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Abstract
Aims/hypothesis The aim of this study was to describe the metabolome in diabetic kidney disease (DKD) and its association 
with incident CVD in type 2 diabetes, and identify prognostic biomarkers.
Methods From a prospective cohort of individuals with type 2 diabetes, baseline sera (N=1991) were quantified for 170 
metabolites using NMR spectroscopy with median 5.2 years of follow-up. Associations of chronic kidney disease (CKD, 
eGFR<60 ml/min per 1.73  m2) or severely increased albuminuria with each metabolite were examined using linear regres-
sion, adjusted for confounders and multiplicity. Associations between DKD (CKD or severely increased albuminuria)-related 
metabolites and incident CVD were examined using Cox regressions. Metabolomic biomarkers were identified and assessed 
for CVD prediction and replicated in two independent cohorts.
Results At false discovery rate (FDR)<0.05, 156 metabolites were associated with DKD (151 for CKD and 128 for severely 
increased albuminuria), including apolipoprotein B-containing lipoproteins, HDL, fatty acids, phenylalanine, tyrosine, albu-
min and glycoprotein acetyls. Over 5.2 years of follow-up, 75 metabolites were associated with incident CVD at FDR<0.05. 
A model comprising age, sex and three metabolites (albumin, triglycerides in large HDL and phospholipids in small LDL) 
performed comparably to conventional risk factors (C statistic 0.765 vs 0.762, p=0.893) and adding the three metabolites 
further improved CVD prediction (C statistic from 0.762 to 0.797, p=0.014) and improved discrimination and reclassifica-
tion. The 3-metabolite score was validated in independent Chinese and Dutch cohorts.
Conclusions/interpretation Altered metabolomic signatures in DKD are associated with incident CVD and improve CVD 
risk stratification.

Keywords Cardiovascular disease · Diabetic kidney disease · Metabolomics · NMR spectroscopy · Prognostic biomarker · 
Risk stratification · Severely increased albuminuria · Type 2 diabetes
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Introduction

Chronic kidney disease (CKD) develops in approximately 
40% of people with type 2 diabetes [1] and is associated 
with increased risk of CVD and mortality [2]. Diabetes is 
associated with two- to fourfold increased risk of CVD [3], 
whereas higher CVD incidence was reported in people with 
CKD than in diabetes [4], suggesting particularly high CVD 
risk in diabetic kidney disease (DKD). Despite multifactorial 

management and agents with pleiotropic cardiorenal ben-
efits, DKD prognosis remains poor.

Type 2 diabetes is characterised by atherogenic dyslipidaemia: 
elevated triglyceride-rich lipoproteins (TRLs) and reduced HDL, 
contributing to substantial residual risk despite optimal LDL-
cholesterol (LDL-C) levels [5]. In CKD, TRLs are increased 
owing to impaired lipoprotein lipase activities and diminished 
clearance caused by altered apolipoprotein C-3 (ApoC-3) metab-
olism [6]. The major structural protein of TRLs, apolipoprotein B 
(ApoB), can flux across endothelium and be trapped in the artery 
wall, initiating atherosclerosis by releasing cholesterol to mac-
rophages [7]. Beyond lipids, the kidney also can regulate circulat-
ing metabolites via filtration, reabsorption, secretion, catabolism 
and anabolism [8]. With advances in technologies, metabolites 
can be quantified simultaneously in a high-throughput manner 
and multiple metabolites have been associated with DKD [8–10].

Higher TRLs, ApoB, phenylalanine, inflammation markers 
and lower HDL and apolipoprotein A-1 (ApoA-1) have been 
associated with decreased eGFR in people with type 2 dia-
betes [9], and replicated in a larger study [10], indicating that 
altered lipoprotein and metabolic profiles may reflect impaired 
kidney function in diabetes. Furthermore, TRLs, ApoB and 
phenylalanine have been associated with CVD in people with 
CKD or type 2 diabetes [11–13], suggesting that the altered 
metabolome in DKD may partly explain the increased CVD 
risk. Although the causal relation between the metabolites and 
CVD in people with DKD is not yet fully understood, Men-
delian randomisation studies have suggested TRLs and ApoB 
are causally associated with CVD [14, 15]; phenylalanine has 
been associated with type 2 diabetes [16], impaired kidney 
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function [9], heart failure [17] and CVD [18] in large cohort 
studies. Better understanding of the potential metabolic links 
between DKD and CVD is therefore warranted.

Herein, we investigated the metabolomic signature of 
DKD and examined its association with incident CVD in 
a well-characterised prospective cohort of individuals with 
type 2 diabetes. Metabolomic biomarkers were selected 
among metabolites associated with CVD and were evaluated 
for their prognostic value towards CVD prediction. External 
validation of the identified biomarkers for incident CVD was 
performed in Chinese [19] and Dutch cohorts [20].

Methods

Study population

The Hong Kong Diabetes Biobank The Hong Kong Diabetes 
Biobank (HKDB) is a multicentre prospective cohort study, 
coordinated by the Chinese University of Hong Kong. The 
study design, recruitment methods, collection of baseline data 
and biochemical investigations have been published [21–24]. 
Briefly, HKDB used similar enrolment and assessment meth-
ods to that of the Hong Kong Diabetes Register (HKDR, 
based at the Prince of Wales Hospital [PWH], the teaching 
hospital of the Chinese University of Hong Kong), incorporat-
ing comprehensive and structured assessment of risk factors 
and diabetes complications [23]. At enrolment, participants 
consented for prospective follow-up (until death) and biobank-
ing of blood samples for research. All participants provided 
written informed consent and the study was approved by the 
Joint Chinese University of Hong Kong-New Territories East 
Cluster Clinical Research Ethics Committee and the Clinical 
Research Ethics Committee of each participating hospital.

HKDR and the Hoorn Diabetes Care System cohort HKDR has 
been briefly described above [19]. The Hoorn Diabetes Care Sys-
tem (DCS) cohort provides diabetes care to people with type 2 
diabetes living in the West-Friesland region in the Netherlands 
[20]. Medical assessment is performed during patients’ annual 
visit to the DCS research centre and individuals are invited to 
participate in the DCS research. We replicated the association 
of the identified metabolomic biomarkers with incident CVD in 
HKDR and the DCS cohort; the predictive value of biomarkers 
for CVD was also assessed in HKDR. A detailed description 
of the two cohorts and baseline characteristics across the three 
cohorts are available in electronic supplementary material (ESM) 
Methods and Results and ESM Tables 1–3.

Demographic and laboratory measurements

During recruitment, demographic data, medication and 
medical history were documented via face-to-face interview 

based on standardised questionnaires. Sex was determined 
as per self-reported by study participants. BP was measured 
in both arms after ≥5 min sitting and the mean value was 
used for analysis. BMI was calculated as weight in kilograms 
divided by height in metres squared. Blood samples after at 
least 8 h overnight fasting were measured for  HbA1c, serum 
creatinine and lipid profile with certificated routine assays at 
local laboratories. Albumin was quantified in a random spot 
urine sample using immunoturbidimetry [22, 23]. Serum 
creatinine was measured by Jaffe’s kinetic method [22, 23] 
and eGFR calculated using the Chronic Kidney Disease Epi-
demiology Collaboration (CKD-EPI) equation.

Metabolomic profiling

Metabolomic profiles in fasting sera stored (−80°C, fresh from 
any freeze–thaw cycles) at PWH were quantified using targeted 
high-throughput NMR spectroscopy (Nightingale Health, Hel-
sinki, Finland). A total of 170 metabolites were quantified simul-
taneously, including: absolute concentrations of lipoproteins and 
lipid contents within 14 lipoprotein subclasses, conventional lipids 
and low-molecular-weight metabolites (LMWMs), including 
amino acids, ketone bodies, glycolysis-related metabolites and 
glycoprotein acetyls (GlycA) as well as ratios of fatty acids to total 
fatty acids. The NMR platform has been extensively applied in 
large-scale epidemiological studies [18, 25, 26] and experimental 
details have been published [27]. Measures (phenylalanine, fatty 
acids, lipid traits, ApoA-1, ApoB, creatinine and albumin) were 
correlated between NMR and MS or clinical biochemistry [18, 
25] and the median CV (IQR) was 5.0% (2.7–6.7%) [25].

Among the 2000 participants profiled from HKDB, 1991 
participants were included in the analysis, after excluding two 
samples failing quality control and seven non-type 2 diabetes 
participants (ESM Fig. 1). Among the included samples, we 
assessed the measures compared with clinical biochemistry, 
including total cholesterol, HDL-cholesterol (HDL-C), LDL-C, 
triglycerides, fasting glucose and serum creatinine and the Pear-
son’s correlation coefficients ranged from 0.80 to 0.98 (ESM 
Fig. 2). ESM Table 4 summarises the measurement quality and 
distribution of each metabolite among the samples. No meas-
ures had ≥20% missing values and were all included in the 
analysis; zero values, indicating below the detection limit, were 
imputed with half of the minimum in each measurement.

Samples from HKDR (N=93) and the DCS cohort 
(N=1204) were also profiled using the same platform (ESM 
Methods and Results).

Outcome

Discharge codes based on ICD-9 (http:// www. icd9d ata. com/ 
2007/ Volum e1/ defau lt. htm) retrieved from electronic medical 
records were used to define CVD. CVD was defined as the 
first occurrence of cardiovascular death (ICD-10 [https:// icd. 

http://www.icd9data.com/2007/Volume1/default.htm
http://www.icd9data.com/2007/Volume1/default.htm
https://icd.who.int/browse10/2019/en


840 Diabetologia (2024) 67:837–849

who. int/ brows e10/ 2019/ en]: I00-I99, retrieved from the Hong 
Kong Death Registry), coronary heart disease (myocardial 
infarction, ischaemic heart disease, or angina pectoris), stroke 
(ischaemic stroke except transient ischaemic attack, haemor-
rhagic stroke, or acute but ill-defined cerebrovascular disease), 
peripheral vascular disease (amputation, gangrene, or periph-
eral revascularisation), or hospitalisation for heart failure [21].

Statistical analysis

Continuous variables were presented as mean ± SD or 
median (IQR) and differences were compared by t test or 
Wilcoxon rank sum test as appropriate. Categorical variables 
were presented as number (%) and compared by χ2 test. To 
account for skewed distribution and facilitate interpretation, 
all metabolites were  loge-transformed before being stand-
ardised to SD. The proportional hazards assumption was 
tested by scaled Schoenfeld residuals for all variables. False 
discovery rate (FDR) by the Benjamini–Hochberg procedure 
<0.05, which is more appropriate for ‘omics’ data, was con-
sidered significant to account for multiple testing of inter-
correlated metabolites [28]. All analyses were performed 
in R version 4.0.3 (R Foundation for Statistical Computing, 
Vienna, Austria). Packages including survival, boot, priori-
tylasso, survIDINRI and nricens were used for the analysis.

The cross-sectional associations of metabolites with 
CKD (baseline eGFR<60 ml/min per 1.73  m2) or severely 
increased albuminuria (urinary albumin/creatinine ratio 
[UACR] >30 mg/mmol) were separately examined by lin-
ear regression, with the metabolite as dependent variable. 
Two models were considered: unadjusted and adjusted for 
age, male sex, ever smoking, diabetes duration, systolic BP 
(SBP), BMI,  HbA1c, oral glucose-lowering drugs, insulin, 
antihypertensive drugs, renin–angiotensin-system (RAS) 
blockers, lipid-lowering drugs, statins, diabetic retinopathy 
and CVD history. Additionally, severely increased albumi-
nuria (or CKD) was included as a covariate for the analysis 
of CKD (or severely increased albuminuria).

Among participants without prevalent CVD (N=1447), 
the crude association of CKD or severely increased 
albuminuria with incident CVD was assessed using 
Cox proportional hazards model. Given the established 
association between DKD and incident CVD, metabo-
lites cross-sectionally associated with CKD or severely 
increased albuminuria were further examined for the pro-
spective associations with incident CVD (N=1447) using 
Cox proportional hazards models, adjusting for the same 
covariates mentioned above, excluding history of CVD. To 
identify metabolomic biomarkers independent of conven-
tional risk factors including DKD, metabolites remaining 
nominally significant (p<0.05) after further adjusting for 
CKD and severely increased albuminuria were assessed 
for the prognostic value. To account for multicollinearity 

and data dimensionality, priority least absolute shrinkage 
and selection operator (priority-Lasso) Cox regression was 
used to retain metabolites with non-zero coefficients [29]. 
Two blocks were defined: the first block was unpenalised 
and included 14 covariates, CKD and severely increased 
albuminuria; the second block comprised all metabolites 
associated with incident CVD. The optimal penalisation 
parameter λ in the second block was determined by the 
one with minimal cross-validated error as determined by 
tenfold cross-validation [29]. To account for overfitting, 
the process was repeated by 1000-times bootstrapping.

To assess the predictive value of the identified metabolomic 
biomarkers, a risk score comprising the selected metabolites, 
age and sex was compared with the risk score containing con-
ventional risk factors (original model) and an established pre-
diction model (RECODe model) [30]. The incremental predic-
tive value of the metabolomic biomarkers was also assessed 
over the original and RECODe models. The predictive value 
was assessed using C statistic, integrated discrimination 
improvement (IDI), categorical and continuous net reclassifi-
cation improvement (NRI). The calculation of IDI and NRI was 
based on 5-year risk and the risk categories for categorical NRI 
were <5%, 5–10% and >10%. The 95% CI was estimated by 
1000-times bootstrapping. As missing values in each covariate 
were small (≤2.0%), multiple imputation was not performed. 
Key R codes are provided in the ESM Methods and Results.

Sensitivity analyses

We examined cross-sectional associations of metabolites 
with eGFR and UACR and included eGFR and UACR as 
covariates in the prospective analysis. We further adjusted 
for sodium–glucose cotransporter-2 inhibitors (SGLT2i) use 
during follow-up (N=384) in the prospective analysis, as 
none of the participants were on SGLT2i at baseline. To 
assess the robustness of variable selection, backward elimi-
nation based on Akaike’s information criterion with 1000-
times bootstrapping was also performed.

Results

Baseline characteristics (N=1991)

Table 1 summarises the baseline characteristics of par-
ticipants. Briefly, mean age was 61.1 years, 59.7% were 
male, mean diabetes duration was 11.4 years and 27.3% 
had prevalent CVD. The mean eGFR was 75.8 ml/min 
per 1.73  m2 and 545 participants had prevalent CKD; the 
median UACR was 2.7 mg/mmol and 399 participants had 
prevalent severely increased albuminuria. Characteristics 
of participants with or without CKD or severely increased 
albuminuria are summarised in Table 1.

https://icd.who.int/browse10/2019/en
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Table 1  Baseline characteristics of the study population by CKD and severely increased albuminuria status

Data are presented as mean ± SD, number (percentage) or median (IQR)
p values for differences between CKD/severely increased albuminuria were obtained by t test, χ2 test, or Wilcoxon rank sum test as appropriate
KDIGO, Kidney Disease: Improving Global Outcomes; NA, not applicable

Variable Missing 
(%)

Overall
N=1991

CKD p value Macroalbuminuria p value

No, N=1434 Yes, N=545 No, N=1554 Yes, N=399

Age, years 3 (0.2) 61.1±11.0 58.6±10.6 67.8±8.9 <0.0001 60.3±11.0 64.5±10.3 <0.0001
Male sex 0 1189 (59.7) 837 (58.4) 342 (62.8) 0.085 909 (58.5) 258 (64.7) 0.029
Smoking, ever 1 (0.1) 672 (33.8) 469 (32.7) 197 (36.2) 0.163 505 (32.5) 151 (37.8) 0.050
Diabetes duration, years 10 (0.5) 11.4±8.7 9.7±8.0 15.9±8.7 <0.0001 10.4±8.4 15.3±8.6 <0.0001
SBP, mmHg 7 (0.4) 135.5±18.4 133.0±17.8 141.7±18.4 <0.0001 132.7±17.4 145.8±18.2 <0.0001
BMI, kg/m2 8 (0.4) 26.5±4.6 26.3±4.7 26.9±4.4 0.009 26.2±4.5 27.8±4.9 <0.0001
HbA1c, mmol/mol 22 (1.1) 58.8±15.6 58.3±15.7 60.1±15.3 0.023 57.9±15.1 62.8±17.0 <0.0001
HbA1c, % 22 (1.1) 7.5±1.4 7.5±1.4 7.7±1.4 0.023 7.5±1.4 7.9±1.6 <0.0001
eGFR, ml/min per 1.73  m2 12 (0.6) 75.8±26.4 89.4±14.6 40.0±14.1 <0.0001 83.1±21.2 48.5±26.1 <0.0001
 G1 748 (37.6) 748 (52.2) NA 706 (45.4) 35 (8.8)
 G2 686 (34.5) 686 (47.8) NA 600 (38.6) 82 (20.6)
 G3a 230 (11.6) NA 230 (42.2) 150 (9.7) 74 (18.6)
 G3b 168 (8.4) NA 168 (30.8) 76 (4.9) 87 (21.8)
 G4 123 (6.2) NA 123 (22.6) 17 (1.1) 100 (25.1)
 G5 24 (1.2) NA 24 (4.4) 3 (0.2) 21 (5.3)
UACR, mg/mmol 38 (1.9) 2.7 (0.7–17.4) 1.4 (0.6–5.5) 35.2 (4.9–156.9) <0.0001 1.4 (0.6–4.7) 131.7 (62.9–251.7) <0.0001
 A1 1012 (50.8) 914 (63.7) 97 (17.8) 1012 (65.1) NA
 A2 542 (27.2) 392 (27.3) 149 (27.3) 542 (34.9) NA
 A3 399 (20.0) 117 (8.2) 282 (51.7) NA 399 (100)
KDIGO risk 40 (2.0)
 Low 914 (45.9) 914 (63.7) NA 914 (58.8) NA
 Moderately increased 456 (22.9) 392 (27.3) 64 (11.7) 456 (29.3) NA
 High 231 (11.6) 117 (8.2) 114 (20.9) 114 (7.3) 117 (29.3)
 Very high 350 (17.6) NA 350 (64.2) 68 (4.4) 282 (70.7)
Triglycerides, mmol/l 12 (0.6) 1.3 (1.0–2.0) 1.3 (0.9–1.9) 1.6 (1.1–2.3) <0.0001 1.3 (0.9–1.8) 1.8 (1.2–2.6) <0.0001
Total cholesterol, mmol/l 12 (0.6) 4.4±1.0 4.4±0.9 4.3±1.0 0.200 4.3±0.9 4.5±1.2 0.0005
HDL-C, mmol/l 13 (0.7) 1.3±0.4 1.3±0.4 1.2±0.4 <0.0001 1.3±0.4 1.2±0.4 0.0002
LDL-C, mmol/l 26 (1.3) 2.3±0.8 2.4±0.8 2.3±0.8 0.014 2.3±0.7 2.4±0.9 0.291
Diabetic retinopathy 0 517 (26.0) 332 (23.2) 180 (33.0) <0.0001 354 (22.8) 149 (37.3) <0.0001
CVD 0 544 (27.3) 304 (21.2) 232 (42.6) <0.0001 375 (24.1) 147 (36.8) <0.0001
Oral glucose-lowering 

drugs
39 (2.0) 1682 (84.5) 1267 (88.4) 408 (74.9) <0.0001 1362 (87.6) 295 (73.9) <0.0001

Insulin 26 (1.3) 753 (37.8) 421 (29.4) 323 (59.3) <0.0001 486 (31.3) 254 (63.7) <0.0001
Lipid-lowering drugs 15 (0.8) 1360 (68.3) 912 (63.6) 440 (80.7) <0.0001 1014 (65.3) 320 (80.2) <0.0001
Statins 7 (0.4) 1333 (67.0) 892 (62.2) 437 (80.2) <0.0001 999 (64.3) 313 (78.5) <0.0001
Antihypertensive drugs 19 (1.0) 1524 (76.5) 999 (69.7) 516 (94.7) <0.0001 1114 (71.7) 380 (95.2) <0.0001
RAS blockers 7 (0.4) 1183 (59.4) 767 (53.5) 412 (75.6) <0.0001 853 (54.9) 312 (78.2) <0.0001

Metabolites cross‑sectionally associated with DKD 
(N=1991)

At FDR<0.05, 151 metabolites were associated with CKD 
(Fig. 1). Cholesterol, phospholipids and total lipids in ApoB-
containing lipoproteins were positively, while lipids in HDL 
were inversely, associated with CKD; concentrations of 

lipoprotein particles exhibited similar patterns. Triglycerides 
across all lipoproteins were positively associated with CKD, 
except triglycerides in large HDL. ApoB and ApoB/ApoA-1 
were positively, while ApoA-1 was negatively, associated 
with CKD. Other lipids, including phosphoglycerides, total 
cholines, phosphatidylcholines and sphingomyelins, were 
positively associated with CKD. Relative concentrations of 
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n-6 fatty acids, polyunsaturated fatty acids (PUFAs), doco-
sahexaenoic acid (DHA) and PUFAs/monounsaturated fatty 
acids (MUFAs) were inversely, while relative concentra-
tion of MUFAs was positively, associated with CKD. For 
LMWMs, glycine, phenylalanine, citrate and GlycA were 
positively, while leucine, valine, tyrosine, glucose, lactate 
and albumin were negatively, associated with CKD.

At FDR<0.05, 128 metabolites were associated with 
severely increased albuminuria (Fig. 1). Cholesterol, phos-
pholipids and total lipids in VLDL and LDL were posi-
tively, while lipids in larger HDL were negatively, associ-
ated with severely increased albuminuria; concentrations 
of lipoprotein particles exhibited similar patterns. Triglyc-
erides in non-HDL and medium and small HDL were asso-
ciated with severely increased albuminuria. Other traits 
including ApoB and ApoB/ApoA-1, MUFAs, isoleucine, 
phenylalanine, glucose, citrate, 3-hydroxybutyrate, cre-
atinine and GlycA were positively, while PUFAs, DHA, 
PUFAs/MUFAs, tyrosine and albumin were negatively, 
associated with severely increased albuminuria.

When eGFR or UACR was assessed as the dependent 
variable, 148 overlapping metabolites were associated 
with CKD and 125 overlapping metabolites were associ-
ated with severely increased albuminuria at FDR<0.05.

Associations between DKD‑related metabolites 
and incident CVD (N=1447)

Of metabolites associated with CKD (N=151) or severely 
increased albuminuria (N=128), 123 metabolites were asso-
ciated with both CKD and severely increased albuminuria, 
28 metabolites only associated with CKD, and five metabo-
lites only associated with severely increased albuminuria. 
Consequently, 156 metabolites associated with DKD were 
included in the prospective analysis.

Among 1447 participants without prevalent CVD, 125 
(8.6%) participants developed CVD over median (IQR) 5.2 
(5.0–5.4) years of follow-up, corresponding to an incidence 
rate (95% CI) of 17.5 (14.6, 20.9) per 1000-person-years. Both 
CKD and severely increased albuminuria were associated with 
incident CVD (HR 3.77 [95% CI 2.65, 5.37] and 3.96 [2.77, 
5.67] for CKD and severely increased albuminuria, respec-
tively). At FDR<0.05, 116 metabolites were associated with 
incident CVD in the unadjusted model and 75 metabolites 
remained significant after accounting for confounders (Fig. 2). 
Briefly, triglycerides in all lipoproteins were positively associ-
ated with incident CVD. Other lipid components in TRLs and 
LDL were positively, while lipid components in medium and 
small HDL were inversely, associated with incident CVD with 
lipoprotein concentrations exhibiting similar patterns. ApoB, 
ApoB/ApoA-1, glycine, phenylalanine and GlycA were asso-
ciated with higher risk of CVD, while DHA, leucine, valine, 
tyrosine and albumin were inversely associated with CVD.

Prognostic value of selected metabolites 
for incident CVD (N=1447)

Among the 75 metabolites associated with incident CVD, 
22 remained nominally significant after further adjusting 
for CKD and severely increased albuminuria (ESM Fig. 3, 
ESM Table 5), including concentrations of very small VLDL 
and small HDL and their lipid components, triglycerides 
in intermediate-density lipoprotein (IDL), LDL and larger 
HDL, leucine and albumin. Albumin, triglycerides in large 
HDL and phospholipids in small LDL were most consist-
ently selected by priority-Lasso (ESM Table 6). The key 
selection by priority-Lasso was well-represented in back-
ward elimination.

A metabolite score (triglycerides in large HDL plus phos-
pholipids in small LDL minus albumin) was strongly associ-
ated with incident CVD (HR 1.43 per SD [95% CI 1.28, 1.59] 
and 3.31 [1.93, 5.70] for tertile 3 vs tertile 1; ESM Table 7). 
The three metabolites reached a C statistic (95% CI) of 0.725 
(0.672, 0.778) and C statistic of the metabolomic model 
comprising age, sex and the three metabolites (0.765 [0.718, 
0.812]) was comparable with that of traditional risk factors 
(0.762 [0.717, 0.807], P=0.893) and RECODe model (0.765 
[0.719, 0.812], P=0.994; ESM Fig. 4) [30]. The metabolites 
further improved CVD risk prediction (improvement in C 
statistic=0.035 and 0.030, P=0.014 and 0.007 over the fully 
adjusted model and RECODe model, respectively) as well as 
IDI, continuous NRI and correct reclassification of non-cases 
for incident CVD (Table 2).

The metabolite score was also associated with CVD 
in HKDR (HR 1.76 per SD [95% CI 1.34, 2.31] and 5.72 
[2.24, 14.61] for tertile 3 vs tertile 1; ESM Table 8) and 
remained significant after adjusting for some confounders 
(HR 1.74 per SD [95% CI 1.33, 2.28] and 11.12 [3.68, 
33.61] for tertile 3 vs tertile 1); further adjusting for CKD 
and severely increased albuminuria did not change the 
association. The selected metabolites reached a C sta-
tistic of 0.734 (0.621, 0.846) and further improved CVD 
risk prediction over RECODe model (improvement in C 
statistic=0.042, P=0.043; ESM Fig. 5).

In the DCS cohort, all three metabolites have been 
associated with impaired kidney function [9]. Over a 
mean 8.3±3.2 years of follow-up, 141 (11.7%) partici-
pants developed incident CVD. The metabolite score was 
associated with incident CVD (HR 1.16 per SD [95% CI 
1.06, 1.27], and 1.99 [1.30, 3.03] for tertile 3 vs tertile 1; 
ESM Table 9). Adjustment for the same covariates as in 
the HKDB analysis attenuated the association.

Sensitivity analyses

Of 75 metabolites associated with incident CVD, 13 
remained significant after further adjusting for eGFR and 
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Fig. 1  Metabolites associated with CKD (a) or severely increased 
albuminuria (b). Estimated by linear regression adjusted for age, male 
sex, ever smoking, diabetes duration, SBP, BMI,  HbA1c, oral glucose-
lowering drugs, insulin, antihypertensive drugs, lipid-lowering drugs, 

RAS blockers, statins, diabetic retinopathy and severely increased 
albuminuria (for the association with severely increased albuminuria, 
CKD was included instead). Metabolites were  loge-transformed and 
scaled to SD. The top 20 most significant metabolites were named
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Fig. 2  Associations between 
DKD-related metabolites and 
incident CVD. Estimated by 
Cox regression adjusted for age, 
male sex, ever smoking, diabe-
tes duration, SBP, BMI,  HbA1c, 
oral glucose-lowering drugs, 
insulin, antihypertensive drugs, 
lipid-lowering drugs, RAS 
blockers, statins and diabetic 
retinopathy. Metabolites were 
 loge-transformed and scaled to 
SD. *p<0.05; **p<0.01
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UACR, including two selected metabolites (albumin and tri-
glycerides in large HDL) (ESM Table 10). All metabolites 
were associated with CVD after accounting for SGLT2i use 
during follow-up (ESM Table 11).

Discussion

Applying NMR metabolomics in a well-characterised type 
2 diabetes cohort, we comprehensively examined the cross-
sectional associations of lipoproteins, lipids and LMWMs 
with DKD and prospective associations of DKD-related 
metabolites with incident CVD, identified and assessed 
metabolomic biomarkers for incident CVD prediction. 
We found that: (1) TRLs associated with both DKD and 
incident CVD; (2) HDL inversely associated with DKD 
and the inverse association with incident CVD appeared 
mainly driven by smaller (medium and small) HDL; (3) 
triglycerides across all lipoproteins associated with CVD; 
and (4) replicated in both Chinese and Europeans, metabo-
lomic biomarkers performed comparably to conventional 
risk factors and improved CVD risk stratification beyond 
established prediction models. The results demonstrate pro-
found metabolomic alterations in DKD and close relation 
with development of CVD, highlighting potential molecular 
links between DKD and CVD and potential application of 
metabolomics for diabetes complication prediction.

Some metabolic alterations associated with decreased 
eGFR are common across different populations and we fur-
ther identified metabolites associated with severely increased 
albuminuria in Chinese (ESM Tables 12–13). Consistently, 
TRLs were associated with decreased eGFR [9, 10] and also 
with severely increased albuminuria in our study. TRLs have 

been associated with CVD [31]; larger differences in TRLs 
in decreased eGFR were found in people with vs without 
diabetes [10], suggesting a potential role of TRLs for residual 
CVD risk in people with DKD. In our prospective analy-
sis, TRLs were associated with incident CVD, with VLDL 
exhibiting the strongest association, although VLDL, IDL 
and ApoB were all associated with CVD. Hepatic VLDL 
production and secretion is increased by insulin resistance 
[32] and altered metabolism of ApoC-3 in CKD further ele-
vates TRLs by overproduction and impaired clearance [6]. 
All ApoB-containing lipoproteins, including TRLs, can enter 
the arterial intima leading to cholesterol deposition [7]. In 
contrast to LDL for which oxidative modification is usually 
required before phagocytosis, larger TRLs can be trapped 
more easily and can be directly phagocytised by macrophages 
to form foam cells [33]. Moreover, hydrolysis of triglycerides 
in TRLs by lipoprotein lipase can liberate NEFA, inducing 
inflammation, promoting atherosclerosis [34].

CKD modifies HDL structure and composition, which may 
partly explain the increased CVD risk in CKD [35]. Consistent 
with previous findings [9], we found that HDL was negatively 
associated with CKD and severely increased albuminuria; the 
association with CKD was stronger. HDL was inversely asso-
ciated with CVD in our prospective analysis and the associa-
tion appeared limited to medium and small HDL. However, 
in previous population-based studies the inverse association 
between HDL and CVD was limited to large and medium 
HDL [18, 25]. HDL’s potential modification by diabetes [36] 
and CKD [35] may partly explain the contrasting results. Fur-
thermore, a recent MR analysis found that medium and small 
HDL were CVD-protective [37]. Our observed association of 
small HDL appeared independent of DKD, which is consist-
ent with findings that small HDL has greater atheroprotective 

Table 2  Predictive utility of the 
selected metabolites for incident 
CVD

Selected metabolites: albumin, triglycerides in large HDL, and phospholipids in small LDL
a  Original model: age, male sex, ever smoking, diabetes duration, SBP, BMI,  HbA1c, oral glucose-lowering 
drugs, insulin, antihypertensive drugs, lipid-lowering drugs, RAS blockers, statins, diabetic retinopathy, 
severely increased albuminuria and CKD
b  RECODe model: age, sex, ever smoking, SBP,  HbA1c, total cholesterol, HDL-C, eGFR,  loge (UACR), 
antihypertensive drugs and lipid-lowering drugs
c  Risk classification for categorical NRI was: <5%, 5–10% and >10%
95% CI was estimated by 1000-times bootstrapping

Variable Original  modela RECODe  modelb

IDI for 5-year risk (95% CI) 0.067 (0.032, 0.110) 0.039 (0.016, 0.070)
Categorical NRI for 5-year  riskc (95% CI)
 Case 0.070 (−0.045, 0.152) −0.013 (−0.060, 0.128)
 Non-case 0.075 (0.019, 0.116) 0.065 (0.014, 0.098)
 Overall 0.144 (−0.001, 0.245) 0.052 (−0.025, 0.202)
Continuous NRI for 5-year risk (95% CI)
 Case 0.283 (0.079, 0.441) 0.129 (0.017, 0.363)
 Non-case 0.258 (0.121, 0.382) 0.102 (−0.031, 0.241)
 Overall 0.541 (0.259, 0.759) 0.232 (0.042, 0.536)
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capacities via reverse cholesterol transport, anti-inflammatory, 
antioxidant and endothelial protection [8, 24]. Further studies 
are warranted to investigate whether detailed HDL composi-
tion (proteins, lipids or enzymes) or HDL function may be 
potential modulators [35]. We replicated previous findings that 
LDL was associated with DKD [9, 10] and that small LDL was 
associated with higher CVD risk.

Triglycerides across all lipoproteins were associated 
with DKD and incident CVD, including TRLs, LDL and 
HDL. Despite the fact that 67% of participants were on 
statins, and cholesterol in LDL was not associated with 
incident CVD, triglycerides in LDL were associated with 
CVD in our analysis. In people with prediabetes (impaired 
glucose tolerance and/or impaired fasting glucose) or 
diabetes and stable coronary artery disease (73.9% on 
statins), LDL triglycerides were associated with CVD and 
improved CVD risk prediction, indicating the prognostic 
value of LDL triglycerides for residual risk [38].

Lower albumin has been associated with DKD [10] and 
frailty in older people with type 2 diabetes [39] and albumin 
levels are inversely associated with CVD or mortality in peo-
ple with CKD [40], suggesting that as a marker linked with 
malnutrition, liver and kidney dysfunction and inflammation, 
albumin may partly capture the integrated altered metabolic 
signature in diabetes and thus associates with adverse out-
comes. As a validated marker for systemic inflammation, 
GlycA was associated with DKD [9, 10] and incident CVD 
[18, 25], although further adjustment for DKD attenuated the 
association with CVD. Taken together, our findings suggest 
that low-grade inflammation in diabetes may be one of the 
pathogenetic pathways for diabetes complications.

Other lipids, including sphingomyelins, were also asso-
ciated with DKD [9, 10], however, none were associated 
with incident CVD, consistent with previous findings that 
sphingomyelins were associated with DKD but not CVD 
[41]. In line with previous studies, MUFAs were positively 
associated with DKD [10], however, PUFAs were negatively 
linked with DKD in our analysis and the inverse association 
was mainly driven by DHA. DHA was inversely associated 
with macrovascular events in the Action in Diabetes and 
Vascular Disease: Preterax and Diamicron Modified Release 
Controlled Evaluation (ADVANCE) study [42], which sup-
ports our result that DHA as a marker negatively linked with 
DKD was associated with lower risk of CVD. In CKD, dys-
functional activity of phenylalanine hydroxylase impairs the 
conversion of phenylalanine to tyrosine [43]. Accordingly, 
we found that higher phenylalanine and lower tyrosine were 
associated with DKD [9, 10] and were both associated with 
risk of CVD. Similar to findings from ADVANCE [11], 
further adjustment for kidney function attenuated associa-
tions with CVD, suggesting that the link between dysregu-
lated phenylalanine or tyrosine and CVD may be mediated 
by kidney dysfunction. Leucine and isoleucine have been 

associated with decreased eGFR [9], and branched-chain 
amino acids (BCAAs) have been negatively associated with 
CKD in a larger study [10]. We found that leucine and valine 
were negatively associated with CKD and isoleucine was 
positively associated with severely increased albuminu-
ria. Leucine and valine were also inversely associated with 
CVD, in line with the inverse association of leucine and 
valine with all-cause mortality in ADVANCE [11]. The dif-
ferent associations between BCAAs and DKD across stud-
ies might be attributed to participant characteristics, dietary 
intake, medications or analytical strategies.

Integrating information from gene expression and environ-
mental factors and interacting with the microbiome, metabo-
lites may carry molecular information that is not captured by 
traditional risk factors [8]. Among metabolites associated with 
CVD independent of conventional risk factors, three metabo-
lites, albumin, triglycerides in large HDL and phospholip-
ids in small LDL, were identified to be most informative for 
CVD prediction by machine learning method. The metabolite 
score comprising these three metabolites was strongly associ-
ated with CVD, which was validated independently in both 
Chinese and European cohorts. The selected metabolites 
performed comparably to conventional risk factors for CVD 
prediction and improved risk stratification beyond well-estab-
lished prediction models, highlighting the prognostic value of 
metabolomic biomarkers for diabetes complications.

Extending the cross-sectional associations between 
metabolites and DKD, we found some DKD-related metab-
olites were associated with incident CVD. We further rep-
licated the association between the identified metabolites 
and incident CVD in HKDR and the Dutch DCS cohort. 
Other strengths include the extensively phenotyped data and 
complete follow-up, well-established metabolomics platform 
with stringent quality control and consistent results across 
sensitivity analyses. Nevertheless, there are limitations. 
Only Chinese individuals were included in the discovery 
analysis, which might limit generalisability of our findings, 
however, most metabolites associated with DKD in previ-
ous studies were replicated in our study and the selected 
metabolomic biomarkers were validated in two independent 
cohorts. Around 70% of participants were on lipid-lowering 
drugs and we could not account for their potential influ-
ence on lipoprotein metabolism, although medication use 
was accounted for and our findings were consistent with a 
study in people not on lipid therapies [10]. UACR was based 
on single measurement and to account for intra-individual 
variability, we used severely increased albuminuria to define 
albuminuria. Among metabolites ranked by 1000-times 
bootstrapping priority-Lasso, an arbitrary cut-off (>70%) 
was applied to select prognostic metabolomic biomarkers. 
Although fasting samples were profiled, dietary intake and 
physical activity that may modulate the metabolome [8] were 
not captured in our cohort. Given the observational design, 
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residual confounding cannot be ruled out and causal infer-
ence is not feasible. Although the study population included 
slightly more men than women, analyses have been adjusted 
for the sex of the study participants, and the findings should 
be applicable to both men and women with diabetes.

In conclusion, DKD is linked with alterations in multiple 
metabolites, including TRLs, HDL, fatty acids, amino acids, 
albumin and inflammation. Some DKD-related metabolites 
(TRLs, smaller HDL, leucine and albumin) are also associ-
ated with incident CVD. Metabolomic biomarkers provided 
comparable predictive utility to traditional risk factors and 
improved CVD risk stratification over established predic-
tion models. Further investigations on pathophysiology and 
disease prediction of metabolites are warranted.
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