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Abstract
Suppression of pathogenic immune responses is a major goal in the prevention and treatment of type 1 diabetes. Adoptive 
cell therapy using regulatory T cells (Tregs), a naturally suppressive immune subset that is often dysfunctional in type 1 
diabetes, is a promising approach to achieving localised and specific immune suppression in the pancreas or site of islet 
transplant. However, clinical trials testing administration of polyclonal Tregs in recent-onset type 1 diabetes have observed 
limited efficacy despite an excellent safety profile. Several barriers to efficacy have been identified, including lack of anti-
gen specificity, low cell persistence post-administration and difficulty in generating sufficient cell numbers. Fortunately, 
the emergence of advanced gene editing techniques has opened the door to new strategies to engineer Tregs with improved 
specificity and function. These strategies include the engineering of FOXP3 expression to produce a larger source of sup-
pressive cells for infusion, expressing T cell receptors or chimeric antigen receptors to generate antigen-specific Tregs and 
improving Treg survival by targeting cytokine pathways. Although these approaches are being applied in a variety of auto-
immune and transplant contexts, type 1 diabetes presents unique opportunities and challenges for the genetic engineering 
of Tregs for adoptive cell therapy. Here we discuss the role of Tregs in type 1 diabetes pathogenesis and the application of 
Treg engineering in the context of type 1 diabetes.
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Abbreviations
2.5HIP  2.5 hybrid insulin–chromogranin A peptide
APC  Antigen presenting cell
CAR   Chimeric antigen receptor
GVHD  Graft-versus-host disease
G6PC2  Glucose-6-Phosphatase Catalytic Subunit 2
IPEX  Immunodysregulation polyendocrinopathy enter-

opathy X-linked
MND  Myeloproliferative sarcoma virus enhancer, 

negative control region deleted, dl587rev primer-
binding site substituted

NSG  NOD scid gamma
PPI  Preproinsulin

STAT   Signal transducer and activator of transcription
TCR   T cell receptor
Treg  Regulatory T cell

Introduction

Type 1 diabetes is an autoimmune disease marked by the 
destruction of pancreatic islet beta cells by autoantigen-
specific T cells, leading to the loss of insulin production 
and dysregulation of blood glucose. Suppression of this 
autoimmune response is a major goal in the prevention 
and treatment of type 1 diabetes. To this end, therapeutic 
approaches that target regulatory T cells (Tregs), defined 
by expression of the transcription factor FOXP3 and the 
high-affinity IL-2 receptor, CD25 [1], are a major area of 
focus. Unlike traditional immunosuppression, Tregs have the 
potential to potently inhibit immune responses in an anti-
gen-specific manner without globally impacting beneficial 
immunity to infection and cancer. The immunomodulatory 
effects of Tregs are achieved through a broad arsenal of con-
tact-dependent and -independent suppressive mechanisms, 
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including immunosuppressive cytokine production, inhibi-
tion of antigen presenting cell (APC) function, IL-2 con-
sumption and direct effector T cell killing [1]. In this review, 
we first summarise the role of Tregs in type 1 diabetes patho-
genesis and efforts to utilise unmodified cells for treatment, 
and then describe advanced genetic engineering approaches 
that aim to improve the efficacy of adoptive Treg therapy 
by enhancing their phenotype, antigen specificity, and/or 
function.

Regulatory T cells in type 1 diabetes

A number of functional and genetic studies of Tregs from 
individuals with type 1 diabetes point to a role for their dys-
function in pathogenesis. Although peripheral blood Treg 
numbers are normally not affected in type 1 diabetes, their 
suppressive function may be reduced [2–6] and their signa-
ture gene expression profile is altered [7, 8]. Impaired IL-2 
signalling in Tregs likely contributes to these changes, as 
Tregs from people with type 1 diabetes exhibit reduced IL-
2-stimulated phosphorylation of a downstream signalling 
molecule, signal transducer and activator of transcription 
5 (STAT5) [9], and increased expression of protein tyros-
ine phosphatase N2 (PTPN2), a negative regulator of IL-2 
signalling [9–11]. SNPs in regions of epigenetic regulation 
important for Treg identity have also been identified in type 
1 diabetes [12]. Direct evidence linking Treg dysfunction to 
type 1 diabetes comes from the study of immunodysregula-
tion polyendocrinopathy enteropathy X-linked (IPEX) syn-
drome, wherein FOXP3 mutations lead to varying degrees 
of Treg dysfunction and multiorgan autoimmunity usually 
including type 1 diabetes [13].

This strong evidence for Treg dysfunction in type 1 diabe-
tes, combined with their ability to inhibit immune responses 
in a variety of contexts, has led to multiple efforts to boost 
their function using autologous cell therapy approaches. 
Importantly, ex vivo expansion in IL-2 seems to reverse 
the deficit in IL-2-stimulated STAT5 [14], so infused cells 
from patients are expected to be more functional. Several 
phase 1 clinical trials testing autologous Treg administration 
in recent-onset type 1 diabetes have now been completed; 
no severe adverse events were observed, indicating that 
this therapy is safe and well-tolerated [15–18]. Similarly, 
administration of autologous Tregs together with intraportal 
allogeneic islet transplantation yielded no severe negative 
effects [19]. Promisingly, Marek-Trzonkowska et al showed 
that children who received Treg therapy maintained higher 
C-peptide levels and had lower insulin requirements 1 year 
after treatment, compared with a matched control group 
[16]. Likewise, although the study was not designed to 
assess efficacy, Bluestone et al found that C-peptide levels 
were maintained for over 2 years after treatment for some 

patients, but there were no obvious improvements in dis-
ease severity [17]. Importantly, both studies observed a rapid 
decline in the number of circulating Tregs within weeks of 
infusion [16, 17]. In addition to the initial rapid decline, 
Bluestone and colleagues observed a biphasic exponential 
decay in which the second phase was characterised by a 
longer-lived Treg subset making up approximately 10–25% 
of infused cells [17]. These cells, which were detected up 
to a year post-infusion, primarily bore a naive or memory 
stem-like phenotype marked by expression of CD45RA and 
CCR7, as opposed to the pre-infusion central memory-like 
phenotype characterised as  CCR7+CD45RA−CD45RO+. 
Thus, it is clear that even in the context of polyclonal Treg 
therapy, long-lived cells exist, and these may be instrumen-
tal to maintaining efficacy long-term. However, the overall 
low efficacy of these polyclonal Treg therapies suggests that 
there is a need to identify new strategies to enhance Treg 
function, survival and proliferation in vivo. Addition of 
low-dose IL-2 treatment to Treg therapy can increase Treg 
numbers in individuals with type 1 diabetes, but this may 
be accompanied by expansion of inflammatory cell subsets 
and, therefore, is not an ideal strategy [18]. Together, these 
results (excellent safety but yet-to-be determined efficacy) 
are similar to those from a number of other trials testing 
polyclonal Treg cell therapy in other disease contexts [20]. 
Thus, a variety of new genetic engineering approaches have 
emerged that aim to enhance therapeutic efficacy by target-
ing Treg phenotype, antigen specificity, and survival, with 
the hope that these modifications will enable Treg therapy 
to achieve its full potential (Fig. 1).

Engineering Tregs from conventional T cells

A critical barrier in the development of adoptive Treg thera-
pies is achieving sufficient cell numbers without compromis-
ing lineage homogeneity. Therapeutic Tregs are generally 
obtained from peripheral blood by sorting using a combi-
nation of cell surface markers, including CD4, high CD25 
expression and lack of CD127 [21]. Although the resulting 
cells are relatively pure immediately post-isolation, contami-
nating effector T cells, which may also express CD25, can 
outgrow Tregs over time [22]. Additional selection of the 
naive  (CD45RA+CD45RO−) population can enhance purity 
by eliminating activated T cells that transiently upregulate 
CD25 [22], but this significantly reduces cell yield. These 
limitations may also be compounded when using cells from 
a person with an inflammatory/autoimmune disease.

An alternative to isolation of Tregs is conversion of  CD4+ 
T cells to Tregs. Although expression of FOXP3 and sup-
pressive function can be induced by T cell receptor (TCR) 
stimulation in the presence of TGF-β, the effects are tran-
sient and reversed upon its removal [23]. Thus, a preferred 
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approach is viral transduction-mediated overexpression of 
FOXP3 (Fig. 1), which results in expression of Treg mark-
ers, including CD25 and CTLA-4, suppressed production 
of inflammatory cytokines and acquisition of suppressive 
function in vitro for both mouse [24–26] and human [27, 
28]  CD4+ T cells. Notably, FOXP3 transduction conferred 
suppressive function onto mouse BDC2.5  CD4+ T cells 
(specific for 2.5 hybrid insulin–chromogranin A peptide 
[2.5HIP]), which were able to stabilise or reverse recent-
onset diabetes in NOD mice upon infusion (Table 1) [29]. 
The efficacy of polyclonal or antigen-specific converted cells 
has also been demonstrated in a number of other models of 
autoimmune and inflammatory conditions, including colitis, 
allergy, autoimmune dermatitis, haemophilia A and arthritis 
(reviewed in Tuomela et al [30]). Importantly, the FOXP3-
transduction approach has now reached the stage of clinical 
testing, with active recruitment to a first-in-human trial of 
lentiviral-mediated transduction of FOXP3 into T cells in 
patients with IPEX syndrome (NCT05241444) [31].

The concept of induced FOXP3 expression has recently 
been further refined using recombinase-mediated homology-
directed repair to introduce a strong promoter sequence 
(MND; myeloproliferative sarcoma virus enhancer, negative 

control region deleted, dl587rev primer-binding site substi-
tuted) upstream of the endogenous FOXP3 locus [32]. This 
approach reduces the possibility of genotoxicity, gene silenc-
ing and variability due to random integration of retro- or 
lentiviral vectors. When combined with lentiviral transduc-
tion of TCRs specific for diabetes-relevant peptide–MHC 
complexes, the resulting islet-antigen-specific engineered 
human Tregs reduced co-stimulatory molecule expression 
on APCs and suppressed effector T cells with the same or 
distinct TCR specificity (Table 1) [33]. In mice, knock in 
of the MND promoter into BDC2.5 TCR transgenic T cells 
resulted in antigen-specific engineered Tregs that could pre-
vent diabetes induced by BDC2.5 T cells or polyclonal T 
cells from diabetic NOD mice [33].

Despite the observed success in mouse models, uncertain-
ties remain concerning Treg production via induced FOXP3 
expression. Although FOXP3 is the ‘master’ transcription 
factor mediating Treg phenotype, not all aspects of the Treg 
phenotype can be ascribed to FOXP3. Direct comparison 
of the gene expression signatures of naturally occurring 
mouse Tregs and FOXP3-transduced T cells revealed a sig-
nificant number of genes not regulated by FOXP3 expression 
alone [34]. Moreover, in mice lacking functional FOXP3, 

CD4+ Tregs

CD4+ T cells

FOXP3+

Engineered 
Tregs

Polyclonal
Tregs

CAR-Treg gnireenigne2-LIgerT-RCT

+ Antigen specificity
+ Activation at low antigen density
- HLA-restricted

+ Antigen specificity
+ HLA-independent
+ Options for tuning stimulation
- Requires higher antigen density

+ Survival, proliferation, function
+ Cell-specific effects

Phenotype

Antigen specificity Survival

Fig. 1  Strategies to genetically engineer Treg phenotype, antigen 
specificity or survival for adoptive cell therapy. Tregs for adoptive 
cell therapy can be directly isolated from peripheral blood or pro-
duced from  CD4+ T cells by induced expression of FOXP3. Anti-
gen specificity can be conferred on this polyclonal Treg population 
by expression of disease-relevant TCRs or CARs. In vivo survival of 

adoptively transferred Tregs can be improved through engineering of 
IL-2 signalling by expression of an orthogonal IL-2 receptor that only 
binds an exogenously administered ligand or by expression of sur-
face-bound IL-2 capable only of cis-interactions with receptors. This 
figure is available as a downl oadab le slide

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-023-06076-2/MediaObjects/125_2023_6076_MOESM1_ESM.pptx
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‘Treg-like’ cells bearing elements of a Treg genetic signature 
can develop [35, 36]. Further complexity is added by spliced 
isoforms of FOXP3, which exist in humans but not other 
species, particularly as their biological role and regulation is 
still being defined [37–39]. Overall, genetic engineering of 
FOXP3 expression represents a viable pathway to producing 
therapeutic Tregs, but with more research it is possible that 
the optimal approach to engineering Treg phenotype will 
progress beyond overexpression of FOXP3.

Engineering antigen specificity

Tregs, like other T cells, rely on the recognition of spe-
cific antigens via their TCRs for activation, proliferation 
and function. The premise of polyclonal Tregs for adoptive 
cell therapy, as tested in two type 1 diabetes trials [16, 17], 
depends on the natural existence of rare, disease-relevant 
TCRs in the cell population. As such, numerous studies in 
NOD mice have demonstrated that therapy using antigen-
specific Tregs is far more effective than with polyclonal cells 
[40–43] (Table 1). Notably, one study found that as few as 
5000 antigen-specific (BDC2.5 TCR transgenic) Tregs could 
prevent spontaneous autoimmunity in NOD mice, whereas 
100,000 polyclonal Tregs failed to have an observable 
effect [42]. Similarly, transfer of 2 million antigen-specific 
(BDC2.5 TCR transgenic) Tregs blocked the rejection of a 
syngeneic islet transplant in NOD mice, but 5 million poly-
clonal Tregs had no effect [40]. Thus, the lack of antigen 
specificity may underlie the minimal effect seen in clinical 
trials of adoptive Treg therapy in type 1 diabetes.

Although antigen-specific Tregs are significantly more 
potent, isolating a sufficient number of these cells from 
peripheral blood represents a major barrier. In the mouse 
studies above, the majority took advantage of BDC2.5 TCR 
transgenic mice to make antigen-specific cells. In humans, 
although naturally occurring alloantigen-specific cells can 
be enriched and expanded from human blood [44, 45], a 
more feasible approach in type 1 diabetes is to confer Tregs 
with antigen specificity by introducing exogenous TCRs or 
chimeric antigen receptors (CARs) through genetic engi-
neering (Fig. 1).

T cell receptors Because Tregs naturally recognise antigens 
via TCRs, this was the first approach taken to confer antigen 
specificity to a polyclonal population. Retroviral-mediated 
gene transfer of TCRs to Tregs has now been tested suc-
cessfully in a number of mouse models of autoimmunity 
and transplantation, including arthritis, experimental auto-
immune encephalitis, haemophilia A and heart allograft 
(reviewed in Tuomela et al [30]). Type 1 diabetes repre-
sents a uniquely promising area for the application of TCR-
Tregs. First, a number of TCRs have already been isolated 

from islet-infiltrating pathogenic T cells and Tregs, offering 
multiple options for redirecting Treg specificity [46]. These 
TCRs are most commonly specific for epitopes derived from 
GAD65, glucose-6-phosphatase catalytic subunit 2 (G6PC2; 
also known as IGRP, islet-specific glucose-6-phosphatase 
catalytic subunit-related protein), preproinsulin (PPI), pro-
insulin or insulin [46], and a growing collection of TCRs 
specific for hybrid peptides [47, 48]. Second, although TCRs 
are specific to particular HLA alleles, the close association 
between type 1 diabetes incidence and class II HLA haplo-
type means that a significant proportion of individuals could 
be covered by just a few TCRs [46].

The feasibility of using TCRs to redirect Treg specific-
ity to type 1 diabetes-relevant antigens was first demon-
strated by Hull et al, who transduced human Tregs with 
TCRs isolated from two islet-specific  CD4+ T cell clones 
(Table 1) [49]. Although expression of these TCRs, specific 
to tyrosine phosphatase (IA-2) or insulin presented in the 
context of HLA-DR3 and HLA-DR4, respectively, resulted 
in better antigen-specific suppression compared with poly-
clonal Tregs, function was suboptimal compared with con-
trol, influenza-specific Tregs [49]. Subsequently, Yeh et al 
showed that expression of TCRs specific for  GAD555–567 
presented by HLA-DR4 enabled in vitro Treg suppression 
of conventional T cells specific for the same antigen, as well 
as  CD8+ T cells specific for MART-1 (melanoma antigen 
recognised by T cells 1), a model ‘bystander’ antigen [50]. 
As discussed above, TCR transduction has also been used 
to redirect FOXP3-engineered human and mouse T cells 
towards type 1 diabetes-relevant peptides (G6PC2, GAD65 
or PPI for human and 2.5HIP for mouse) resulting in anti-
gen-specific suppressive function [33].

A major finding of studies investigating islet-specific 
TCR-Tregs is their ability to mediate bystander suppression 
of T cells with different specificity in vitro [33, 49, 50]. 
There is also indirect in vivo evidence for bystander suppres-
sion by antigen-specific Tregs in NOD mouse models where 
diabetes occurs spontaneously [40], upon islet transplanta-
tion into diabetic mice [42], or as a result of NOD splenocyte 
transfer [33]. In these models, monospecific Tregs success-
fully suppress autoimmune diabetes induced by a polyclonal 
population of  CD4+ and  CD8+ T cells specific for a number 
of islet autoantigens, implying a role for bystander suppres-
sion. However, the nature and mechanism of bystander sup-
pression in vivo is not well understood, and the potential 
risk of immune suppression towards pathogens or tumours 
is not well investigated. Existing evidence with FOXP3-
engineered Tregs does show that anti-tumour, -fungal and 
-bacterial immunity is not impeded by administration [51], 
but more direct investigation is needed.

A critical factor governing the efficacy of TCRs is affin-
ity or avidity: low-affinity TCR interactions may be insuf-
ficient to trigger effective signalling, whereas excessively 
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high-affinity may lead to cross-reactivity with other antigens 
[52]. Because higher-affinity TCR stimulation is thought to 
skew  CD4+ T cells towards a Treg phenotype during thymic 
development [53], it could be inferred that high-affinity 
TCRs confer superior Treg function. Some studies have 
suggested that this is indeed the case, with high-affinity or 
high-functional-avidity TCRs mediating enhanced suppres-
sive function in response to alloantigens or islet-specific 
antigens [50, 54]. However, more recent work has revealed 
greater complexity in this area, demonstrating that low-
affinity TCRs can, in some contexts, be more suppressive 
or mediate unique functional effects. In a study of human 
Tregs expressing islet-specific TCRs, functional avidity, 
measured by proliferation in response to peptide, was unex-
pectedly found to negatively correlate with suppression 
of polyclonal islet-specific effector T cells in vitro [33]. 
Furthermore, an in vivo comparison of TCRs with vary-
ing affinity against insulin showed that both high- and low-
affinity Tregs are efficiently recruited to the pancreas but, 
importantly, act via different mediators [55]. Whereas low-
affinity TCRs increased mRNA encoding amphiregulin and 
a subunit of IL-35, which are involved in tissue repair and 
protection against autoimmunity, respectively, high-affinity 
TCRs induced expression of classic Treg functional media-
tors, including CTLA-4, IL-10 and glucocorticoid-induced 
TNFR-related protein (GITR). Cells expressing high-affin-
ity TCRs were also more enriched in the pancreatic lymph 
nodes compared to those with low-affinity TCRs. Neverthe-
less, both high- and low-affinity Tregs were simultaneously 
needed to delay the onset of diabetes in NOD mice, suggest-
ing the need for Treg functional diversity in protection from 
autoimmune diabetes [55]. The efficacy of Tregs with high- 
or low-affinity TCRs may also vary depending on the TCR 
affinity of effector T cells, with a recent study finding that 
low-affinity TCR-Tregs can effectively suppress the infiltra-
tion of low-affinity but not high-affinity effector T cells [56]. 
It is important to note that differences between studies of 
TCR affinity and Tregs in type 1 diabetes may stem from 
differences in models and hence properties of the effector 
T cells being analysed. Overall, a greater understanding of 
how TCR affinity and avidity affects Treg localisation and 
suppressive function is needed to fully harness the potential 
of TCR-Tregs.

Additional factors to consider when designing TCR-Tregs 
for type 1 diabetes therapy are the source and the specificity 
of the TCR. Because type 1 diabetes-relevant conventional 
T cells are more abundant compared with Tregs, these cells 
provide a larger source of potentially effective TCRs. Use 
of TCRs from pathogenic islet-infiltrating conventional T 
cells may also have the benefit of specificity against antigens 
that are appropriately expressed and localised to trigger an 
immune response. As such, studies have most commonly 
used TCRs from islet-reactive conventional  CD4+ T cells 

[33, 49, 50, 55, 56], whereas islet Treg-derived TCRs have 
only been minimally explored [56, 57]. Extensive compari-
sons of the efficacy of Treg- vs conventional T cell-derived 
TCRs have not been carried out. Furthermore, it is not 
known whether targeting certain antigens, such as hybrid 
peptides, could be advantageous, as comparisons of TCR 
antigens are entirely lacking in vivo.

Altogether, TCR-Tregs can be successfully used to treat 
or prevent type 1 diabetes in mouse models. TCR-Treg prod-
ucts have not yet been tested clinically but considering the 
number of well-characterised disease-relevant antigens and 
the close association between incidence and HLA haplo-
type, type 1 diabetes is an obvious disease to target. Work-
ing towards this goal, Abata Therapeutics have recently 
announced the development of a therapeutic candidate, 
ABA-201, consisting of a type 1 diabetes-specific TCR-
Treg [58]. Clinical studies are expected to begin in 2025. 
However, TCR selection (including antigen target, receptor 
source, affinity and HLA restriction) remains a major ques-
tion in the field.

Chimeric antigen receptors An alternative approach to 
conferring antigen specificity to Tregs is via CARs, which 
comprise an extracellular antigen-binding domain linked via 
hinge and transmembrane domains to an intracellular sig-
nalling domain that triggers activation [59]. Unlike TCRs, 
CARs do not need to be MHC-restricted, permitting greater 
flexibility in applicability across patient populations with 
variable HLAs. CARs also offer the advantage of being a 
relatively modular system in which each component can 
be chosen to produce desired effect, an area that is being 
actively explored in Tregs [60, 61]. However, a notable dis-
advantage of CARs is the requirement for cell-surface-bound 
or oligomeric antigen, which is needed to cross-link the 
receptor, meaning that they cannot be used to target intra-
cellular proteins or secreted soluble monomers. The antigen-
binding domain is generally comprised of a single-chain 
variable fragment (scFv) derived from the variable regions 
of an antibody joined by a linker peptide [59]. First genera-
tion CARs primarily used a single CD3ζ signalling domain, 
but later generation CARs add one or more co-stimulatory 
domains derived from receptors such as CD28 and 4-1BB to 
increase potency [59]. The majority of CAR-Tregs in devel-
opment utilise a CD28 co-stimulatory domain alongside the 
primary CD3ζ signalling domain [59]. However, systematic 
comparisons of co-stimulatory domains are still relatively 
limited [60, 61], and new CAR structures allowing cytokine 
signalling, safety switches or logic gating of responses are 
continually emerging [62]. The efficacy of CAR-Tregs has 
been demonstrated in a broad range of pre-clinical disease 
models, including experimental autoimmune encephali-
tis, inflammatory bowel disease, asthma, transplantation, 
GVHD and haemophilia A (reviewed in Tuomela et al [30]). 
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Excitingly, the first human CAR-Tregs designed to target the 
commonly mismatched HLA-A2 are now being tested clini-
cally in kidney transplantation (NCT04817774) and liver 
transplantation (NCT05234190).

In comparison, broad investigation of CAR-Treg use in 
the context of type 1 diabetes is limited, likely due to dif-
ficulties in identifying a suitable and specific CAR target 
(Table 1). One attempt at creating mouse CAR-Tregs spe-
cific for insulin was unable to prevent spontaneous diabetes 
in NOD mice, despite long-term persistence after transfer 
and effective in vitro activity [63]. The cause of this failure 
is unclear but one possibility is antigen availability, since 
the CAR could only be activated by immobilised insulin or 
soluble hexameric insulin. CARs generally rely on greater 
antigen density relative to TCRs due to reduced engagement 
of accessory receptors at the immune synapse [64, 65]. How-
ever, new approaches are emerging that overcome the lack 
of type 1 diabetes-specific CAR targets. Two recent studies 
developed a ‘TCR-like’ CAR derived from an antibody that 
recognises an insulin B peptide presented in the context of 
I-Ag7 MHC class II [66, 67]. NOD Tregs transduced with 
an InsB-I-Ag7-specific CAR proliferated and activated in 
response to tetramer or peptide-pulsed splenocytes/APCs 
[66, 67]. Critically, InsB-I-Ag7 CAR-Tregs also reduced pro-
liferation and IL-2 production by BDC2.5 T cells in vitro, 
demonstrating effective bystander suppression [66]. Upon 
in vivo administration, InsB-I-Ag7 CAR-Tregs prevented 
the development of diabetes induced by BDC2.5 T cells in 
NOD.RAG −/− mice and significantly reduced the develop-
ment of spontaneous diabetes in NOD mice [66] or NOD.
CD28−/− mice [67]. A consideration is that, as with other 
CARs, TCR-like CARs may be more dependent on high 
antigen density compared with TCRs targeting the same 
peptide–MHC complexes [64, 65]. Another consideration 
is where the antigen is encountered, i.e. on APCs and/or beta 
cells. Beta cells themselves can express HLA class I and II 
under inflammatory conditions [68, 69], although likely at 
lower levels than on APCs, and so TCR-like CARs may be 
best suited for APC-based activation. Overall, this new CAR 
design combines the high specificity of TCRs for peptide–
MHC ligands with the powerful and adaptable signalling 
of CARs to produce a cell therapy with highly promising 
results in vivo.

Alternative strategies that avoid the difficulty of choosing 
effective CAR antigens are also available. One approach that 
could be effective in islet transplantation for type 1 diabetes 
is targeting HLA mismatch using HLA-A2-specific CAR-
Tregs, which have already shown efficacy in delaying skin 
graft rejection and xenogeneic GVHD in mice [60, 70–72]. 
In a model of islet transplantation, human HLA-A2-specific 
CAR-Tregs transferred into NOD scid gamma (NSG) mice 
rapidly homed to HLA-A2-expressing islets [73]. Similarly, 
mouse Tregs expressing a modular CAR system, in which 

the CAR binds modified monoclonal antibodies against the 
target of interest rather than the target antigen itself, homed 
to transplanted pancreatic islets expressing a mismatched 
MHC-I molecule, reduced CD8+ T cell infiltration and pro-
longed graft survival [74]. Such a modular system could rel-
atively easily be used to target diverse antigens in individuals 
as an ‘off-the-shelf’ therapy. In addition, CARs that recog-
nise ligands present in inflammatory environments [75] may 
also offer an alternative to type 1 diabetes-specific CARs.

Overall, CAR technology is relatively unexplored in the 
context of type 1 diabetes treatment, particularly due to dif-
ficulties in identifying good targets. However, strategies 
targeting other ligands, such as peptide–MHC, mismatched 
HLA on transplanted islets or inflammatory markers, offer 
a promising alternative. In general, the advantage of TCRs 
in the context of type 1 diabetes is that they can be rela-
tively easily isolated from islet-infiltrating T cells. However, 
if effective CARs can be designed for appropriate antigens, 
they offer far greater design flexibility to hone the functional 
effects and targeting of Tregs.

Supporting Treg survival

Following adoptive transfer of Tregs, it is critical that func-
tion is maintained long-term to prevent relapse of chronic 
disease. However, trials testing adoptive Treg transfer for 
type 1 diabetes treatment have observed rapid decline of 
Treg numbers in the blood after infusion, which may con-
tribute to the poor efficacy [16, 17]. Although antigen-
specific Tregs generally persist far longer than polyclonal 
Tregs in mouse models, numbers still progressively decline 
over time [60]. Understanding why this decrease occurs, and 
whether or not long-term survival is needed, is critical for 
improving the efficacy of Treg therapy.

A potential mechanism for poor Treg persistence is lack 
of sufficient IL-2 signalling. IL-2 has long been recognised 
as a critical cytokine for Treg survival and function, since 
Tregs cannot produce it themselves [76]. Furthermore, 
reduced IL-2 signalling has been identified as a cause of 
Treg dysfunction and apoptosis in individuals with type 1 
diabetes [9, 77]. Therefore, to boost endogenous Treg func-
tion, multiple clinical trials have tested the administration 
of low-dose IL-2 for the treatment of type 1 diabetes [18, 
78–82]. Through the use of very low doses of IL-2, this 
strategy aims to provide Tregs expressing the high-affinity 
IL-2 receptor, CD25, with IL-2 without activating other 
immune cells expressing lower-affinity receptors. However, 
results in type 1 diabetes have been mixed; although most 
trials observe dose-dependent expansion of Treg numbers, 
several trials have also reported expansion of inflammatory 
immune subsets, including  CD8+ T cells, natural killer cells, 
mucosal-associated invariant T cells and neutrophils, which 
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could contribute to type 1 diabetes progression [18, 78–83]. 
A number of alternative strategies have been developed to 
target Tregs more specifically, including IL-2 muteins, ago-
nist antibodies or IL-2-antibody fusions [84–86]. However, 
even with this increased specificity, CD25 can be expressed 
on a range of other immune cells apart from Tregs, which 
could contribute to side effects [87].

To avoid activation of inflammatory immune subsets, 
several gene editing strategies have been taken to enable 
the specific targeting of Tregs (Fig. 1). One such approach 
is the engineering of a synthetic orthogonal receptor–ligand 
pair, in which T cells are transduced with an orthogonal 
IL-2 receptor that can only be activated by an exogenously 
administered synthetic ligand [88]. Transduction of mouse 
Tregs with this orthogonal IL-2 receptor improved in vivo 
proliferation and survival upon ligand administration, result-
ing in long-term heart allograft tolerance [89] and inhibi-
tion of GVHD [90]. Alternatively, Tregs can be transduced 
with a membrane-bound form of IL-2, in which IL-2 is teth-
ered to the membrane by a short linker that only allows cis-
interactions between IL-2 and its receptors on the same cell 
[91]. Co-expression of membrane-bound IL-2 with a CAR 
resulted in enhanced survival in low IL-2 conditions, as well 
as prolonged in vivo survival [91]. Yet another strategy is 
to incorporate the intracellular IL-2 signalling domain into a 
CAR. In conventional T cells, inclusion of STAT3 and STAT5 
binding domains in the cytoplasmic domain of an anti-CD19 
CAR resulted in enhanced in vivo persistence and antitumour 
efficacy [92]. Overall, these approaches could be particularly 
effective in the context of type 1 diabetes, in which IL-2 sig-
nalling is impaired in Tregs, but this has not yet been tested.

In addition to IL-2 signalling, work is ongoing to iden-
tify other pathways that could be targeted to enhance Treg 
survival following infusion. These include strategies to 
ameliorate host responses against allogeneic Tregs through 
MHC knockout to produce an ‘off-the-shelf’ cell therapy 
[93]; overexpression of immunosuppressive cytokines, such 
as IL-10 [94]; or genetic engineering of metabolic path-
ways [95]. Overall, as our understanding of Treg function 
and in vivo survival progresses, it is clear that a myriad of 
other strategies will continue to emerge with the potential to 
enhance therapeutic efficacy.

Conclusion and future perspective

As a disease driven by T cell-mediated inflammation and cytotox-
icity, type 1 diabetes represents a clear opportunity for application 
of adoptive Treg therapy. Polyclonal Treg therapy has already 
been proven to be safe and well-tolerated in the context of type 
1 diabetes, but efficacy remains unclear. As such, new genetic 
engineering strategies are emerging to enhance Treg phenotype 
through FOXP3 engineering, antigen specificity through TCRs 

and CARs, and survival through targeting the IL-2 signalling 
pathway. Since the first patients have now received CAR-Tregs 
in the context of transplantation (NCT04817774), it is likely that 
these therapies will begin to reach clinical trial in the context of 
type 1 diabetes as well. Indeed, the ABA-201 TCR-Treg product 
is expected to reach clinical trial by 2025 [58].

As genetic engineering strategies progress, more attention 
will be needed in combining Treg therapy with complementary 
treatment strategies, such as islet replacement, beta cell protec-
tive treatments or other immunomodulatory therapies. Notably, 
as the anti-CD3 therapy, teplizumab, has achieved United States 
Food and Drug Administration (FDA) approval for recent-onset 
type 1 diabetes, understanding its interaction with Treg thera-
pies is critical. A study in NOD mice showed that anti-CD3 
therapy prior to polyclonal Treg administration did not enhance 
donor Treg engraftment and no additive or synergistic efficacy 
was observed in vivo, but engraftment could be improved using 
cyclophosphamide prior to Treg injection [96]. Investigation of 
anti-CD3 therapy with antigen-specific Treg administration has 
not been carried out. In addition, stem cell-derived islets offer 
an opportunity to genetically tailor both islet cells and Tregs for 
synergistic function through, for example, expression of syn-
thetic CAR ligands, co-stimulatory molecules or cytokines to 
support Treg suppressive function.

Overall, the progress made in the last two decades has been 
rapid, from the identification of Tregs to the development of 
engineered antigen-specific cells capable of preventing auto-
immune diabetes in mice. Together, these advancements rep-
resent significant progress in the process of developing a cure 
for type 1 diabetes.
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of the figure for download available  at https:// doi. org/ 10. 1007/ 
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