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Abstract
Aim/hypothesis The peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α) plays a critical role in the main-
tenance of glucose, lipid and energy homeostasis by orchestrating metabolic programs in multiple tissues in response to 
environmental cues. In skeletal muscles, PGC-1α dysregulation has been associated with insulin resistance and type 2 diabetes 
but the underlying mechanisms have remained elusive. This research aims to understand the role of TET3, a member of the 
ten-eleven translocation (TET) family dioxygenases, in PGC-1α dysregulation in skeletal muscles in obesity and diabetes.
Methods TET expression levels in skeletal muscles were analysed in humans with or without type 2 diabetes, as well as in 
mouse models of high-fat diet (HFD)-induced or genetically induced (ob/ob) obesity/diabetes. Muscle-specific Tet3 knockout 
(mKD) mice were generated to study TET3’s role in muscle insulin sensitivity. Genome-wide expression profiling (RNA-seq) of 
muscle tissues from wild-type (WT) and mKD mice was performed to mine deeper insights into TET3-mediated regulation of 
muscle insulin sensitivity. The correlation between PGC-1α and TET3 expression levels was investigated using muscle tissues 
and in vitro-derived myotubes. PGC-1α phosphorylation and degradation were analysed using in vitro assays.
Results TET3 expression was elevated in skeletal muscles of humans with type 2 diabetes and in HFD-fed and ob/ob 
mice compared with healthy controls. mKD mice exhibited enhanced glucose tolerance, insulin sensitivity and resilience 
to HFD-induced insulin resistance. Pathway analysis of RNA-seq identified ‘Mitochondrial Function’ and ‘PPARα Path-
way’ to be among the top biological processes regulated by TET3. We observed higher PGC-1α levels (~25%) in muscles 
of mKD mice vs WT mice, and lower PGC-1α protein levels (~25–60%) in HFD-fed or ob/ob mice compared with their 
control counterparts. In human and murine myotubes, increased PGC-1α levels following TET3 knockdown contributed to 
improved mitochondrial respiration and insulin sensitivity. TET3 formed a complex with PGC-1α and interfered with its 
phosphorylation, leading to its destabilisation.
Conclusions/interpretation Our results demonstrate an essential role for TET3 in the regulation of skeletal muscle insulin 
sensitivity and suggest that TET3 may be used as a potential therapeutic target for the metabolic syndrome.
Data availability Sequences are available from the Gene Expression Omnibus (https:// www. ncbi. nlm. nih. gov/ geo/) with 
accession number of GSE224042.
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Introduction

The hallmark of type 2 diabetes is persistent hyperglycaemia 
resulting from a combination of peripheral insulin resistance 
and inappropriate secretion of insulin and glucagon from the 
pancreas [1]. Chronic hyperglycaemia in combination with 
other metabolic aberrations causes damage to organs and 
blood vessels and substantially increases the risk for various 
complications, leading to premature disability and death [1, 
2]. Skeletal muscle is the major tissue responsible for insulin-
stimulated glucose disposal and muscle insulin resistance is 
a critical component in the pathogenesis of type 2 diabetes 
[3–5]. While the exact causes of muscle insulin resistance 
remain incompletely understood, available literature points to 
dysregulation of peroxisome proliferator-activated receptor-γ 
coactivator α (PGC-1α) as an important mechanism. As a 
transcriptional coactivator, PGC-1α plays a critical role in 
the maintenance of glucose, lipid and energy homeostasis by 
orchestrating metabolic programs in response to numerous 
environmental stimuli (e.g. nutrients, temperature, exercise) 
in a tissue-specific manner [6, 7]. Highly expressed in skel-
etal muscle, PGC-1α has been implicated in the regulation of 
energy metabolism, myofibre composition, skeletal muscle 
mass, angiogenesis and neuromuscular junction remodelling 
[7–9]. The best studied role of PGC-1α in myocytes is its abil-
ity to powerfully drive the transcriptional program of mito-
chondrial biogenesis, respiration and fatty acid β-oxidation 
through co-ordinately activating a wide variety of transcrip-
tion factors including nuclear respiratory factors, oestrogen 
related receptors, and peroxisome proliferator-activated 

receptor (PPAR) family members [7, 8, 10]. An additional 
role of PGC-1α is to promote fatty acid uptake and lipid bio-
synthesis by upregulating a set of genes involved in these pro-
cesses. Given the implication of myocyte overload of lipid/
intermediate lipid metabolites in causing insulin resistance, 
a fine balance between the two actions of PGC-1α (fatty acid 
uptake/lipid biosynthesis vs fatty acid oxidation) is critical 
to metabolic health. Indeed, supraphysiological muscle over-
expression of PGC-1α paradoxically induces intramuscular 
lipid accumulation and insulin resistance in transgenic mice 
[11, 12], whereas modest increases (~25%) in PGC-1α pro-
tein abundance in muscle promote insulin sensitisation [9, 
13–15]. Importantly, repression of the PGC-1α-dependent 
mitochondrial program has long been documented in skeletal 
muscles of individuals with type 2 diabetes, and PGC-1α dys-
regulation and hence mitochondrial insufficiency are widely 
acknowledged contributors to muscle insulin resistance [9, 
16–19]. However, the causes of PGC-1α dysregulation have 
remained elusive.

The ten-eleven translocation (TET) family of dioxyge-
nases (TET1, TET2 and TET3) regulate gene expression by 
oxidising methylated cytosine (5mC) to 5-hydroxymethyl-
cytosine (5hmC) and further oxidised derivatives, leading to 
DNA demethylation [20, 21]. TET-induced epigenetic regu-
lation can also occur in an enzymatic activity-independent 
manner [22–28]. Despite the importance of TETs in develop-
ment, cancer, stem cells and immunity [20, 24, 25, 29–33], 
their roles in energy metabolism have just begun to be rec-
ognised, as exemplified by a few recent publications [27, 28, 
34–36]. We were the first to report that TET3 expression is 
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increased in the livers of humans with type 2 diabetes and 
in mouse models of type 2 diabetes, contributing to hyper-
glycaemia [34]. Mechanistically, TET3 induces promoter 
demethylation of the transcription factor, hepatocyte nuclear 
factor 4α (HNF4α), promoting hepatic glucose production 
[34]. We later reported that the hepatic TET3/HNF4A regula-
tory pathway underlies the therapeutic effects of metformin 
[35]. Recently, a role for TETs in adipose tissues in energy 
expenditure has also been uncovered. In mouse adipocytes, 
it was shown that TET1 coordinates with histone deacety-
lase 1 (HDAC1) to epigenetically suppress thermogenic 
gene transcription and that adipocyte-specific Tet1 knockout 
in mice increases energy expenditure and protects against 
diet-induced obesity and insulin resistance [27]. Likewise, 
adipose-specific ablation of all three Tet genes enhances 
β-adrenergic responses, increases energy expenditure and 
protects against obesity [28]. Mechanistically, TETs sup-
press the transcription of β3-adrenergic receptor by recruit-
ing histone deacetylases to its promoter [28]. Further, we 
have recently documented that CRISPR-mediated, agouti-
related protein (AgRP) neuron-specific Tet3 ablation induces 
hyperphagia, systemic insulin resistance, obesity and type 2 
diabetes [36]. Mechanistically, we reported a dynamic asso-
ciation of TET3 with the Agrp promoter in response to leptin 
signalling that induces 5hmC modification and association 
of a chromatin-modifying complex, leading to transcription 
inhibition of Agrp. Importantly, this regulation occurs both in 
mouse models and human cells [36]. In the current work we 
report that TET3 regulates skeletal muscle insulin sensitivity 
through a novel mechanism of action.

Methods

Animals All animal work was approved by the Yale Uni-
versity Institutional Animal Care and Use Committee. All 
mice used in this report were female. Mice were housed at 
22–24°C under a 12 h light–dark cycle and were fed with 
regular chow (RC) (Harlan Teklad no. 2018, IN, USA; 18% 
energy from fat) or high-fat diet (HFD) (Research Diets, 
NJ, USA, D12451; 45% energy from fat); water was pro-
vided ad libitum. C57BL/6J (Jax, CT, USA, 000664), HAS-
Cre79 (Jax, 006149) and Lepob/ob (Jax, 000632) mice were 
purchased from the Jackson Laboratory. The Tet3fl/fl mice 
were generous gifts from A. Rao from La Jolla Institute for 
Immunology (CA, USA). The muscle-specific Tet3 knock-
out (mKD) mice were created by crossing Tet3fl/fl mice 
with mice expressing Cre recombinase under the control of 
human α skeletal muscle actin (HSA) promoter (HSA-Cre79 
mice). TET3 floxed littermates (wild-type [WT]) were used 
as controls. Randomisation was not feasible during group 
assignment, but results were analysed in a blinded manner 
whenever possible. Data were not included if values were 

excluded by outlier test. For information on animal num-
bers, refer to figure legends. Before experiments, mice were 
allowed to acclimate for at least 7 days in our animal facility.

Body composition and indirect calorimetry analyses Body 
composition was assessed by MRI (EcoMRI; Echo Medical 
Systems, TX, USA). Food intake, energy expenditure and 
locomotor activity were measured using an indirect calo-
rimetry chamber (TSE Systems, Germany).

GTT and ITT The GTT and ITT were conducted as previ-
ously described [35]. For the GTT, following a 14 h over-
night fast, each mouse received an i.p. injection of 2 g/kg 
body weight glucose (Sigma-Aldrich, MO, USA, G5767) in 
sterile saline (154 mmol/l NaCl). Blood glucose concentra-
tions were measured using Contour next blood glucose meter 
(Ascensia Diabetes Care, NJ, USA) via tail vein bleeding 
at the indicated time points after injection. The ITT was 
performed in ad libitum fed mice. Each mouse received an 
i.p. injection of insulin, 1 U/kg (Humulin R; Eli Lilly, MA, 
USA). Blood glucose concentrations were measured using 
Contour next blood glucose via tail vein bleeding at the indi-
cated time points after injection.

Hyperinsulinaemic–euglycaemic clamp studies The hyper-
insulinaemic–euglycaemic clamp studies were performed 
using previously described methods [34]. Briefly, mice at the 
age of 12 weeks were catheterised in jugular veins with poly-
ethylene catheters under deep anaesthesia. Mice were singly 
housed for a 4 day recovery period after surgery. The clamp 
experiments were performed using conscious and unrestrained 
mice after 16 h overnight fasting. The protocol consisted of a 
120 min basal period (t=−120–0 min) followed by a 115 min 
clamp period (t=0–115 min). [3-3H]Glucose (185,000 Bq; 
Perkin Elmer, MA, USA) was given at t=−120 min followed 
by a 1850 Bq/min infusion for 2 h. During the basal period, 
at t=−15 min and t=−5 min, blood samples were taken for 
the assessment of basal glucose level and glucose turnover. 
The clamp period was begun at t=0 min with primed and 
continuous infusion of human insulin (8 mU/kg bolus fol-
lowed by a rate of 2.5 mU  kg–1  min–1; Humulin R; Eli Lilly). 
Blood glucose was measured by glucometer (Breeze 2; Bayer 
HealthCare, NJ, USA) at 10 min intervals, and 30% glucose 
was infused at a variable rate in order to maintain euglycae-
mic levels (6.1–7.2 mmol/l). Blood samples were collected 
every 10 min from t=70 min to t=115 min and processed to 
determine glucose specific activity. Following collection of 
the final blood sample, the mice were euthanised and tissues 
were harvested, frozen in liquid nitrogen and stored at −80°C 
until later use.

Myoblast culture and differentiation Undifferentiated mouse 
C2C12 myoblasts (Sigma-Aldrich, 91031101-iVL) were 
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maintained in growth medium (DMEM [Gibco, NY, USA, 
11965-092] supplemented with 10% (vol./vol.) FBS, heat 
inactivated, 1% (vol./vol.) penicillin/streptomycin, 1% (vol./
vol.) l-glutamine and 1 mmol/l sodium pyruvate). Cells were 
authenticated and free of mycoplasma. To prepare for dif-
ferentiation, cells were seeded at a density of 2.0×104 cells/
well in growth medium in 24-well plates. Differentiation 
was initiated 2 days later when cells became confluent by 
replacing growth medium with differentiation medium con-
taining 2% horse serum (16050-130) in place of 10% FBS. 
The medium was changed every other day until transfection, 
which was performed on day 4 or 5 after initiation of differ-
entiation. Cryopreserved primary human skeletal myoblasts 
(HSkMs) (Thermo Fisher Scientific, MA, USA, A11440) 
were purchased. To prepare for differentiation, cells were 
thawed in Gibco HSkM Differentiation Medium (DMEM 
Basal Medium [11885-084] supplemented with 2% horse 
serum) and seeded in a 24-well plate at a density of 2.4×105 
cells/well in the differentiation medium. Cells were incu-
bated in a tissue culture incubator for 48 h to allow rapid 
differentiation, followed by siRNA transfection.

siRNA transfection To prepare siRNA transfection solution 
for each well of cells in a 24-well plate, 20 pmol of non-
targeting control siRNA (NT siRNA) (Ambion, CT, USA, 
AM4636), siRNA specific for mouse Tet3 (Tet3 siRNA; 
Ambion, 4390815/s101483), mouse Pgc1a (Pgc1a siRNA; 
Ambion, 4390771/n253420), human TET3 (TET3 siRNA; 
Ambion, 4392420/s47239) or human PGC1A (PGC1A 
siRNA; Ambion, 4392420/s21394) was mixed with 100 μl 
of OPTI-MEM (Gibco, 31985-070) by gentle pipetting. In 
parallel, 6 μl of Lipofectamine RNAiMAX (Invitrogen, MA, 
USA, 13778-150) was mixed with 100 μl of OPTI-MEM by 
gentle pipetting, then the two were combined. Following 5 
min of incubation at room temperature, the resulting 200 μl of 
transfection solution was added to each well of cells. For treat-
ment with NT siRNA alone, 20 pmol of NT siRNA was used 
for each well of cells. For treatment with TET3 siRNA alone, 
10 pmol of NT siRNA and 10 pmol of TET3 siRNA (or Tet3 
siRNA) were used for each well of cells. For TET3/PGC-1α 
double knockdown, 10 pmol of TET3 siRNA (or Tet3 siRNA) 
and 10 pmol of PGC1A siRNA (or Pgc1a siRNA) were used 
for each well of cells. Therefore, the total amount of siRNAs 
for each well of cells was 20 pmol. After 12 h of incubation 
at 37°C in a 5% humidified  CO2 tissue culture incubator, 300 
μl of medium was added and incubation was continued for an 
additional 24 or 48 h until further analyses.

PGC‑1α protein stability assay C2C12 myoblasts were trans-
fected with NT siRNA or Tet3 siRNA as described above 
for 48 h, followed by addition of cycloheximide (CHX) 
(Cell Signaling Technology, MA, USA 2112) at a final 

concentration of 50 μg/ml. Proteins were isolated at 0, 15, 30 
and 45 min later and analysed by western blotting using anti-
PGC-1α (dilution 1:1000; Proteintech, IL, USA, 66369-1-Ig) 
and horseradish peroxide (HRP)-conjugated anti-GAPDH 
(dilution 1:5000; Proteintech, HRP-60004).

Western blot analysis To extract proteins from cultured 
cells, myoblasts or myotubes were homogenised in  situ 
using a pipette tip in 2 × SDS sample buffer with 10% 
β-mercaptoethanol at room temperature in less than 5 s fol-
lowed by heating at 100°C for 5 min with occasional vortex. 
To extract proteins from muscle tissues, frozen tissue samples 
(~50 mg) were homogenised in 200 μl of tissue lysis buffer 
(15% SDS, 75 mmol/l Tris HCl, pH 7.4, 1× protease inhibitor 
cocktail [Thermo, 78438], 1× phosphatase inhibitor cocktail 
[Thermo, 78427], 5% β-mercaptoethanol) using a BeadBug6 
Microtube homogeniser (Benchmark) set at speed 3600, 20 
s on and 20 s off for six cycles. The lysate was cooled down 
on ice for 10 min, followed by centrifugation at 12,000 g at 
4°C for 7 min to remove insoluble materials. The superna-
tant fraction was transferred to a new tube and glycerol (final 
concentration 20%) and bromophenol (for tracking purpose 
during gel running) were added. Samples were then heated at 
100°C for 5 min with occasional vortex, aliquoted, and stored 
at −80°C until use. Tissue samples were freshly diluted at 1:1 
– 1:3 in 2 × SDS sample buffer before loading. Cell and tissue 
samples were loaded at 5–10 μl per well onto 4–15% gradient 
SDS gels (Bio-Rad), followed by western blot analysis. The 
antibodies used were anti-TET3 (for mouse TET3; dilution 
1:1000; Active motif, CA, USA, 61395), anti-TET3 (for human 
TET3; dilution 1:1000; GeneTex, CA, USA, GTX121453), 
anti-PGC-1α (dilution 1:1000; Proteintech, 66369-1-Ig), 
anti-phospho-Ser265 (dilution 1:1000), anti-phospho-Thr298 
(dilution 1:1000), anti-TET2 (dilution 1:1000, Proteintech, 
21207-1-AP) and HRP-conjugated anti-GAPDH (dilution 
1:5000; Proteintech, HRP-60004). The secondary antibodies 
were HRP-linked anti-rabbit IgG (dilution 1:10,000; Rockland, 
PA, USA, 611-1322) and HRP-linked anti-mouse IgG (dilution 
1:10,000; Cell Signalling Technology, 7076S).

RNA extraction and real‑time quantitative PCR For cultured 
myoblasts and myotubes, total RNA was extracted using 
PureLink RNA Mini Kit (Ambion, 12183018A). For mus-
cle tissues, total RNA was extracted using RNeasy Fibrous 
Tissue Mini Kit (Qiagen, MD, USA, 74704). cDNAs were 
synthesised using PrimeScript RT Reagent Kit (Invitrogen, 
TAKARA, RR037A) in a 20 μl reaction containing 0.2–0.5 
μg of total RNA. Real-time quantitative PCR (RT-qPCR) 
was performed in a 15 μl reaction containing 0.5–1 μl of 
cDNA using iQSYBRGreen (Bio-Rad, CA, USA) in a Bio-
Rad iCycler. PCR was performed by initial denaturation 
at 95°C for 5 min, followed by 40 cycles of 30 s at 95°C, 
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30 s at 60°C and 30 s at 72°C. Specificity was verified by 
melting curve analysis and agarose gel electrophoresis. The 
threshold cycle  (Ct) values of each sample were used in the 
post-PCR data analysis. Gene expression levels were nor-
malised against the following housekeeping genes: β-tubulin 
for muscle tissues and RPLP0 for cultured myoblasts and 
myotubes. Real-time PCR primers are listed in electronic 
supplementary material (ESM) Table 1.

Glucose uptake assay The glucose uptake assay was per-
formed on in vitro differentiated mouse and human myo-
tubes in a 96-well plate using the Glucose Uptake Cell-
Based Assay Kit (Cayman Chemical, MI, USA, catalogue 
no. 600470) according to the manufacturer’s instructions 
with minor modifications. On the day of the assay, culture 
media were replaced with 200 μl of glucose-free DMEM 
(Gibco, catalogue number 11966-025) and incubation was 
carried out for 2 h. Then, the medium was replaced with 100 
μl of new glucose-free DMEM in the presence or absence of 
100 nmol/l of insulin for 15–20 min. Subsequently, 100 μl of 
new glucose-free DMEM containing fluorescent 2-(N-[7-ni-
trobenz-2-oxa-1,3-diazol-4-yl]amino)-2-deoxyglucose at a 
final concentration of 150 μg/ml was added. Incubation was 
carried out in the dark for an additional 15 min in a tissue 
culture incubator. The medium was then removed and the 
myotubes were washed once with 200 μl of ice-cold PBS. 
After adding 100 μl of new ice-cold PBS to the myotubes, 
fluorescent intensity was immediately determined using 
the fluorescent plate reader (FilterMax F3&F5 Multi-Mode 
Microplate Reader; Molecular Devices, CA, USA). Results 
are presented with NT siRNA-transfected myotubes without 
insulin stimulation arbitrarily set as 1.

Seahorse analysis In vitro differentiated mouse and human 
myotubes in 24-well plates were used. Mitochondrial res-
piration analyses of myotubes were performed by the Islet, 
Oxygen consumption, Mass Isotopomer flux Core (IOMIC) 
at Yale using Seahorse XFPro (https:// www. agile nt. com/ en/ 
produ ct/ cell- analy sis/ real- time- cell- metab olic- analy sis/ xf- 
softw are/ seaho rse- wave- pro- softw are- 20075 23).

Immunoprecipitation To prepare antibodies, 50 μl (packed 
volume) of ChIP grade Dynabeads Protein G (Invitrogen, 
Thermo Scientific, 10004D) were washed twice with 1 ml of 
immunoprecipitation buffer (0.5% Triton X-100, 150 mmol/l 
NaCl, 10 mmol/l Tris HCl at pH 7.5, and 10 mmol/l EDTA), 
followed by incubation with 5 μg of rabbit polyclonal 
anti-TET3 (Active Motif, 61395), rabbit polyclonal anti-
PGC-1α (Novus, NBP1-04676) or preimmune rabbit IgG 
in 300 μl of immunoprecipitation buffer at 4°C overnight. 
Antibody-bound beads were pelleted and kept on ice until 
use. To prepare lysate from muscle tissues, PBS-washed 

gastrocnemius muscle (GAS) tissues, freshly isolated from 
mice, were homogenised using a grinding tube in 1 ml of 
freshly prepared gentle lysis buffer (0.5% Triton X-100, 10 
mmol/l NaCl, 10 mmol/l Tris HCl at pH 7.5, 10 mmol/l 
EDTA and 1× protease inhibitor cocktail). After centrifu-
gation at 12,000 g at 4°C for 15 min to remove insoluble 
materials, 5 mol/l of NaCl was added to a final concentra-
tion of 200 mmol/l, and the lysate was transferred to a tube 
containing antibody/preimmune IgG-coated beads (250 μl 
of lysate per immunoprecipitation). Immunoprecipitation 
was carried out at 4°C for 4 h. Following this, beads were 
quickly washed twice with 1 ml of cold immunoprecipitation 
buffer and washed an additional three times by rotating at 
4°C for 5 min each time. After the final wash, residual liquid 
was completely removed and the beads were eluted with 16 
μl of 2 × SDS buffer (containing 1× phosphatase inhibitor 
cocktail and 1× protease inhibitor cocktail) at 100°C for 5 
min. Eluant was loaded (10 μl per gel well) onto a 4–15% 
gradient SDS gel (Bio-Rad, 456-8086). For western blot 
analysis, anti-TET3 (Active Motif, 61395) and anti-PGC-1α 
(Novus, NBP1-04676) were used. The secondary antibodies 
used were Rabbit IgG TrueBlot (1:1000, Rockland, 18-8816-
33). These unique HRP-conjugated monoclonal secondary 
antibodies enable detection of immunoblotted target pro-
teins without hindrance by interfering immunoprecipitating 
immunoglobulin heavy and light chains.

RNA‑Seq and data analysis Total RNAs were extracted 
from GAS tissues of 14-week-old RC-fed WT and mKD 
mice  using RNeasy Fibrous Tissue Mini Kit (Qiagen, 
74704). RNA-Seq library preparation and sequencing were 
conducted at Yale Stem Cell Center Genomics Core facil-
ity through poly A enrichment (lllumina TruSeq Stranded 
mRNA Library Prep Kit). Differential expression analysis 
between two different groups was performed using Partek 
Flow software, version 9.0.20.0622 (Partek, St Louis, MO, 
USA; https:// www. partek. com/ partek- flow/). Genes with 
a false discovery rate (FDR) below 0.05 and absolute fold 
change over 1.0 were analysed with Ingenuity Pathway Anal-
ysis using IPA software (Qiagen). Sequences are available 
from the Gene Expression Omnibus (https:// www. ncbi. nlm. 
nih. gov/ geo/) with accession number GSE224042.

Statistical analysis The number of independent experiments 
and the statistical analysis for each figure are indicated in the 
legends. All statistical analyses (except RNA-seq which was 
performed using DESeq2 software) were performed using 
GraphPad Prism version 8 for Windows (GraphPad Software, 
La Jolla California USA; www. graph pad. com) and are pre-
sented as mean ± SEM. Two-tailed Student’s t tests (or as 
otherwise indicated) were used to compare means between 
groups. p<0.05 was considered significant.

https://www.agilent.com/en/product/cell-analysis/real-time-cell-metabolic-analysis/xf-software/seahorse-wave-pro-software-2007523
https://www.agilent.com/en/product/cell-analysis/real-time-cell-metabolic-analysis/xf-software/seahorse-wave-pro-software-2007523
https://www.agilent.com/en/product/cell-analysis/real-time-cell-metabolic-analysis/xf-software/seahorse-wave-pro-software-2007523
https://www.partek.com/partek-flow/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.graphpad.com
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Results

TET3 expression is elevated in skeletal muscles of humans and 
mice with diabetes We performed data mining on publicly 
available datasets (Gene Expression Omnibus). The expres-
sion of TET3 (but not TET1 and TET2) mRNA was signifi-
cantly increased in skeletal muscle tissues of humans with 
diabetes as compared with non-diabetic control counterparts 
(Fig. 1a,b) [37, 38]. Increased TET3 expression was also 
detected in myocytes from individuals with diabetes (Fig. 1c) 
[39]. Next, we asked whether muscle TET3 expression would 
change in mice with obesity and diabetes. Thus, we subjected 
mice to HFD feeding for 12 weeks, starting at the age of 6 
weeks. Age-matched mice fed RC were used as a control. 
Compared with control mice, the HFD-fed mice developed 
obesity and impaired glucose metabolism, as judged by a 
significant increase in body weight and fat mass accompanied 
by a decrease in lean body mass and an increase in fasting 
glucose level (ESM Fig. 1). To assess TET3 expression, GAS 
muscle, composed of both slow-twitch type I oxidative and 
fast-twitch type II glycolytic fibres, was isolated, followed by 
qPCR and immunoblotting analyses. TET3 expression was 
significantly increased in muscle of HFD-fed mice as com-
pared with RC-fed mice, at both the mRNA and protein level 
(Fig. 1d). The specificity of TET3 antibody has been previ-
ously validated [36, 40, 41]. Similar observations were made 
in ob/ob mice, a genetic mouse model of obesity and type 2 
diabetes (Fig. 1e). The strong positive correlation between 
obesity/diabetes and increased muscle TET3 expression in 
both humans and mice suggests a role for TET3 in regulation 
of muscle insulin sensitivity.

Muscle‑specific TET3 knockdown enhances insulin sensi‑
tivity To determine whether TET3 regulates muscle insu-
lin sensitivity, we created mice with muscle-specific Tet3 
knockout (mKD) by breeding TET3 floxed mice (Tet3fl/fl) 
with transgenic mice (HSA-Cre79) expressing Cre recom-
binase under the control of HSA promoter, which has been 
shown to enable muscle-specific expression of transgenes 
[42, 43]. The WT TET3 floxed littermates were used as 
controls.

Muscle TET3 expression was reduced by ~50% at the 
mRNA level (Fig. 2a) and by ~25% at the protein level 
(Fig. 2b) in mKD as compared with WT littermates. The 
residual expression of TET3 in muscle extracts could be 
attributed to an incomplete deletion of the floxed allele in 
a fraction of myocytes and/or to the presence of other cell 
types in the tissue [44]. To exclude the potential for func-
tional compensation of TET3 knockdown, we also exam-
ined the expression of other TET family isoforms. While 
TET1 expression in skeletal muscles was negligible, TET2 
expression was abundant and was not altered by TET3 dele-
tion (ESM Fig. 2). Total body weight, fat mass and lean 
body mass were similar when comparing mKD mice with 
WT littermates (ESM Fig. 3a,b) and indirect calorimetry 
experiments showed no differences in food intake, energy 
expenditure or locomotion (ESM Fig. 3c). However, when 
subjected to a GTT, the mKD mice showed an enhanced glu-
cose tolerance as compared with WT littermates (Fig. 2c). 
To determine the cause of alterations in blood glucose 
more directly, hyperinsulinaemic–euglycaemic clamp stud-
ies were performed. Compared with WT littermates, the 
mKD mice showed significantly higher glucose infusion 
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rate required to maintain euglycaemia (Fig. 2d,e), reflecting 
increased whole-body insulin sensitivity. This was not due 
to increased insulin-stimulated suppression of endogenous 
glucose production (Fig. 2f) but was due to increased insu-
lin-stimulated glucose uptake into skeletal muscle (Fig. 2g). 
Collectively, these results demonstrate that muscle-specific 

TET3 knockdown increases muscle and whole-body insulin 
sensitivity.

mKD mice are resistant to diet‑induced insulin resist‑
ance mKD and WT mice were subjected to HFD for 10 
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Fig. 2  Muscle TET3 knockdown enhances insulin sensitivity. (a) 
qPCR of Tet3 mRNA in GAS from WT and mKD mice at the age 
of 12 weeks. n=5 mice for each genotype. (b) Immunoblot of TET3 
protein in GAS from WT and mKD mice at the age of 12 weeks. 
Each lane represents an individual mouse, with TET3 protein quanti-
fication shown. (c) GTT following 14 h overnight fasting of WT and 
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Hyperinsulinaemic–euglycaemic clamp studies from WT and mKD 
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for 10 weeks. (i, j) Results of GTT (i) and ITT (j) of WT (n=6) and 
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glucose production; EWAT, epididymis white adipose tissue; GIR, 
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weeks, starting at the age of 6 weeks. The mKD mice gained 
less body fat than WT mice (Fig. 2h), with no difference in 
lean mass between the groups (data not shown). In addition, 
mKD mice were more glucose tolerant and had a better insu-
lin sensitivity (Fig. 2i,j). These results further support the 
importance of muscle TET3 in modulation of whole-body 
glucose homeostasis.

TET3 affects mitochondrial pathway gene expression To 
gain a mechanistic insight into TET3-mediated regulation 
of muscle insulin sensitivity, we performed genome-wide 
expression profiling (RNA-seq) on RNA isolated from GAS 
muscles of mKD and WT littermates fed on RC. We per-
formed Ingenuity Pathway Analysis on our RNA-seq data, 
using a cut-off of 1.2-fold change (p<0.05) in gene expres-
sion. We acknowledge that many common, complex disor-
ders are characterised by modest but coordinated changes in 
expression of multiple genes of a biological pathway. Indeed, 
Gene Set Enrichment Analysis (GSEA) was previously used 
to successfully identify a subset of genes involved in oxi-
dative phosphorylation whose expression was co-ordinately 
downregulated (20–50%) in muscles of humans with type 
2 diabetes [18]. Importantly, this set of genes are also tar-
gets of PGC-1α, underscoring the long-standing notion of 
repression of the PGC-1α-dependent mitochondrial program 
in muscles of diabetic individuals [9, 16–19]. Our RNA-seq 
studies revealed profound gene expression changes induced 
by muscle Tet3 knockout as compared with controls (ESM 
Fig. 4a and ESM Table 2). Pathway analysis identified ‘Mito-
chondrial Function’ and the ‘PPARα pathway’ to be among 
the top biological processes affected by TET3 (ESM Fig. 4b). 
By examining specifically how TET3 influenced the expres-
sion of genes in the mitochondrial pathway, we noticed a set 
of 31 mitochondrial respiration genes that were co-ordinately 
upregulated by at least 1.2-fold (p<0.05) in mKD vs WT 
mice (ESM Fig. 4c). As PGC-1α is a master regulator of 
mitochondrial biogenesis and function, we hypothesised that 
PGC-1α might be an important downstream target of TET3.

TET3 post‑transcriptionally affects PGC‑1α expression As a 
crucial metabolic node, PGC-1α is subjected to both tran-
scriptional and post-transcriptional regulation [45–47]. 
Our RNA-seq analysis did not detect a significant change 
in PGC-1α expression at the mRNA level in muscles of 
mKD vs WT mice (ESM Table 2). However, a change at the 
protein level could not be excluded. Thus, RNA and pro-
tein were isolated from muscles of mKD and WT mice and 
analysed. Consistent with our RNA-seq data, no significant 
change was detected in Pgc1a (also known as Ppargc1a) 
mRNA in muscles of mKD vs WT mice (Fig. 3a). How-
ever, there was a modest (~25%) but significant increase in 
PGC-1α protein in mKD mice (Fig. 3b). These results are 
in line with previous reports that physiologically relevant 
increases (~25%) in PGC-1α protein enhance muscle insu-
lin sensitivity [9, 13–15], given that mKD mice also show 
increased insulin sensitivity (Fig. 2). Importantly, when 
muscles from mice were examined, we observed a ~25% and 
~60% decrease in PGC-1α protein in HFD- vs RC-fed and 
ob/ob vs control mice, respectively, with no changes at the 
mRNA level (Fig. 3c–f). Collectively, our results suggested 
a post-transcriptional regulation of PGC-1α expression by 
TET3 in myocytes.

TET3 affects mitochondrial  respiration and insu‑
lin sensitivity in myocytes There is substantial evi-
dence from human and animal studies that mitochon-
drial respiration is intrinsically coupled to muscle 
insulin sensitivity [48]. Notably, a ~25% increase of 
PGC-1α protein in muscle promotes insulin-sensi-
tising effects including enhanced mitochondrial res-
piration and insulin-stimulated glucose uptake [9, 
13–15, 18]. Our studies revealed that mKD mice 
exhibit increased insulin sensitivity (Fig.  2) with a 
concomitant increase in PGC-1α protein (Fig.  3b). 
Given the inverse relationship between TET3 and 
PGC-1α protein levels observed in human and mouse 
skeletal muscle tissues, we asked whether reducing  
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t test). Ctrl, control



732 Diabetologia (2024) 67:724–737

TET3 protein levels in myocytes using siRNAs spe-
cifically targeting TET3 mRNA for degradation would 
elevate PGC-1α protein level thereby enhancing mito-
chondrial respiration and insulin-stimulated glucose 
uptake. The siRNAs (TET3 siRNA and Tet3 siRNA for 
human and mouse genes, respectively) and the control 
non-targeting siRNA (NT siRNA) have been previ-
ously documented [40]. We also asked whether bring-
ing PGC-1α protein levels back down to basal levels 
via siRNA-mediated knockdown in TET3 siRNA-treated 
myocytes would abolish these effects. As expected, the 
PGC-1α protein level increased in human primary myo-
tubes transfected with TET3 siRNA as compared with 
NT siRNA (Fig. 4a). Co-transfection with TET3 siRNA 
and PGC1a siRNA restored PGC-1α protein to basal 
levels (Fig. 4a). While reducing the TET3 protein level 
(which led to increased PGC-1α protein level, Fig. 4a) 
increased mitochondrial maximal respiration and spare 

respiration capacity, co-transfection with TET3 siRNA 
and PGC1a siRNA (which restored PGC-1α protein to 
basal levels) abolished these effects (Fig. 4b). Like-
wise, insulin-stimulated glucose uptake increased by 
1.4- and 3.5-fold in NT siRNA and TET3 siRNA-trans-
fected myotubes, respectively. This insulin-sensitising 
effect of TET3 knockdown was abrogated when PGC-1α 
protein was restored to basal levels (Fig. 4c). Similar 
results were obtained from mouse C2C12 myotubes 
(Fig. 4d–f). Based on these results we conclude that 
TET3 negatively regulates mitochondrial respiration 
and insulin sensitivity in myocytes and that PGC-1α is 
a major mediator of this regulation.

TET3 destabilises PGC‑1α protein Because PGC-1α regulates 
mitochondrial respiration and insulin sensitivity and because 
TET3 knockdown affected these processes without altering 
the mRNA abundance of PGC-1α, we hypothesised that 
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TET3 affects PGC-1α stability. Thus, TET3 was knocked 
down in C2C12 myoblasts (Fig. 5a), followed by time course 
analysis of PGC-1α in the presence of CHX, a protein syn-
thesis inhibitor. PGC-1α became more stable in Tet3 siRNA-
transfected as compared with NT siRNA-transfected cells 
(Fig. 5b). The levels of PGC-1α were reduced to ~80% and 
20% of steady-state levels in Tet3 siRNA-treated and NT 
siRNA-treated cells, respectively (Fig. 5c), suggesting that 
TET3 knockdown leads to stabilisation of PGC-1α.

PGC-1α is known to be targeted for ubiquitin-mediated 
proteolysis [49, 50]. Phosphorylation of PGC-1α at Thr262, 
Ser265 and Thr298 (Fig. 5d) by p38 mitogen-activated 
protein kinase (MAPK) results in an increase in its activ-
ity and protein stability [51–53]. We hypothesised that a 
complex between TET3 and PGC-1α might interfere with 
phosphorylation on these sites, accelerating PGC-1α deg-
radation. First, we tested whether TET3 forms a complex 
with PGC-1α. We prepared lysates from mouse GAS muscle 
tissues, followed by immunoprecipitation using antibodies 
specific for TET3 [34, 54, 55] and PGC-1α, respectively. 
When TET3 was immunoprecipitated using anti-TET3 

antibodies, we observed an enrichment of PGC-1α in the 
TET3-containing protein complex (Fig. 5e). Reciprocally, 
TET3 was readily detected in PGC-1α -containing protein 
complex (Fig. 5e). These results support complex formation 
between TET3 and PGC-1α in myocytes. Next, we analysed 
effects of TET3 knockdown on phosphorylation at S265 and 
T298 in C2C12 myoblasts using antibodies that specifically 
recognise these sites [53]. When TET3 was downregulated 
(Fig. 5a), increased phosphorylation at both sites (pS265 and 
pT298) was observed (Fig. 5f,g). Based on these results, we 
conclude that TET3 induces PGC-1α degradation at least in 
part by inhibiting phosphorylation at both sites.

Discussion

In this work we show that TET3 plays an important role in 
the regulation of skeletal muscle insulin sensitivity. We iden-
tify PGC-1α as a major downstream effector of TET3 in the 
regulation of mitochondrial respiration and insulin-stimulated 

R
el

at
iv

e
pr

ot
ei

n
le

ve
l

36

180
NT siR

NA

Te
t3 

siR
NA

TET3

GAPDH

NT siRNA
Tet3 siRNA

pT298pS265 PGC-1α
0

1

2

3

4 ***

Activation Repression RS RRM

S265 T298
T262

1 180 403 570 797

IB

IP, mouse muscle tissues

TET3

PGC-1α

180

120

10
%

 in
pu

t

Ig
G

An
ti-

TE
T3

An
ti-

PG
C

-1
α

1 2 3 4

a b

d

e f g
NT siRNA Tet3 siRNA

pS265 120

pT298 120

GAPDH 36

PGC-1α 120

CHX (min) 0 15 30 45 0 15 30 45
NT siRNA Tet3 siRNA

GAPDH

PGC-1α

36

120

PG
C

-1
α

pr
ot

ei
n

le
ve

l (
%

)

c

0
20
40
60
80

100
120

Time (min)
0 15 30 45

NT siRNA
Tet3 siRNA

Fig. 5  TET3 interacts with and destabilises PGC-1α. (a, b) C2C12 
myoblasts were transfected with NT siRNA or Tet3 siRNA. After 
48 h, proteins were isolated and TET3 expression was measured 
by immunoblotting (a). To perform time course analysis, CHX was 
added at a final concentration of 50 μg/ml and proteins were har-
vested at the indicated time points, followed by immunoblotting for 
PGC-1α and GAPDH (b). (c) Quantification of (b); the dotted line 
indicates the trendline. (d) Schematic of PGC-1α protein domain 
organisation, showing the activation domain, repression domain, argi-
nine–serine-rich domain (RS) and RNA recognition motif (RRM). 
Numbers represent amino acids. The blue vertical lines represent 

phosphorylation at Thr262, Ser265 and Thr298. Not drawn to scale. 
(e) Mouse GAS tissues were used for immunoprecipitation using pre-
immune IgG, anti-TET3 or anti-PGC-1α. Representative immunob-
lots are shown. (f) C2C12 myoblasts were transfected with NT siRNA 
or Tet3 siRNA as in (a). After 48 h, proteins were isolated and ana-
lysed by immunoblotting using antibodies specific for total PGC-1α 
and PGC-1α phosphorylated at S265 and T298, respectively. (g) 
Quantification of (f). Data are presented as mean ± SEM. *p<0.05, 
**p<0.01 (two-tailed Student’s t test). Data are representative of two 
independent transfection experiments. IB, immunoblotting; IP, immu-
noprecipitation



734 Diabetologia (2024) 67:724–737

glucose uptake in both human and mouse myocytes. PGC-1α 
has previously been shown to be activated and stabilised by 
p38 MAPK phosphorylation at Thr262, Ser265 and Thr298 
[51–53]. We demonstrate that TET3 complexes with PGC-1α 
and prevents its phosphorylation on Ser265 and Thr298, 
thereby accelerating protein degradation. This TET3-mediated 
post-translational regulation of PGC-1α in muscle insulin sen-
sitivity is further supported by our observation that in skeletal 
muscles of humans with type 2 diabetes and mouse models of 
type 2 diabetes, there is an increase in TET3 expression and 
a decrease in PGC-1α protein as compared with non-diabetic 
controls.

Despite extensive studies of TETs in development, stem 
cells, malignancies and immunity [21, 56], their roles in 
metabolic regulation have just begun to be recognised. In 
mouse adipocytes, TET1 was found to act in concert with 
histone deacetylase 1 to epigenetically suppress thermo-
genic gene transcription. Phenotypically, adipocyte-specific 
Tet1 knockout increased energy expenditure and protected 
against diet-induced obesity and insulin resistance [27]. 
Likewise, adipose-specific deletion of all three Tet genes 
in mice enhanced β-adrenergic responses, increased energy 
expenditure, and prevented obesity [28]. In pancreas beta 
cells, eliminating TET2 reduced pathological immune cell 
activation and beta cell killing during type 1 diabetes [57]. 
We reported a chronic increase in TET3 expression in the 
livers of humans and mice with type 2 diabetes and that 
TET3 induced Hnf4a promoter demethylation leading to 
heightened hepatic glucose production and hence hypergly-
caemia [34, 35]. In addition, we documented that CRISPR-
mediated genetic ablation of Tet3 specifically in AgRP 
neurons in the mouse hypothalamus induced hyperphagia, 
systemic insulin resistance, obesity and type 2 diabetes [36]. 
Mechanistically, TET3 deficiency led to AgRP neuron acti-
vation and coordinated upregulation of Agrp, Npy and the 
vesicular γ-aminobutyric acid (GABA) transporter gene 
Slc32a1. Specifically, we demonstrated a dynamic associa-
tion of TET3 with the Agrp promoter in response to leptin 
signalling, which induced 5hmC modification and associa-
tion of a chromatin-modifying complex leading to transcrip-
tion inhibition [36]. In the current manuscript we uncover 
a new role for TET3 in energy homeostasis in yet another 
major metabolic tissue, the skeletal muscle. However, the 
model of action of TET3 in this tissue is completely differ-
ent from that previously defined in other tissues and with 
other TET family members. Instead of regulating target gene 
expression at the epigenetic level, TET3 post-translationally 
targets PGC-1α protein for degradation through inhibiting 
its phosphorylation. Our data support the notion that TET3 
and PGC-1α are in a complex together but do not address 

whether they directly interact with each other. Nor it is clear 
how TET3 inhibits PGC-1α phosphorylation, given that 
TET3 is not a phosphatase. Does PGC-1α contain a bind-
ing motif that supports TET3 association? Does association 
with TET3 lead to altered subcellular localisation of PGC-1α 
such that it cannot be phosphorylated? A clear understand-
ing of the mechanism of action of TET3 in regulation of 
PGC-1α stability warrants future in-depth investigation. An 
additional limitation of our study is that GAPDH is not an 
optimal loading control for skeletal muscle due to the plas-
ticity in the expression of glycolytic pathway genes.

Increased expression of TETs in peripheral metabolic 
organs (i.e. liver, adipose tissue, pancreas and skeletal mus-
cle) appears to have adverse effects on metabolic homeostasis 
[27, 28, 34, 35, 57]. Interestingly, this does not seem to be 
the case in the central nervous system [36], highlighting tis-
sue/cell-specific functions of TETs. Finally, dysregulation of 
PGC-1α has been connected to many human diseases, such 
as Huntington’s disease, amyotrophic lateral sclerosis, heart 
failure, and Duchenne muscular dystrophy [58–63]. Our 
results demonstrating that TET3 regulates PGC-1α may have 
a broader impact on the prevention and treatment of other 
human diseases.
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