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Abstract
Aims/hypothesis  This study aimed to explore the added value of subgroups that categorise individuals with type 2 diabetes 
by k-means clustering for two primary care registries (the Netherlands and Scotland), inspired by Ahlqvist’s novel diabetes 
subgroups and previously analysed by Slieker et al.
Methods  We used two Dutch and Scottish diabetes cohorts (N=3054 and 6145; median follow-up=11.2 and 12.3 years, 
respectively) and defined five subgroups by k-means clustering with age at baseline, BMI, HbA1c, HDL-cholesterol and 
C-peptide. We investigated differences between subgroups by trajectories of risk factor values (random intercept models), 
time to diabetes-related complications (logrank tests and Cox models) and medication patterns (multinomial logistic models). 
We also compared directly using the clustering indicators as predictors of progression vs the k-means discrete subgroups. 
Cluster consistency over follow-up was assessed.
Results  Subgroups’ risk factors were significantly different, and these differences remained generally consistent over follow-
up. Among all subgroups, individuals with severe insulin resistance faced a significantly higher risk of myocardial infarction 
both before (HR 1.65; 95% CI 1.40, 1.94) and after adjusting for age effect (HR 1.72; 95% CI 1.46, 2.02) compared with mild 
diabetes with high HDL-cholesterol. Individuals with severe insulin-deficient diabetes were most intensively treated, with 
more than 25% prescribed insulin at 10 years of diagnosis. For severe insulin-deficient diabetes relative to mild diabetes, 
the relative risks for using insulin relative to no common treatment would be expected to increase by a factor of 3.07 (95% 
CI 2.73, 3.44), holding other factors constant. Clustering indicators were better predictors of progression variation relative 
to subgroups, but prediction accuracy may improve after combining both. Clusters were consistent over 8 years with an 
accuracy ranging from 59% to 72%.
Conclusions/interpretation  Data-driven subgroup allocations were generally consistent over follow-up and captured signifi-
cant differences in risk factor trajectories, medication patterns and complication risks. Subgroups serve better as a comple-
ment rather than as a basis for compressing clustering indicators.

Keywords  Data-driven subgroups · Longitudinal analysis · Real-world data · Routine care · Stratification of diabetes
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RHAP-MOD	� Mild obesity-related diabetes developed by 
RHAPSODY

RHAP-SIDD	� Severe insulin-deficient diabetes devel-
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Introduction

Data-driven clustering analysis has been proposed for cat-
egorising type 2 diabetes based on six clinical parameters: 
age, BMI, HbA1c, GAD antibodies and HOMA-2 estimates 
of beta cell function and insulin resistance [1]. In the study 
by Ahlqvist et al [1], Swedish individuals with diabetes were 
stratified into five subgroups, including severe autoimmune 
diabetes, severe insulin-deficient diabetes (SIDD), severe 
insulin-resistant diabetes (SIRD), mild obesity-related dia-
betes (MOD) and mild age-related diabetes (MARD) [1]. 
These subgroups were reproduced in other countries and 

cohorts, and their risk profiles studied in both the short and 
medium term (5 to 15 years) [2–7]. The findings suggest 
distinct risks of complications and molecular profiles across 
the subgroups [1–6, 8]. For example, SIRD had a higher 
frequency of non-alcoholic fatty liver disease and higher 
risk of developing chronic kidney disease (CKD) [1], and 
subgroups may help to identify underlying molecular mecha-
nisms related to liver [8], which may provide insights into 
the diverse aetiology of diabetes.

As part of the Risk Assessment and ProgreSsiOn of Dia-
betes project (RHAPSODY, https://​imi-​rhaps​ody.​eu), a new 
set of risk subgroups clustered based on clinical parameters 
were defined using Dutch and Scottish diabetes registry data 
and the original Swedish cohort of individuals with type 
2 diabetes [9]. Given that the data originated from routine 
care, some clinical parameters were slightly modified due 
to their availability [9]. Replication analyses showed good 
resemblance between cohorts and also compared with the 
original Swedish subgroups (developed by Ahlqvist et al [1]) 
[9, 10], except for the refinement of the original MARD 
cluster into two new clusters, the mild diabetes subgroup 
developed by RHAPSODY (RHAP-MD) and the mild 
diabetes with high HDL-cholesterol subgroup developed 
by RHAPSODY (RHAP-MDH), following the addition 
of HDL-cholesterol. Both RHAP-MD and RHAP-MDH 
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exhibited slow glycaemic deterioration, but they showed 
significantly different molecular signatures [8].

Hence, following up on prior RHAPSODY subgroup 
research, the current study aims to gain more insight into the 
clinical relevance of subgroups by studying up to 23 years of 
follow-up data in two of the original RHAPSODY cohorts. 
Using contemporary cohorts and a significantly longer fol-
low-up than previous studies, we wanted to: (1) estimate 
risk factor progression, time to macrovascular complications 
and treatment patterns by baseline subgroup over at least 
15 years; (2) explore the added value of using data-driven 
subgroups compared with clustering indicators in predicting 
the progression of risk factors, risk of complications or treat-
ment patterns; and (3) examine the consistency of member-
ship to the data-driven diabetes subgroups over time. Using 
two distinct cohorts allowed us to validate our findings.

Methods

Study design and participants  This retrospective study 
investigated 9199 individuals with type 2 diabetes in two 
distinct cohorts: the Hoorn Diabetes Care System (DCS, 
the Netherlands) and the Genetics of Diabetes Audit and 
Research in Tayside Scotland (GoDARTS, Scotland). The 
reporting of study findings followed the STrengthening 
the Reporting of OBservational studies in Epidemiology 
(STROBE) guidelines [11], as listed in the electronic sup-
plementary material (ESM) Appendix 1.

Our study’s inclusion criteria consisted of a diagnosis age 
≥35, GAD negativity and the availability of complete data for 
each of the five clustering indicators within 2 years of diagno-
sis. By omitting the data availability requirement for genome-
wide association used in the previous RHAPSODY cluster-
ing study [9], we employed more lenient criteria, yielding a 
slightly larger sample size compared with Slieker et al [9].

The DCS cohort consisted of 3054 individuals (median 
follow-up=11.2 years) observed over the period 1998–2019 
and the GoDARTS cohort consisted of 6145 individuals 
(median follow-up=12.3 years) over the period 2003–2018 
that matched the inclusion criteria (ESM Fig. 2.1). All 
results were produced for both cohorts, separately.

DCS is a comprehensive dynamic prospective cohort of the 
natural course of type 2 diabetes from 103 general practition-
ers (GPs) in the West-Friesland region of the Netherlands, 
with over 90% of its participants being of European ancestry 
[12]. At baseline, 52.3% of the participants were men, with a 
mean age of 63 years. Educational levels varied among par-
ticipants: 43.3% had a low educational level, 42.1% had a mid-
dle educational level and 14.6% had a high educational level 
[12]. DCS generally represents a Western European, semi-
urban population [12]. GoDARTS is a longitudinal cohort that 
includes individuals with diabetes from the Tayside region of 

Scotland, with more than 99% of its participants being white 
[13]. At baseline, 53.3% of the participants were men, with a 
mean age of 64 years [13]. GoDARTS generally represents a 
predominantly white population with diabetes in the East of 
Scotland [13]. Pseudonymised data were collected through 
electronic record linkage from primary and secondary care 
data sources [13]. Laboratory measurements of both cohorts 
have been described in detail in previous studies [9, 12–14] 
(ESM Appendix 2).

Outcomes and medications  Macrovascular and microvascu-
lar outcomes, including acute myocardial infarction (AMI), 
congestive heart failure (CHF), peripheral vascular disease 
(PVD), stroke, CKD and end-stage renal disease (ESRD), 
were included in this study (ESM Table 2.1).

Medication use was categorised into treatment steps (ESM 
Table 2.2). These were defined according to the management 
steps described in the Dutch GP primary care guideline [15], 
as the relevant guidance for DCS practitioners at the time 
of data collection, adding information regarding the use of 
statins and other medication for CVD prevention.

Clustering  Clustering was done on scaled clustering indi-
cators at baseline, including age at baseline, BMI, HbA1c, 
C-peptide (as a proxy of HOMA-2 estimates of beta cell func-
tion and insulin resistance in the absence of fasting glucose in 
GoDARTS [9]) and HDL-cholesterol (as a risk factor for time 
to insulin requirement [16]). The baseline for each individual 
was defined as the observation nearest to diabetes diagnosis. 
Therefore, it should largely reflect individuals who were either 
untreated or who only received first line treatment for a brief 
period (details in Table 1). Men and women were clustered 
separately and then pooled to avoid sex-dependent differences. 
Cluster centres were defined as the arithmetic mean of all the 
values belonging to the cluster. Once clusters were defined, 
we assigned the same cluster names as those in the original 
study [1, 9], based on the distribution of cluster characteristics 
and the lowest Euclidean distance from the previous study 
[9], including severe insulin-deficient diabetes developed by 
RHAPSODY (RHAP-SIDD; characterised by high HbA1c), 
severe insulin-resistant diabetes developed by RHAPSODY 
(RHAP-SIRD; characterised by high C-peptide and age at 
baseline), mild obesity-related diabetes developed by RHAP-
SODY (RHAP-MOD; characterised by high BMI), RHAP-
MD (characterised by moderate risk factors) and RHAP-MDH 
(characterised by high HDL-cholesterol) [9].

Statistical analysis  Subgroups identified at baseline were 
compared with the previously published RHAPSODY sub-
groups [9], considering the latter as the reference. The agree-
ment was assessed based on sensitivity, specificity, specific 
agreement [17], overall accuracy rate along with a 95% CI 
and overall κ indices of agreement [18].
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Missing data (mean of 0.6% in DCS and 8.1% in 
GoDARTS; ESM Table 2.3) were omitted in their respective 
analyses to avoid excessive use of imputed data as observa-
tional evidence.

We reported baseline characteristics for each subgroup 
using frequencies (%) for categorical variables or mean 
(SD) for continuous variables. Trajectories of related clini-
cal parameters (BMI, HbA1c, HDL-cholesterol, systolic BP 
[SBP], diastolic BP [DBP], total cholesterol, LDL-choles-
terol, blood creatinine and triglycerides) were visualised by 
plotting subgroup annual means, along with 1 SD bounda-
ries based on observed variance within subgroups. The 
random intercept model was used to analyse longitudinal 
trajectory data with discrete subgroup membership, sex and 
diabetes duration as covariates.

Kaplan–Meier methods were applied to plot cumulative 
incidence for first events of each outcome since diagnosis 
of diabetes by subgroups. Group comparisons and pairwise 
comparisons were conducted by logrank tests, applying Ben-
jamini–Hochberg correction [19] to adjust for multiple com-
parisons. A Cox regression model with diabetes duration as 
the time scale, left truncated at each individual’s diagnosis of 
diabetes, was conducted to calculate the HR (95% CI). The 
Cox model was also adjusted for age at baseline and sex. Sch-
oenfeld tests were applied to evaluate the proportional hazard 
assumption, and violation was indicated by p<0.05 [20].

We visualised medication patterns reflecting the propor-
tion of individuals within each subgroup in each treatment 
step over the follow-up period by area graphs. Multinomial 
logistic regression, in which treatment steps were depend-
ent variables, with discrete subgroup membership, diabetes 
duration and sex as covariates, was conducted to compare 
the proportion in each treatment step between subgroups.

The models described above were re-estimated using 
clustering indicators at baseline (HbA1c, C-peptide, HDL-
cholesterol, age and BMI), with and without discrete sub-
group membership data, to analyse the longitudinal risk 
factor trajectories, risk of complications and medication 
patterns. Akaike’s information criterion (AIC) and relative 
likelihood (RL) were applied to compare the information 
loss and fitting of models [21]. Smaller AIC values indicate 
better goodness of fit. The p value for the comparison of AIC 
differences was then indicated by RL = exp(

AIC
min

−AIC

2
) . We 

visualised the results on a heatmap, using colours to indicate 
scaled AIC and text to indicate RL.

Two clustering algorithms were repeated with durations 
of 2–4, 4–6 and 4–8 years from diagnosis to assess the clus-
ter consistency over time as follows: (1) de novo cluster-
ing (i.e. repeating k-means clustering); or (2) centre-based 
reallocation (i.e. assigning individuals to the subgroup with 
the lowest Euclidean distance to cluster centres identified at 
baseline). The agreement between estimated subgroups over 
time and subgroups identified at baseline was assessed, and 

the cluster migration pattern was presented graphically for 
individuals with available clustering indicators in all four 2 
year intervals (GoDARTS n=4914; DCS n=2756), along 
with the top ten transition trajectories. An analysis of the 
associated risk factors and treatment patterns was visual-
ised in the same manner for the most representative move-
ments. We used the Cox regression model to compare the 
risk of complications for those who moved between severe 
subgroups (including RHAP-SIRD and RHAP-SIDD) and 
mild subgroups (including RHAP-MD, RHAP-MOD and 
RHAP-MDH).

All analyses were performed in R [22] (version 4.1.0: 
https://​www.r-​proje​ct.​org/) and R studio (version 1.4.1717: 
https://​www.​rstud​io.​com/) (ESM Appendix 3).

Results

Baseline characteristics and the progression of clinical 
parameters over time  Our current subgroups identified at 
baseline, which were based on a larger sample size of indi-
viduals than previously published RHAPSODY subgroups 
[9] (2953 individuals in DCS), showed a good resem-
blance with an accuracy of 0.92 (95% CI 0.91, 0.93) (ESM 
Table 4.1), despite a slight change in clustering centroids 
(ESM Table 4.2).

Significant differences in baseline clustering indica-
tors, treatment patterns and other clinical parameters were 
observed among subgroups identified at baseline (Table 1, 
ESM Figs 4.1–4.4).

Figure 1 and ESM Fig. 4.5 show that the ranking of 
risk factors across baseline subgroups remained relatively 
unchanged throughout follow-up for those risk factors used to 
characterise specific subgroups (e.g. the subgroup character-
ised by high HDL-cholesterol at baseline recorded the high-
est mean HDL-cholesterol during follow-up). The exception 
was for the trajectory of HbA1c as observed in GoDARTS 
(Fig. 1b), where the RHAP-MOD subgroup crossed with 
the RHAP-SIDD subgroup after 4 years from diagnosis and 
became the subgroup with the highest mean HbA1c. Random 
intercept models (ESM Table 4.3) indicated that subgroups’ 
properties over time are not only visually distinct but also 
statistically significantly different. Specifically, compared 
with RHAP-SIDD, RHAP-SIRD had significantly higher 
creatinine (an average difference of 12.65 μmol/l across the 
two cohorts) and RHAP-MDH had significantly lower tri-
glyceride (an average difference of 0.48 mmol/l).

Diabetes‑related complications by subgroup  The risks of 
developing AMI, CHF, stroke, CKD and ESRD are signifi-
cantly different across all subgroups (ESM Figs 5.1, 5.2). At 
10 years after diagnosis, the RHAP-SIRD subgroup had the 

https://www.r-project.org/
https://www.rstudio.com/
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highest incidence of AMI (28.43%; 5.12%), CHF (10.66%; 
7.87%), PVD (1.78%; 1.48%) and CKD (75.32%; 57.08%) 
and RHAP-MDH had the highest incidence of stroke (9.45%; 
5.32%) in both GoDARTS and DCS.

Proportional hazard assumptions are fulfilled except 
for CHF and CKD in GoDARTS (ESM Table 5.1). In both 
GoDARTS and DCS, Cox models (Fig. 2, ESM Fig. 5.3) 
indicated that compared with RHAP-MDH, HRs for RHAP-
SIRD were significantly different (p<0.05) and the highest 
among all other subgroups for AMI. Although RHAP-MDH 
is the so-called mild subgroup, HRs for RHAP-MDH were 
significantly (p<0.05) higher than RHAP-MOD for stroke 
in both GoDARTS (HR 2.35 [95% CI 1.78, 3.1]) and DCS 
(HR 2.31 [1.22, 4.38]) (ESM Tables 5.2, 5.3).

Multiple comparisons of survival rate curves indicated 
that CHF and CKD incidence was significantly higher in the 
RHAP-SIRD subgroup than in RHAP-MOD and RHAP-MD 
(ESM Tables 5.4, 5.5) in both cohorts. Although these higher 

risks of complication might be driven mainly by the higher 
age of the RHAP-SIRD and RHAP-MDH subgroups, Cox 
models adjusted for age and sex still indicated significantly 
higher HRs of AMI and CKD in RHAP-SIRD compared with 
RHAP-MDH for both GoDARTS (AMI HR 1.72 [1.46, 2.02] 
and CKD HR 1.67 [1.51, 1.84]; unadjusted AMI HR 1.65 
[1.40, 1.94] and unadjusted CKD HR 1.38 [1.25, 1.52]) and 
DCS (AMI HR 2.86 [1.35, 6.04] and CKD HR 1.77 [1.51, 
2.08]; unadjusted AMI HR 3.53 [1.68, 7.41] and unadjusted 
CKD HR 2.02 [1.72, 2.36]) (Fig. 2, ESM Fig. 5.3).

Treatment patterns  Clear variations in treatment patterns 
across subgroups over diabetes duration were seen (Fig. 3, 
ESM Fig. 6.1). In both cohorts, RHAP-MOD had the highest 
proportion of prescribing other oral antidiabetic drugs (OADs; 
otherwise known as oral glucose-lowering drugs), includ-
ing dipeptidyl peptidase-4 inhibitors, glucagon-like pep-
tide-1 analogues, α-glucosidase inhibitors, sodium–glucose 

a b c

d e f

g h i

Fig. 1   Progression of clinical parameters over time based on sub-
groups identified at diagnosis in the GoDARTS cohort. Here, SIDD, 
SIRD, MOD, MD and MDH refer to RHAP-SIDD, RHAP-SIRD, 
RHAP-MOD, RHAP-MD and RHAP-MDH, respectively. HDL-C 

and LDL-C refer to HDL-cholesterol and LDL-cholesterol, respec-
tively. Values of selected parameters over time in each cluster are 
shown. The data are represented as mean values (solid line) ±SD 
(shaded areas). Missing values were removed
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cotransporter 2 inhibitors and thiazolidinediones (on average 
23.83% in GoDARTS and 3.55% in DCS). Among these, the 
prescriptions for thiazolidinediones (6.16%) and dipeptidyl 
peptidase-4 inhibitors (5.15%) were the highest in GoDARTS, 
whereas both were less than 1% in DCS, reflecting differences 
in prescribing practices between the two countries. A sub-
stantially higher proportion of individuals with RHAP-SIDD 
received diabetes medication than other subgroups in both 
cohorts. More than half of individuals with RHAP-SIDD were 
prescribed insulin or other OADs at 10 years of diagnosis in 
GoDARTS (55.15%; 27.56% insulin and 27.58% other OADs) 
and DCS (52.48%; 49.65% insulin and 2.84% other OADs). 
In both GoDARTS and DCS, this proportion was the low-
est in RHAP-MDH (17.34%; 14.91%), followed by RHAP-
SIRD (24.58%; 17.63%), RHAP-MD (31.14%; 26.88%) and 

RHAP-MOD (51.16%; 30.56%), indicating that individuals 
with RHAP-SIDD received the most intensive glucose con-
trol treatment, followed by RHAP-MOD. Multinomial logistic 
regression results (ESM Table 6.1) indicated that treatment 
patterns were not only visually distinct but also statistically 
different among all subgroups. For example, for RHAP-SIDD 
relative to RHAP-MD, the relative risk for using insulin (step 
3) to no common treatment would be expected to increase by 
a factor of 3.07 (95% CI 2.73, 3.44) in GoDARTS and 11.80 
(95% CI 8.98, 15.50) in DCS, given the other variables in the 
model are held constant.

Comparison between subgroups and clinical features to 
predict outcomes  Using only clustering indicators com-
pared with discrete cluster memberships resulted in better 

Subgroup
AMI

Events

   SIDD
   SIRD

HR (95% CI)

   MOD

p value

   MD
CHF

Adjusted HR (95% CI)

   SIDD

p value

   SIRD
   MOD
   MD
PVD
   SIDD
   SIRD
   MOD
   MD
Stroke
   SIDD
   SIRD
   MOD
   MD
CKD
   SIDD
   SIRD
   MOD
   MD
ESRD
   SIDD
   SIRD
   MOD
   MD

256  (23.4%)
354  (33.36%)
234  (20.51%)
402  (23.34%)

101  (9.23%)
144  (13.57%)
71  (6.22%)
143  (8.3%)

10  (0.91%)
19  (1.79%)
7  (0.61%)
18  (1.05%)

111  (10.15%)
134  (12.63%)
78  (6.84%)
170  (9.87%)

629  (57.5%)
833  (78.51%)
454  (39.79%)
920  (53.43%)

6  (0.55%)
20  (1.89%)
<5
<5

0.91 (0.77, 1.09)
1.65 (1.40, 1.94)
0.82 (0.69, 0.99)
0.99 (0.84, 1.16)

0.81 (0.61, 1.07)
1.55 (1.20, 2.01)
0.55 (0.41, 0.75)
0.78 (0.60, 1.00)

0.81 (0.33, 1.94)
1.95 (0.91, 4.20)
0.55 (0.21, 1.45)
0.98 (0.45, 2.13)

0.62 (0.48, 0.79)
0.98 (0.77, 1.24)
0.43 (0.32, 0.56)
0.65 (0.52, 0.81)

0.58 (0.52, 0.64)
1.38 (1.25, 1.52)
0.35 (0.31, 0.39)
0.55 (0.50, 0.61)

0.20 (0.08, 0.50)
0.97 (0.52, 1.83)
0.06 (0.01, 0.27)
0.06 (0.02, 0.22)

0.313
0.000
0.036
0.900

0.143
0.001
0.000
0.054

0.630
0.088
0.228
0.958

0.000
0.882
0.000
0.000

0.000
0.000
0.000
0.000

0.001
0.932
0.000
0.000

1.20 (0.99, 1.44)
1.72 (1.46, 2.02)
1.38 (1.12, 1.71)
1.22 (1.03, 1.44)

1.53 (1.14, 2.06)
1.77 (1.36, 2.29)
1.90 (1.33, 2.73)
1.34 (1.02, 1.77)

1.39 (0.55, 3.49)
2.11 (0.98, 4.56)
1.61 (0.53, 4.91)
1.44 (0.64, 3.24)

1.10 (0.84, 1.43)
1.12 (0.88, 1.42)
1.28 (0.92, 1.78)
1.08 (0.85, 1.38)

1.21 (1.08, 1.35)
1.67 (1.51, 1.84)
1.26 (1.10, 1.45)
1.05 (0.95, 1.17)

1.66 (0.62, 4.43)
2.36 (1.23, 4.53)
5.20 (1.03, 26.23)
1.45 (0.37, 5.73)

0.062
0.000
0.003
0.022

0.005
0.000
0.000
0.037

0.489
0.057
0.399
0.382

0.490
0.367
0.145
0.517

0.001
0.000
0.001
0.325

0.313
0.010
0.046
0.592

0.5 1 2 3 5

Lower risk Higher risk

0.5 1 2 3 5

Lower risk Higher risk

Adjusted for age and sex

Fig. 2   The results of Cox regression analysis of GoDARTS. Here, 
SIDD, SIRD, MOD, MD and MDH refer to RHAP-SIDD, RHAP-
SIRD, RHAP-MOD, RHAP-MD and RHAP-MDH, respectively. 

MDH is the reference group. Italics indicate that the proportional 
hazard assumption has not been fulfilled
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fitting models in both cohorts (ESM Fig. 7.1; details in ESM 
Appendix 7), except for the Cox model for stroke, in which 
discrete subgroup membership performed slightly better than 
clustering indicators, though not significantly, as reflected by 
RL>0.1. Yet adding discrete cluster memberships to clus-
tering indicators achieved significantly lower AIC and thus 
a significantly better fit for the trajectories of BMI, HbA1c, 
SBP, blood creatinine and treatment patterns in both cohorts. 
A detailed example can be found in ESM Appendix 8.

Consistency of subgroups classification over time  In gen-
eral, clusters were consistent over 8 years with an accuracy 
ranging from 59% to 72% (ESM Table 9.1). By de novo 
clustering over 8 years since diagnosis, on average, 53% of 
individuals migrated to other subgroups with shifted cluster 
centres (ESM Tables 9.1–9.3). The accuracy of allocation 
decreased by 4.52% from 0.70 in 2–4 years to 0.67 in 6–8 
years in DCS, and by 7.11% from 0.64 in 2–4 years to 0.59 
in 6–8 years in GoDARTS. The κ (0.49–0.62) indicated 

Fig. 3   Area graph of treat-
ment steps per individual over 
time for each subgroup in the 
GoDARTS cohort. Here, SIDD, 
SIRD, MOD, MD and MDH 
refer to RHAP-SIDD, RHAP-
SIRD, RHAP-MOD, RHAP-
MD and RHAP-MDH, respec-
tively. On the x-axes, 0 indicates 
the period from diagnosis to 
less than 1 year after diagnosis; 
similarly, 1 indicates the period 
from 1 year after diagnosis to 
less than 2 years after diag-
nosis, etc. The treatment step 
was defined by an individual’s 
first available observation in 
each diabetes duration interval. 
Treatment steps are defined as 
no common treatment (diet and 
exercise), only CVD treat-
ment (Anatomical Therapeutic 
Chemical Classification System: 
C01–C10), step 1 (adding met-
formin [A10BA02] or  
repaglinide and nateglinide 
[A10BX]), step 2 (adding sulfo-
nylurea [A10BB]), step 3 (add-
ing insulin [A10A]) and other 
OAD (dipeptidyl peptidase-4 
inhibitors [Dpp; A10BH], 
glucagon-like peptide-1 [Glp; 
A10BJ], α-glucosidase inhibi-
tors [Aca; A10BF], sodium–glu-
cose cotransporter 2 inhibitors 
[Sgl; A10BK], thiazolidinedi-
ones [TZD; A10BG], liraglutide 
[A10BX07], dapagliflozin 
[A10BX09])
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a moderate to substantial agreement over time compared 
with subgroups identified at baseline. The specificity (ESM 
Table 9.3) was 0.91 on average, while the sensitivity and 
specific agreement were around 0.65 and 0.64 (lowest for 
RHAP-SIDD with average values of 0.25 and 0.28, respec-
tively). By the centre-based reallocation method, accuracy 
(0.61–0.72), κ (0.51–0.64) and the proportion of individuals 
staying in the same cluster (0.46–0.72) improved by an aver-
age of 4.22%, 6.39% and 5.73% compared with the de novo 
clustering method.

By the centre-based reallocation method, in GoDARTS, 
the RHAP-SIRD subgroup displayed the highest stability, 
with 77% of individuals remaining in the same cluster for 8 
years. In contrast, the RHAP-SIDD subgroup was the least 
stable, with only 8% of individuals staying in the same clus-
ter (Fig. 4). The most common transitions for RHAP-SIDD 
were to RHAP-MD (17%) and RHAP-MDH (7%) within the 
initial 2 years, with individuals maintaining their position 
in that subgroup for the subsequent 6 years. These individu-
als had a higher proportion receiving insulin-based control 
treatment and a greater decrease in HbA1c levels than indi-
viduals who were assigned to RHAP-MD or RHAP-MDH 
initially and stayed for the next 8 years (ESM Fig 9.1). Simi-
lar results could be found in DCS (ESM Figs 9.2, 9.3)

No significant difference in macrovascular disease risk was 
found between individuals transitioning from mild to severe 
subgroups and those remaining in the severe subgroup over 
2 years (ESM Figs 9.4, 9.5). For those in severe subgroups 
initially (ESM Figs 9.6, 9.7), those who stayed in severe 

subgroups for 2 years had a significantly higher risk of CKD 
(GoDARTS: HR 1.67 [1.48, 1.89]; DCS: HR 2.4 [1.92, 3.01]) 
than those who moved to mild subgroups. For individuals in 
mild subgroups initially, those who shifted to severe subgroups 
in 2 years had a higher risk of AMI (GoDARTS: HR 1.5 [1.25, 
1.8]; DCS: HR 2.88 [1.39, 5.95]) and CHF (GoDARTS: HR 
1.38 [1.02, 1.88]; DCS: HR 3.28 [1.99, 5.42]) than those who 
stayed in mild subgroups. Standardisation for age and sex did 
not change these findings (ESM Figs 9.6, 9.7).

Discussion

Using a much longer follow-up, we confirm previous find-
ings [2] that data-driven subgroups effectively recognised 
individual phenotype heterogeneity, as reflected by sig-
nificant differences in risk factor progression, complica-
tion risks and treatment patterns. Integrating subgroup 
information with clustering indicators may offer improved 
prediction of progression variation compared with either 
approach alone, emphasising the complementary role of 
subgroups rather than replacing continuous indicators. 
While most subgroups remain generally consistent over 
time, the RHAP-SIDD subgroup is notably volatile, indi-
cating the necessity to expand insights from baseline sub-
groups to longitudinal status.

Significant differences in clinical parameters were observed 
not only at baseline but also over time among the subgroups, 

Note:

The transparency of the moving trajectories represents

the  frequency  (indicated  by  proportion  of  baseline

subgroups) of movement:

Darker  trajectories  indicate  higher  frequency,  while

more transparent trajectories  signify  lower  frequency.

Transparency

(movement)

Proportion of

baseline subgroups 

Proportion of study

population 

SIRD-SIRD-SIRD-SIRD 76.52% 12.79%

MDH-MDH-MDH-MDH 54.26% 9.58%

MOD-MOD-MOD-MOD 52.98% 10.12%

MD-MD-MD-MD 43.35% 11.93%

SIDD-MD-MD-MD 17.01% 3.23%

SIDD-SIDD-SIDD-SIDD 7.81% 1.48%

SIDD-MDH-MDH-MDH 7.27% 1.38%

MOD-MOD-MOD-SIDD 6.60% 1.26%

MD-MD-MD-SIDD 6.43% 1.77%

MDH-MD-MD-MD 6.34% 1.12%

All other movements Each ≤6.32% 45.33% (Each ≤1.2%)

5000

4000

3000

2000

1000

0

Current group (Duration02) Duration24 Duration46 Duration68

Fig. 4   Subgroups’ redistribution using the centre-based reallocation 
method over time and characteristics of common trajectories in the 
GoDARTS cohort (N=4919). Here, SIDD, SIRD, MOD, MD and 
MDH refer to RHAP-SIDD, RHAP-SIRD, RHAP-MOD, RHAP-MD 
and RHAP-MDH, respectively. The figure shows the subgroups iden-
tified based on clinical characteristics within the first 2, 2–4, 4–6 and 

6–8 years of diagnosis of type 2 diabetes, represented as Duration02, 
Duration24, Duration46 and Duration68, respectively, along with the 
top ten most frequent moving trajectories using the centre-based real-
location approach. Only individuals with information available for all 
four periods were included in the redistribution graph
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such as high BMI and DBP in RHAP-MOD, high HDL-cho-
lesterol and low triglycerides in RHAP-MDH, and high blood 
creatinine and low total cholesterol in RHAP-SIRD. The only 
exception was that the trajectory of HbA1c in individuals with 
RHAP-MOD was poorly controlled for longer diabetes dura-
tion and worse than for RHAP-SIDD individuals.

Prior research has demonstrated that the SIRD subgroup 
exhibited higher risks of liver disease, macroalbuminuria, 
nephropathy, CKD and ESRD [1, 2, 6, 23]. Our analysis 
also revealed that RHAP-SIRD presented a higher risk of 
AMI, CHF, PVD, CKD and ESRD compared with other 
subgroups. By definition, subgroups varied in clustering 
indicators, such as age at baseline, which are among the 
risk factors for these complications. Upon adjusting for 
age, RHAP-SIRD maintained a significantly higher risk of 
AMI and CKD compared with other subgroups.

Treatment patterns varied significantly among sub-
groups, with the highest proportions of other OADs and 
overall glucose control treatment observed in RHAP-MOD 
and RHAP-SIDD subgroups, respectively. This suggests 
that physicians’ treatment decisions for individuals within 
these subgroups differed, likely due to variations in age 
and other clustering indicators, as they were unaware of 
the individuals’ subgroup membership.

The significant differences in disease progression, compli-
cation risks and treatment patterns among subgroups high-
light their utility in understanding the underlying pathways 
of disease progression. Slieker et al [8] demonstrated that 
diabetes subgroups reveal distinct molecular mechanisms 
in key metabolic tissues, uncovering varied causes of the 
disease that are not apparent when it is viewed uniformly. 
Beyond aiding in aetiological understanding, subgroups 
may also be useful for predictive purposes. However, data-
driven subgroups have been criticised for their unsuitability 
in predicting outcomes, such as drug response or complica-
tions [4, 24]. Our study partially supports this critique, as 
we found that using the clustering indicators may perform 
better than solely using subgroups for prediction. This is 
due to subgroups compressing data from several individual 
indicators, leading to information loss. However, we found 
that combining subgroup membership (e.g. SIDD) with the 
clustering indicators (e.g. age, BMI, etc.) often enhanced the 
performance of the progression models, indicating a poten-
tial predictive benefit from including subgroup information.

As expected, allocating individuals with long diabetes 
duration based on the lowest distance to baseline centroid 
leads to higher consistency of baseline subgroups. Practi-
cally, using cluster centres enables easy assignment of indi-
viduals to subgroups without requiring information about 
other individuals. To enhance accuracy, cluster centres 
can be periodically updated according to the latest cohort 
characteristics, similar to routine updates in risk prediction 
models. Furthermore, our study revealed RHAP-SIRD to 

be the most consistent subgroup over time, with over 70% 
of individuals remaining for over 8 years, signifying its 
distinct, partially divergent aetiology. This aligns with prior 
research identifying SIRD as the most genetically unique 
subgroup [25], exhibiting an insulin resistance molecular 
signature [8] and lacking associations with the type 2 dia-
betes locus in the TCF7L2 gene or insulin secretion risk 
scores, contrary to SIDD and MOD [1, 25–27].

Ahlqvist’s original study was designed to deepen the 
understanding of diabetes heterogeneity and enhance indi-
vidualised treatment by identifying baseline phenotypes 
[1]. To fully benefit from the long follow-up information 
available, we expanded this concept to include more than 
just baseline subgroups, attempting to explore the dynam-
ics of disease. As expected, we observed changes in sub-
group memberships over time, reflecting the combination of 
treatment effects and underlying phenotypes. For example, 
we found that more than 28% of individuals transitioned 
to other subgroups after 2 years. These temporal dynamics 
might be shaped by interactions between disease heteroge-
neity, adherence to treatment and treatment efficacy. Dia-
betes heterogeneity, such as distinct molecular signatures 
and genetic characteristics [1, 8], may result in individuals 
consistently belonging to specific subgroups with unique 
phenotypes. However, the treatment meanwhile aims to shift 
individuals toward milder subgroups. For example, newly 
diagnosed individuals who subsequently meet guideline-
based treatment targets (53 mmol/mol (7%) HbA1c [28, 29], 
0.9 mmol/l HDL-cholesterol [30], 25 kg/m2 BMI [31]) will 
either remain or progress to the RHAP-MD subgroup over 
time, whereas insufficient risk factor control could result in 
increased progression to severe subgroups.

The longitudinal nature of our data allowed us to esti-
mate the impact of changes in subgroup membership over 
time. We found that complication risks were more closely 
associated with individuals’ current subgroups rather than 
the initial subgroups they were assigned at baseline. The 
risks of complications for individuals progressing from mild 
to severe subgroups were similar to those for individuals 
initially allocated to and remaining in severe subgroups. 
Also, individuals progressing from severe to mild sub-
groups showed complication risks lower than for those who 
remained in severe subgroups. Thus, an initial allocation to 
a mild subgroup did not necessarily translate into mild pro-
gression, and efforts should aim at achieving or maintaining 
mild subgroup status. This might suggest the importance 
of periodically re-clustering with changing risk factors as 
the disease progresses to capture the evolving dynamics and 
guide more informed decision-making.

Our study is not without limitations. First, C-peptide, one of 
the five clustering indicators, was assumed to be constant, due 
to the lack of follow-up data. This might overestimate subgroup 
consistency, but its impact is likely limited due to C-peptide’s 
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stability [1]. Second, we estimated the treatment pattern from 
observed data and ignored censoring (ESM Figs 10.1, 10.2), 
which might underestimate the proportion of individuals taking 
the most intensive treatment steps. Third, due to the unavail-
ability of fasting glucose data in GoDARTS, we were unable to 
replicate Ahlqvist’s subgroups within this registry. Ahlqvist’s 
method captures two key pathogenic mechanisms: insulin defi-
ciency and resistance, indicated by HOMA-IR and HOMA-B. 
We used C-peptide instead, which may obscure the pathology 
link with type 2 diabetes. Nevertheless, considering the high 
sensitivity and specificity of RHAP-SIDD (72% and 100%) 
and RHAP-SIRD (67% and 89%) in relation to Ahlqvist’s 
subgroups (ESM Fig. 11.1), our findings for RHAP-SIDD and 
RHAP-SIRD may offer insights for Ahlqvist’s subgroups. Of 
note, SIDD had worse beta cell function than other subgroups 
described by Ahlqvist et al [1], and this was partially conveyed 
by the lower C-peptide of RHAP-SIDD among the RHAP-
SODY subgroups. Since C-peptide is generally stable over time 
[9], but beta cell function progressively declines [32], we might 
expect even worse stability for SIDD in Ahlqvist’s subgroups. 
Fourth, DCS registered events were based on self-report, which 
could lead to an underestimation of events. However, a valida-
tion study found events to be well reported, with 86% sensitivity 
and 90% specificity [12]. Finally, our cohorts, predominantly 
consisting of white individuals, may limit the generalisability 
of findings to other settings.

In conclusion, the significant differences observed in 
subgroups’ trajectories raise the possibility of identifying 
and understanding different phenotypes of type 2 diabetes. 
Also, subgroup information may improve prediction when 
added as a predictor. This lays the foundation for consider-
ing diabetes subgroups as complementary to, rather than 
replacements for, individual indicators.
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