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Abstract
Aims/hypothesis As a result of early loss of the glucagon response, adrenaline is the primary counter-regulatory hormone 
in type 1 diabetes. Diminished adrenaline responses to hypoglycaemia due to counter-regulatory failure are common in type 
1 diabetes, and are probably induced by exposure to recurrent hypoglycaemia, however, the metabolic effects of adrenaline 
have received less research attention, and also there is conflicting evidence regarding adrenaline sensitivity in type 1 diabetes. 
Thus, we aimed to investigate the metabolic response to adrenaline and explore whether it is modified by prior exposure to 
hypoglycaemia.
Methods Eighteen participants with type 1 diabetes and nine healthy participants underwent a three-step ascending adrena-
line infusion during a hyperinsulinaemic–euglycaemic clamp. Continuous glucose monitoring data obtained during the week 
before the study day were used to assess the extent of hypoglycaemia exposure.
Results While glucose responses during the clamp were similar between people with type 1 diabetes and healthy participants, 
plasma concentrations of NEFAs and glycerol only increased in the group with type 1 diabetes (p<0.001). Metabolomics 
revealed an increase in the most common NEFAs (p<0.01). Other metabolic responses were generally similar between 
participants with type 1 diabetes and healthy participants. Exposure to hypoglycaemia was negatively associated with the 
NEFA response; however, this was not statistically significant.
Conclusions/interpretation In conclusion, individuals with type 1 diabetes respond with increased lipolysis to adrenaline 
compared with healthy participants by mobilising the abundant NEFAs in plasma, whereas other metabolic responses were 
similar. This may suggest that the metabolic sensitivity to adrenaline is altered in a pathway-specific manner in type 1 diabetes.
Trial registration ClinicalTrials.gov NCT05095259

Abbreviations
CGM  Continuous glucose monitoring
GIR  Glucose infusion rate
HEPW  Hypoglycaemic events per week
iAUC   Incremental AUC 

M/I ratio  Ratio of the M value and plasma insulin 
concentration

pBH  Benjamini–Hochberg adjusted p value
PG  Plasma glucose
TBR  Time below range

Introduction

The major limiting factor in achieving optimal glycaemic 
control in type 1 diabetes is hypoglycaemia, as efforts to 
lower glucose levels may result in mild or severe episodes 
of hypoglycaemia [1]. As a result, most individuals with 
type 1 diabetes experience recurrent hypoglycaemia, with 
some experiencing it almost daily [2, 3]. A substantial 
body of evidence suggests that experiencing prior epi-
sodes of hypoglycaemia may lead to diminished counter-
regulatory responses to future hypoglycaemic events. This 
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results in development of a syndrome characterised by 
failure of counter-regulatory responses, such as impaired 
catecholamine responses, as well as reduced awareness 
of hypoglycaemic symptoms and decreased perception of 
hypoglycaemic warning signs in people who frequently 
experience hypoglycaemia [4–6]. This condition confers 
a considerably increased risk of severe hypoglycaemia, 
which is the most feared side effect of insulin therapy and 
a driver of acute morbidity and mortality [7].

As early loss of the glucagon response to hypogly-
caemia is common in type 1 diabetes [8], the adrenaline 
(epinephrine) response emerges as the first-line hormonal 
defence against developing more severe hypoglycaemia 
[7, 8]. Adrenaline stimulates both hepatic glycogenolysis 
and gluconeogenesis through β-adrenergic activation of 
hepatocytes [9]. Initially, the increase in hepatic glucose 
production is primarily driven by glycogenolysis, and glu-
coneogenesis takes over afterwards [9, 10]. Furthermore, 
lipolysis is highly regulated by β-adrenergic stimulation 
of adipose tissue [11, 12].

While the effect of recurrent hypoglycaemia in type 1 
diabetes on the magnitude of the adrenaline response to 
hypoglycaemia has been studied extensively [6, 7], knowl-
edge of its impact on metabolic responses to adrenaline is 
very limited. To test the hypothesis that recent exposure to 
hypoglycaemia results in changes in the metabolic effects 
of adrenaline, we compared the metabolic responses to a 
standardised stepwise adrenaline infusion between healthy 
people and individuals with type 1 diabetes with varying 
recent exposure to hypoglycaemia as assessed by continu-
ous glucose monitoring (CGM).

Methods

This study is an interventional case–control study investi-
gating individuals with type 1 diabetes and healthy indi-
viduals. The study was approved by the Regional Com-
mittee on Health Research Ethics in the Capital Region of 
Denmark (H-19031592) and registered at ClinicalTrials.
gov (NCT05095259). The study was conducted in accord-
ance with the Declaration of Helsinki.

Study participants

A total of 27 male and female (self-reported) participants 
aged 18–70 years were included in this study. Eighteen 
participants with type 1 diabetes were recruited from the 
outpatient clinics at Nordsjællands Hospital, Hillerød, 
Denmark, and the Steno Diabetes Center  Copenhagen, 
Copenhagen, Denmark, and nine healthy participants were 
recruited through local advertising and advertisement on 
social media. The diagnosis of type 1 diabetes was clinical 
and supported by low C-peptide concentration (<20 pmol/l) 
or absent C-peptide. Our study aimed to include individu-
als with type 1 diabetes who have varying expected daily 
exposure to hypoglycaemia. Participants who were already 
using a real-time CGM were allowed to continue using it 
during the study. The main exclusion criteria were use of 
β-blocking or β-activating agents, medical history of car-
diovascular diseases, renal impairment or pregnancy at the 
onset of the study and during participation in the study. 
No participants were excluded based on sex and our study 
sample was selected to represent patients with frequent 
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exposure to hypoglycaemia. Written informed consent was 
obtained. Participants were compensated for loss of work 
hours incurred through participation in the study.

Study protocol

The experiment was divided into one screening day and one 
trial day, at least 7 days apart. The investigation was per-
formed at the Endocrine Research Unit at Nordsjællands 
Hospital, Hillerød, Denmark. The experiment was explained 
to the potential participants on the screening day, and inclu-
sion and exclusion criteria were assessed. After obtaining 
written consent, participants underwent a clinical exami-
nation, and screening blood samples were drawn. For the 
participants with type 1 diabetes, CGMs were used a week 
before the study day to determine their hypoglycaemic expo-
sure. The first four participants were equipped with a blinded 
iPro2 with Enlite sensor (Medtronic MiniMed, USA). How-
ever, because Medtronic cancelled support for its product, the 
last 14 participants with type 1 diabetes wore an unblinded 
Freestyle Libre 2 (Abbott Laboratories, USA). Before the 
experimental day, participants avoided alcohol intake, caf-
feine consumption and smoking for at least 24 h. Strenu-
ous physical activity was avoided for 48 h, and participants 
fasted for at least 7 h prior to the experiment. As exposure to 
hypoglycaemia was an essential cofactor in the analyses, no 
measures were taken to avoid hypoglycaemia in participants 
with type 1 diabetes before the study day. On the experimen-
tal day, participants underwent a hyperinsulinaemic–eugly-
caemic clamp with stepwise adrenaline infusion.

Hyperinsulinaemic–euglycaemic clamp Insulin was infused at 
a constant rate of 0.75 mU insulin  kg−1  min−1 (Actrapid, Novo 
Nordisk, Denmark). The plasma glucose (PG) target of 4.0–6.0 
mmol/l was maintained by a variable 10% glucose infusion. 
All participants were held under the hyperinsulinaemic–eugly-
caemic clamp for 1 h before administering adrenaline.

Adrenaline administration Infusions of adrenaline (Adren-
alin ‘SAD’, Amgros, Denmark) were given intravenously 
continuously throughout the experiment. Adrenaline dis-
solved in isotonic saline (154 mmol/l NaCl) was adminis-
trated at stepwise increasing infusion rates (10, 25 and 50 
ng adrenaline  kg−1  min−1), with every step lasting for 20 
min. In cases where participants did not achieve euglycaemic 
targets at the end of a period, the adrenaline infusion rate 
was increased only after PG levels returned to euglycaemia 
(4.0–6.0 mmol/l).

Biochemical analysis

During the first hour of the clamp, PG was analysed every 10 
min using a YSI 2300 analyser (YSI/Xylem, USA). During 

the adrenaline infusions, PG was measured every 5 min. 
Plasma samples for analysis of insulin, glucagon, adrenaline, 
noradrenaline (norepinephrine), NEFAs and glycerol were 
acquired before the clamp (baseline), 1 h from the start of 
the clamp (0 ng  kg−1  min−1) and 20 min after each step 
of the stepwise adrenaline infusion (10–50 ng  kg−1  min−1) 
(Fig. 1). All plasma samples were mixed with EDTA and 
placed in a dry ice box at first, and then stored in a −80°C 
freezer. ELISA kits were used to analyse insulin (catalogue 
no. 80-INSHU-E01.1, ALPCO, USA) and glucagon (cata-
logue no. 10-1271-01, Mercodia, Sweden); these kits use 
antibodies to determine the insulin and glucagon concen-
tration using a colorimetric endpoint read spectrophoto-
metrically by a SpectraMax iD3 (Molecular Devices, USA). 
Adrenaline and noradrenaline were quantified using a 2-CAT 
Plasma  ELISAHigh Sensitive kit (Labor Diagnostika Nord, Ger-
many), which extracts, acylates and enzymatically converts 
adrenaline and noradrenaline. Glycerol (Randox, UK) and 
NEFAs (NEFA C kit, Wako Chemicals, Germany) were used 
to perform an enzymatic transformation of the metabolites, 
which were measured using a COBAS autoanalyser (Roche, 
Switzerland). All analyses were performed according to the 
manufacturers’ instructions.

Untargeted metabolomics profiling Plasma samples for 
metabolomics were acquired at baseline, 1  h from the 
start of the clamp and 20 min after the last infusion (50 ng 
adrenaline  kg−1  min−1) using containers containing heparin. 
Plasma samples (30 μl) were mixed with 400 μl methanol, 
10 μl internal standard mixture succinic acid-d4, glutamic 
acid-d5, valine-d8 and heptadecanoic acid-d33, Sigma 
Aldrich, USA), and incubated on ice for 30 min. Samples 
were then centrifuged (10,000 g, 3 min, 4°C), and 180 
μl of the filtered extracts were evaporated to dryness and 
derivatised. A detailed description of the process has been 
presented previously [13]. A 7250 GC/Q-TOF instrument 
(Agilent, USA) equipped with a Gerstel MPS autosampler 
(Gerstel, Germany) was used to analyse the samples. 
Features from the quantitative ion peak areas of the data 
were matched against mass spectral libraries (in-house 
library, Fiehn library [14], GOLM DB [15], GNPS [16], 
HMDB [17] and MassBank Japan [18]).

CGM data assessments

CGM data were analysed in accordance with current consen-
sus guidelines from 2017 and 2019 [19, 20]. Hypoglycaemia 
episodes were defined as those persisting for a minimum of 
15 min, and were categorised into two levels. Level 1 was 
defined as glucose levels below 3.9 mmol/l (<70 mg/dl), and 
level 2 was defined as glucose levels below 3.0 mmol/l (<54 
mg/dl). We used two distinct variables of hypoglycaemia 
exposure: one based on the time below range (TBR) and the 
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other based on the number of hypoglycaemic episodes per 
week (HEPW).

Endpoints and assessments

Primary endpoints were the incremental area under the PG 
curve (iAUC) as a measurement of glucose production, and 
plasma levels of NEFAs and glycerol as a measure of lipoly-
sis before and after each step of adrenaline infusion. A sec-
ondary endpoint was the untargeted metabolomics profiling 
of the blood samples taken at baseline, 1 h from the start of 
the clamp and at the end of the adrenaline infusion.

Statistical analysis

Endpoints were statistically assessed using linear mixed-
effect models. Repeated measurements of PG iAUC, NEFA 
and glycerol were analysed from the start of the clamp until 
the end of the trial (0–50 ng  kg−1  min−1). Data from untar-
geted metabolomics profiling were analysed at baseline, 0 
and 50 ng  kg−1  min−1 (Fig. 1). The p values for the results 
from the metabolomics data were adjusted for multiple test-
ing and false discovery rate using the Benjamini–Hochberg 
method (pBH) [21].

When analysing PG iAUC, NEFA and glycerol, between-
group assessments (type 1 diabetes vs healthy participants) 
were modelled using intervention, group and group–interac-
tion as fixed effects and participant ID as a random effect and 
intercept with intervention. As we had not obtained multiple 
measurements for each participant, the statistical analysis 
was performed similarly for metabolomics data but without 
random intercept with intervention. The same models were 
used to analyse the intervention within both groups. Lastly, 
TBR and HEPW were used as variables in the model to 
explore the association with the endpoints. The statistical 
analyses were performed using SPSS Statistics (IBM, USA) 
and R software [22].

Results

Participant characteristics

The baseline characteristics of the 27 participants are 
shown in Table 1. The group with type 1 diabetes had 
a higher proportion of male participants and the par-
ticipants were older compared with the control group. 
As anticipated, the mean  HbA1c value was higher in the 
type 1 diabetes group compared with the healthy par-
ticipants. In addition, participants with type 1 diabetes 
showed pronounced variations in  HbA1c levels, with a 
median value of 51.0 mmol/mol (IQR 44–62) or 7.0% 
(6.2–8.0). Eight of the 18 diabetic participants used 
insulin pumps and 12 used CGM devices before partici-
pation. The median value of TBR level 1 was 1.8% (IQR 
0.0–6.5). For HEPW level 1, the median value was 5.6 
(IQR 0.0–8.1).

Glucose infusion rate and insulin levels

Throughout the stepwise adrenaline infusion, the glucose 
infusion rate did not change significantly in the group with 
type 1 diabetes (p=0.13) or healthy participants (p=0.38) 
(Fig. 2a). Healthy participants required a higher glucose 
infusion rate to achieve euglycaemia than the group with 
type 1 diabetes throughout the experiment (p=0.044). 
The difference did not correlate with the adrenaline dose 
(p=0.94). Insulin levels did not alter during the trial 
in either participants with type 1 diabetes (p=0.68) or 
healthy participants (p=0.19) (Fig. 2b). Participants with 
type 1 diabetes had numerically higher insulin levels than 
healthy participants. However, the difference was not sig-
nificant (p=0.41), and the insulin concentration did not 
alter differently to the adrenaline infusion between the 
groups (p=0.091).

Blood sampling
1.5 mU kg–1  min–1

Variable glucose infusion
10 25

Insulin infusion 
Glucose infusion

Adrenaline infusion (ng kg-1 min-1)

0 60  80  100
Time (min)

 120

50

Fig. 1  Experimental design. All participants underwent a hyperin-
sulinaemic–euglycaemic clamp. Blood samples were taken before 
the clamp (baseline, time 0), 1  h after the start of the clamp (0 ng 
 kg−1  min−1) and three times during the stepwise adrenaline infusion 

(10–50 ng  kg−1  min−1). Blood samples for untargeted metabolomics 
profiling were taken before the initiation of the hyperinsulinaemic–
euglycaemic clamp (baseline), 1 h after the start of the clamp and 20 
min after the last infusion
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Adrenaline, noradrenaline and glucagon levels

Plasma adrenaline levels (Fig. 3a) increased significantly and 
continuously during the infusion of adrenaline in both groups 

(p<0.001), and no difference in adrenaline concentrations 
between groups was detected (p=0.78). Similar increases in 
plasma noradrenaline levels were observed in the type 1 dia-
betes and control group (Fig. 3b) but the increase was only 

Table 1  Baseline characteristics

Values are n (%), mean (SEM) or median (IQR). The number of participants using Freestyle Libre 2 is 
shown; the remaining participants with type 1 diabetes (four) used an iPro2
The Hillerød method [56], Clarke score [5] and Gold score [4] are the most commonly used self-estimated 
hypoglycaemia awareness questionnaires

Variable Diabetic participants 
(N=18)

Healthy participants (N=9)

Men 12 (67%) 4 (44%)
Age, years 44.6 (3.7) 35.9 (5.4)
BMI, kg/m2 26.6 (1.2) 25.9 (1.8)
HbA1c, mmol/mol 56 (4.2) 35 (1.6)
HbA1c, % 7.3 (0.38) 5.3 (0.15)
C-peptide, pmol/l 4 (0.0–14.3) 467.0 (364.5–527.0)
Duration of type 1 diabetes, years 20.2 (2.5)
Hillerød method
 Normal 10 (56%)
 Impaired awareness 4 (22%)
 Unawareness 4 (22%)
Clarke score
 Normal 9 (50%)
 Unclassifiable 5 (28%)
 Reduced 4 (22%)
Gold score
 Normal 12 (67%)
 Impaired 6 (33%)
TBR, level 1, % 1.8 (0.0–6.5)
TBR, level 2, % 0.0 (0.0–1.6)
HEPW, level 1 5.6 (0.0–8.1)
HEPW, level 2 0.0 (0.0–3.0)
Freestyle Libre 2 14 (78%)
Insulin pump therapy 8 (44%)
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Fig. 2  (a) Mean glucose infusion rate (GIR) at each step of the adren-
aline infusion. (b) Mean plasma insulin levels before the hyperinsuli-
naemic–euglycaemic clamp (baseline), 1 h after the start of the clamp 
(0 ng  kg−1  min−1) and during the stepwise adrenaline infusion (10–50 

ng  kg−1  min−1). Error bars indicate the SEM. Circles with a solid line 
represent participants with type 1 diabetes; squares with a dotted line 
represent healthy control participants
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significant in the healthy participants (p=0.008). When com-
paring the plasma noradrenaline levels between groups, there 
was no difference (p=0.55), and nor did we observe a difference 
between the two groups in terms of the noradrenaline responses 
to the adrenaline infusion (p=0.57). The plasma glucagon con-
centration significantly increased throughout the adrenaline 
infusion in participants with type 1 diabetes (p=0.016) but not 
in the control group (p=0.067) (Fig. 3c). However, the between-
group comparison showed no significant difference in glucagon 
concentration (p=0.16) or in the response of glucagon concen-
trations to adrenaline infusion (p=0.95).

Plasma glucose iAUC 

The mean PG iAUC tended to increase in both groups during 
the stepwise intervention (Fig. 4a). However, the elevations 
were not significant (type 1 diabetes, p=0.21 and control, 
p=0.15). The mean iAUC for the group with type 1 diabetes 
did not differ from healthy participants (p=0.46).

Plasma NEFA and glycerol levels

Both groups showed a pronounced reduction in NEFA and 
glycerol levels between baseline and before the initiation of 
the adrenaline infusion (0 ng  kg-1  min-1 adrenaline) following 
the insulin infusion (Fig. 4b,c). In the control group, the decre-
ment in glycerol was statistically insignificant (paired sample 
t test, p=0.13). Independent analysis of the groups showed 

that NEFA levels increased significantly in the group with 
type 1 diabetes (p<0.001) but remained unaltered in healthy 
participants during the adrenaline infusions (p=0.066). When 
comparing the groups, the incremental NEFA response to 
adrenaline in type 1 diabetes was greater than that in healthy 
participants (p=0.029). In the type 1 diabetes group, glycerol 
levels increased significantly in response to the intervention 
(p<0.001), in contrast to the control group, which did not 
show a significant response (p=0.24). However, when com-
paring the two groups, no significant differences were detected 
(p=0.075). Post hoc sensitivity analyses adjusting for insulin 
sensitivity, the ratio of the M value and corresponding insu-
lin concentration (M/I ratio) calculated from the study, and 
age were performed and did not alter the differences found 
between participants with type 1 diabetes and healthy partici-
pants (see electronic supplementary material [ESM] Table 1).

Untargeted metabolomics profiling

Untargeted metabolomics profiling identified a total of 162 
metabolites. Of these, 33 showed changes following step-
wise adrenaline infusion (Fig. 5). During the first hour of 
the hyperinsulinaemic–euglycaemic clamp, levels of all 33 
metabolites except melibiose decreased or remained unal-
tered. After adrenaline infusion, the levels of ten amino acids 
decreased further, and the levels of many of the abundant fatty 
acids increased after adrenaline infusion. Both saturated and 
unsaturated NEFAs with carbon chains of lengths between 
12–18 increased after adrenaline infusion, most notably oleic 
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Fig. 3  Plasma concentrations of adrenaline (a), noradrenaline (b) 
and glucagon (c) before the clamp (baseline), 1 h after the start of the 
clamp (0 ng  kg−1  min−1) and during the stepwise adrenaline infusion 

(10–50 ng  kg−1  min−1). Error bars indicate the SEM. Circles with a 
solid line represent participants with type 1 diabetes; squares with a 
dotted line represent healthy control participants
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acid, palmitic acid, stearic acid and linoleic acid (pBH <0.01). 
The concentrations of other important energy metabolites 
also changed: levels of pyruvic, α-ketoglutaric and malic 
acid increased while ornithine levels decreased. The plasma 
levels of melibiose, which increased during the first hour of 
the hyperinsulinaemic–euglycaemic clamp, increased further 
after adrenaline infusion. All mentioned metabolites showed 
significant alteration after adjusting for multiple testing (pBH 
<0.05). In the between-group analysis, raw p values before 
adjusting for multiple testing showed a total of 11 metabo-
lites for which responses differed between type 1 diabetes and 
healthy participants, including the fatty acids palmitic, oleic 
and linoleic acid, which had a greater incremental response 
in the group with type 1 diabetes. After adjusting for multiple 
testing, the differences were not significant (ESM Table 2).

Impact of hypoglycaemia exposure in type 1 
diabetes

In the type 1 diabetes group, TBR levels 1 and 2 were not cor-
related with the elevation in PG iAUC (p>0.50), and TBR did 
not affect the incremental responses in plasma levels of NEFA 
and glycerol to adrenaline (p>0.33). The same was true for 
HEPW levels 1 and 2. Analysing the same four hypoglycae-
mic variables on the metabolomics data showed that, before 
adjusting for multiple testing, between 6 and 23 metabolite 

responses were associated with hypoglycaemia exposure. 
Notably, NEFAs whose levels increased in response to adrena-
line in the type 1 diabetes group (palmitic acid, stearic acid, 
oleic acid and linoleic acid) were negatively correlated with 
TBR and HEPW at level 2 but not level 1. Thus, hypogly-
caemic exposure under 3.0 mmol/l was negatively associated 
with the increase in NEFA levels in type 1 diabetes. However, 
when adjusted for multiple testing, these alterations were not 
significant (ESM Table 3). To examine the impact of switching 
to Freestyle Libre 2 on metabolic outcomes, we performed a 
sensitivity analysis that excluded the four participants on iPro2 
with the Enlite sensor. This did not result in any change in the 
effect of hypoglycaemic exposure (data not shown).

Cardiovascular responses

Heart rate was measured during the adrenaline infusion. Heart 
rate increased in both groups during the intervention, but no 
differences were observed between groups, nor did we find any 
association with hypoglycaemic exposure (data not shown).

Discussion

The metabolic response to adrenaline infusion showed 
notable differences between individuals with type 1 dia-
betes and healthy participants in this study. Specifically, 
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Fig. 4  (a) PG iAUC at each step of the adrenaline infusion. (b, c) 
Plasma NEFA (b) and glycerol (c) levels before the clamp (baseline), 
1 h after the start of the clamp (0 ng  kg−1  min−1) and during the step-
wise adrenaline infusion (10–50 ng  kg−1  min−1). Error bars indicate 

the SEM. Circles with a solid line represent participants with type 
1 diabetes; squares with a dotted line represent healthy control par-
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concentrations of the most abundant NEFAs significantly 
increased in individuals with type 1 diabetes, but no such 
increase was observed in the control group. A similar trend 
was observed for glycerol, suggesting that adrenaline stimu-
lates lipolysis in individuals with type 1 diabetes but not in 
healthy participants. Previous studies evaluating lipolysis 
in type 1 diabetes have shown diverging results. One study 
showed no increase in lipolysis in individuals with type 
1 diabetes compared with healthy participants following 
experimental adrenaline infusion [23]. In contrast, another 
study observed reduced lipolysis in response to hypogly-
caemia in individuals with type 1 diabetes compared with 
healthy participants [24]. However, the latter finding was 

most likely due to a diminished adrenaline response in the 
type 1 diabetes group. Several studies have shown increased 
lipolysis during adrenaline infusion [25–27], and a seem-
ingly increased β-adrenergic response in adipose tissues dur-
ing hypoglycaemia in type 1 diabetes [28–30]. Our findings 
support the latter result: because, during the last infusion (50 
ng adrenaline  kg−1  min−1), our participants showed adrena-
line concentrations resembling levels induced by hypogly-
caemia [24, 27, 29, 31], our results reflect metabolic changes 
expected to occur during the hypoglycaemia experienced in 
daily life in individuals with type 1 diabetes.

Furthermore, metabolomic profiling in type 1 diabetes 
revealed that the increase in NEFAs is dominated by the 
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Fig. 5  Forest plot of the metabolites that responded to adrenaline in 
participants with type 1 diabetes. Blue points and error bars indicate 
the response to the hyperinsulinaemic–euglycaemic clamp (from 
baseline to 0 ng  kg−1  min−1). Purple points and error bars indicate 
the metabolic response to the whole stepwise adrenaline infusion pro-
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adrenaline from the hyperinsulinaemic state). ‘Synergistic’ response 
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cates a response that goes in the opposite direction (dotted grey bar). 
‘Compensatory’ response indicates a reverse response without cross-
ing the baseline concentration (dashed grey bar). Estimates are stand-
ardised according to the standard deviation of the metabolite (i.e. z 
scores). Error bars indicate 95% CI
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most common circulating NEFAs in plasma: palmitic acid, 
stearic acid, oleic acid and linoleic acid [32, 33]. We also 
observed an increase in PG due to the adrenaline infusion, 
as expected due to its stimulation of hepatic glycogenolysis 
[10, 34] and inhibition of splanchnic and peripheral glu-
cose uptake [35]. However, we did not observe a difference 
in glucose production between type 1 diabetes and healthy 
participants. Our results indicate that the higher sensitiv-
ity to adrenaline in type 1 diabetes is pathway-specific, as 
observed previously [36]. The increase in lipolysis may 
be an alternative metabolic mechanism to support energy 
metabolism during hypoglycaemia.

Metabolomic profiling also revealed decreased levels 
of ketogenic and glucogenic amino acids. Previous stud-
ies have found similar results [37, 38]. Studies examining 
plasma amino acid kinetics in response to adrenaline infu-
sion have demonstrated that adrenaline transiently stimu-
lates increased disappearance of circulatory amino acids, 
but its effect diminishes over time [39, 40]. The mechanism 
underlying this effect remains unclear and requires further 
investigation. Interestingly, our metabolomics analysis also 
revealed that the levels of three intermediates of the citric 
acid cycle were elevated after adrenaline infusion: pyruvic 
acid (pyruvate), α-ketoglutaric acid (α-ketoglutarate) and 
malic acid (malate). Furthermore, levels of ornithine, a 
critical intermediate in the urea cycle, decreased [41, 42]. 
The citric acid cycle is crucial in ATP production by the 
cells, using products of glycolysis, fatty acid β-oxidation 
and ketogenic breakdown of amino acids. The urea cycle is 
important in the degradation of amino acids into urea but 
also in the production of several intermediates in the citric 
acid cycle. Previous work has found elevated levels of inter-
mediates of the citric acid cycle in skeletal muscle when 
exposed to adrenaline [43]. These findings suggest a role of 
adrenaline in supporting energy metabolism by facilitating 
the citric acid cycle through provision of intermediates, and 
our results support this suggestion. Lastly, levels of melibi-
ose were observed to increase after the adrenaline interven-
tion. Because of its properties as a disaccharide that is not 
produced nor metabolised by humans, previous studies have 
used melibiose to assess intestinal permeability [44, 45]. 
Thus, increased melibiose levels suggest increased intesti-
nal permeability due to adrenaline infusion. Previous ani-
mal studies have found that adrenaline increases intestinal 
absorption [46, 47]. However, to our knowledge, no human 
studies have explored this topic.

Glucagon concentrations were numerically lower in the 
participants with type 1 diabetes compared with healthy par-
ticipants, but the difference was not statistically significant. 
In our study, adrenaline stimulated glucagon secretion in 
individuals with type 1 diabetes as shown previously [48, 
49]. However, interestingly, the insulin clamp suppressed 
the stimulatory effect of adrenaline on glucagon secretion 

to below basal levels (Fig. 3). One previous study obtained 
similar findings when applying a 2 h adrenaline infusion 
during a hyperinsulinaemic–euglycaemic clamp [36]. Col-
lectively, these results may indicate that insulin not only 
exerts a suppressive influence on alpha cell activity but also 
prevails over the stimulatory impact of adrenaline under 
physiological conditions.

Assessing hypoglycaemic exposure’s impact on the 
metabolite alterations from the metabolomics analysis to 
the adrenaline infusion indicates that participants with 
type 1 diabetes and increased exposure to hypoglycaemia 
under 3.0 mmol/l (<54 mg/dl) have a reduced response 
for several of the most common circulatory NEFAs. This 
association, which disappeared in the adjusted analyses, 
appears to be maladaptive rather than adaptive in sup-
porting metabolism during hypoglycaemia in type 1 dia-
betes. However, the decrease may also be caused by an 
increased circulatory disappearance and metabolisation 
of the NEFAs. In one study, experimental hypoglycaemia 
was induced before adrenaline infusion and did not result 
in any altered response in lipolysis and glucose metabo-
lism [27]. Previous studies have associated hypoglycaemia 
exposure with reduced β-adrenergic sensitivity in type 1 
diabetes [50, 51]. However, in both studies, cardiopulmo-
nary rather than metabolic outcomes were used as a meas-
ure of β-adrenergic sensitivity. We observed an increase in 
heart rate in the type 1 diabetes group and healthy partici-
pants, but did not observe a difference between the groups, 
nor did we find any association with hypoglycaemic expo-
sure (data not shown).

A strength of this study is the use of a three-step infu-
sion of adrenaline to explore its metabolic properties over 
the physiological range of plasma levels. Very few stud-
ies have used this approach. One previous study used a 
dose–response intervention to investigate glucose and amino 
acid responses in healthy participants by applying adrenaline 
infusion rates between 7.0 and 30 ng adrenaline  kg−1  min−1 
to avoid adrenaline levels that corresponded to a severe 
hypoglycaemic response [39]. They found that alterations 
in glucose and amino acids were already observed during 
the low infusion rate. Other studies have used adrenaline 
infusion rates ranging from 10 ng adrenaline  kg−1  min−1 [52, 
53] to 60 ng adrenaline  kg−1  min−1 [36, 43]. We selected 
infusion rates of 10, 25 and 50 ng adrenaline  kg−1  min−1 
to assess metabolic responses during adrenaline levels 
comparable to those of a hypoglycaemic counter-regula-
tory response in order to investigate responses that may be 
similar to those that individuals with type 1 diabetes would 
encounter in their daily life. Another strength of the study is 
the use of comprehensive metabolic assessments to explore 
potential new metabolic alterations.

Our study has limitations. All participants underwent a 
hyperinsulinaemic–euglycaemic clamp to ensure that all 
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participants with type 1 diabetes remained within the glycae-
mic target during the experiment. This resulted in elevated 
levels of plasma insulin throughout the study, which may 
have affected the outcomes. This limitation mostly affects 
our interpretation of the decreases in metabolite levels found 
using metabolomics profiling (Fig. 5), which are dominated 
by amino acids. However, previous studies found similar 
decreases in plasma amino acid concentrations in response 
to adrenaline [37, 38]. Furthermore, we used the first hour to 
reach a steady state between the insulin infusion and glucose 
infusion rate [54], thereby reducing the effect of insulin on 
metabolism during the adrenaline infusion.

Plasma insulin levels were numerically higher in the type 
1 diabetes group compared with the healthy participants. 
Combined with the control group’s higher glucose infusion 
rate throughout the study, this is indicative of reduced insu-
lin sensitivity in the type 1 diabetes group [55], which is 
a well-known phenomenon, as shown in other studies [27, 
29]. This may affect our observed differences in levels of 
NEFAs and glycerol. However, sensitivity analyses adjusting 
for insulin sensitivity and age did not alter our main findings 
(ESM Tables 1 and 2). We did not conduct a dedicated sex 
analysis of our outcomes in this study as the number of par-
ticipants included in the study did not provide sufficient sta-
tistical power to conduct a robust analysis stratified by sex.

In conclusion, we observed an increased lipolytic response 
to adrenaline infusion in individuals with type 1 diabetes 
compared with healthy participants. The responses included 
increases in the most abundant fatty acids. They may indi-
cate an adaptation to hypoglycaemic exposure by preserving 
fuel supply during future hypoglycaemic events in individuals 
with type 1 diabetes. Additionally, our study showed that the 
stimulatory effect of adrenaline on glucagon secretion in physi-
ological levels does not prevail over the suppressive effect of 
insulin, which may be highly relevant when individuals with 
type 1 diabetes experience insulin-induced hypoglycaemia.
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