  26. Jiang N, Zhao H, Han Y et al (2020) HIF-1α ameliorates tubular injury in diabetic nephropathy via HO-1-mediated control of mitochondrial dynamics. Cell Prolif 53(11):e12909. https://doi.org/10.1111/cpr.12909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu L, Bai F, Song H et al (2022) Upregulation of TIPE1 in tubular epithelial cell aggravates diabetic nephropathy by disrupting PHB2 mediated mitophagy. Redox Biol 50:102260. https://doi.org/10.1016/j.redox.2022.102260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang K, Fan M, Wang X et al (2022) Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ 29(1):133–146. https://doi.org/10.1038/s41418-021-00841-9

    Article  CAS  PubMed  Google Scholar 

  29. Stockwell BR (2022) Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185(14):2401–2421. https://doi.org/10.1016/j.cell.2022.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fang X, Ardehali H, Min J, Wang F (2022) The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol 20(1):7–23. https://doi.org/10.1038/s41569-022-00735-4

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang H, Cheng Y, Mao C et al (2021) Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol Ther 29(7):2185–2208. https://doi.org/10.1016/j.ymthe.2021.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22(4):266–282. https://doi.org/10.1038/s41580-020-00324-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo R, Duan J, Pan S et al (2023) The road from AKI to CKD: molecular mechanisms and therapeutic targets of ferroptosis. Cell Death Dis 14(7):426. https://doi.org/10.1038/s41419-023-05969-9

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhao Z, Wu J, Xu H et al (2020) XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia-reperfusion injury. Cell Death Dis 11(8):629. https://doi.org/10.1038/s41419-020-02871-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tonnus W, Meyer C, Steinebach C et al (2021) Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury. Nat Commun 12(1):4402. https://doi.org/10.1038/s41467-021-24712-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang J, Liu Y, Wang Y, Sun L (2021) The cross-link between ferroptosis and kidney diseases. Oxid Med Cell Longev 2021:6654887. https://doi.org/10.1155/2021/6654887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li S, Zheng L, Zhang J, Liu X, Wu Z (2021) Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy. Free Radic Biol Med 162:435–449. https://doi.org/10.1016/j.freeradbiomed.2020.10.323

    Article  CAS  PubMed  Google Scholar 

  38. Kim S, Kang SW, Joo J et al (2021) Characterization of ferroptosis in kidney tubular cell death under diabetic conditions. Cell Death Dis 12(2):160. https://doi.org/10.1038/s41419-021-03452-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Watkins PA, Maiguel D, Jia Z, Pevsner J (2007) Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. J Lipid Res 48(12):2736–2750. https://doi.org/10.1194/jlr.M700378-JLR200

    Article  CAS  PubMed  Google Scholar 

  40. Luo L, Zhang S, Guo N, Li H, He S (2023) ACSF2-mediated ferroptosis is involved in ulcerative colitis. Life Sci 313:121272. https://doi.org/10.1016/j.lfs.2022.121272

    Article  CAS  PubMed  Google Scholar 

  41. Wu MN, Zhou DM, Jiang CY et al (2022) Genetic analysis of potential biomarkers and therapeutic targets in ferroptosis from psoriasis. Front Immunol 13:1104462. https://doi.org/10.3389/fimmu.2022.1104462

    Article  CAS  PubMed  Google Scholar 

  42. Shi H, Qi H, Xie D et al (2023) Inhibition of ACSF2 protects against renal ischemia/reperfusion injury via mediating mitophagy in proximal tubular cells. Free Radic Biol Med 198:68–82. https://doi.org/10.1016/j.freeradbiomed.2023.02.003

    Article  CAS  PubMed  Google Scholar 

  43. Wang M, Su Y, Hou C et al (2022) Targeted lipidomics analysis of lysine 179 acetylation of ACSF2 in rat hepatic stellate cells. Prostaglandins Other Lipid Mediat 163:106671. https://doi.org/10.1016/j.prostaglandins.2022.106671

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongwei Liu, Zhihong Liu or Zhangsuo Liu.

Ethics declarations

Acknowledgements

We thank the Biobank of the First Affiliated Hospital of Zhengzhou University (China Human Genetic Resources Preservation Approval No. [2022]BC0079) for providing human control kidney tissues.

Data availability

The LC-MS/MS proteomics data have been deposited in the ProteomeXchange Consortium database (https://proteomecentral.proteomexchange.org) via the iProX partner repository with the dataset identifier PXD050070.

Funding

This study is supported by grants from the National Natural Science Foundation of China General Project (no. 81970633), National Natural Science Foundation of China Young Scientists Project (no. 82200796), Medical Science and Technology Research Project of Henan Province (SBGJ202102145) and Natural Science Foundation of Henan Province Excellent Young Scientists Fund Program (no. 202300410363).

Authors’ relationships and activities

The authors declare that there are no relationships or activities that might bias, or be perceived to bias, their work.

Contribution statement

DL, ZsL and ZhL designed the study; JC, QF, YQ and SP conducted the experiments. LL, YL and XZ were responsible for feeding the mice, measuring weight and blood glucose levels and collecting kidney tissues and serum samples. LL, YL and XZ collected samples of human kidney tissues. YQ, LL,YL and XZ conducted the statistical analysis. JC and QF wrote the manuscript and SP, LL and YL drew the figures. YQ, SP, LL, YL and XZ contributed to drafting the manuscript. JC, QF, LL, DL, ZhL and ZsL revised the manuscript. All authors approved the final version of the manuscript. ZsL is the guarantor of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM (PDF 327 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Feng, Q., Qiao, Y. et al. ACSF2 and lysine lactylation contribute to renal tubule injury in diabetes. Diabetologia (2024). https://doi.org/10.1007/s00125-024-06156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00125-024-06156-x

Keywords

Navigation