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Abstract
Aims/hypothesis  Gestational diabetes mellitus (GDM) is the most common disorder in pregnancy; however, its underlying causes 
remain obscure. This study aimed to investigate the genetic and molecular risk factors contributing to GDM and glycaemic traits.
Methods  We collected non-invasive prenatal test (NIPT) sequencing data along with four glycaemic and 55 biochemical 
measurements from 30,699 pregnant women during a 2 year period at Shenzhen Baoan Women’s and Children’s Hospital 
in China. Genome-wide association studies (GWAS) were conducted between genotypes derived from NIPTs and GDM 
diagnosis, baseline glycaemic levels and glycaemic levels after glucose challenges. In total, 3317 women were diagnosed 
with GDM, while 19,565 served as control participants. The results were replicated using two independent cohorts. 
Additionally, we performed one-sample Mendelian randomisation to explore potential causal associations between the 55 
biochemical measurements and risk of GDM and glycaemic levels.
Results  We identified four genetic loci significantly associated with GDM susceptibility. Among these, MTNR1B exhibited the 
highest significance (rs10830963-G, OR [95% CI] 1.57 [1.45, 1.70], p=4.42×10–29), although its effect on type 2 diabetes was 
modest. Furthermore, we found 31 genetic loci, including 14 novel loci, that were significantly associated with the four glycaemic 
traits. The replication rates of these associations with GDM, fasting plasma glucose levels and 0 h, 1 h and 2 h OGTT glucose 
levels were 4 out of 4, 6 out of 9, 10 out of 11, 5 out of 7 and 4 out of 4, respectively. Mendelian randomisation analysis suggested 
that a genetically regulated higher lymphocytes percentage and lower white blood cell count, neutrophil percentage and absolute 
neutrophil count were associated with elevated glucose levels and an increased risk of GDM.
Conclusions/interpretation  Our findings provide new insights into the genetic basis of GDM and glycaemic traits during 
pregnancy in an East Asian population and highlight the potential role of inflammatory pathways in the aetiology of GDM 
and variations in glycaemic levels.
Data availability  Summary statistics for GDM; fasting plasma glucose; 0 h, 1 h and 2h OGTT; and the 55 biomarkers are 
available in the GWAS Atlas (study accession no.: GVP000001, https://​ngdc.​cncb.​ac.​cn/​gwas/​browse/​GVP00​0001).
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Introduction

Gestational diabetes mellitus (GDM), defined as glucose 
intolerance resulting in hyperglycaemia that begins or is 
first diagnosed in pregnancy, has become the most prevalent 
medical disorder during pregnancy [1]. The global preva-
lence of GDM has significantly increased over the past few 
decades, affecting 16.7% of pregnant women worldwide, 
with an estimated 21 million livebirths affected in 2021 
[2]. In mainland China, GDM prevalence among pregnant 
women is 14.8% (95% CI 12.8%, 16.7%), leading to sub-
stantial healthcare and economic burdens [3]. Recognised 
for its role in the ‘diabetes begetting diabetes’ circle, early 
diagnosis and management of GDM during pregnancy are 
considered crucial strategies to prevent adverse birth out-
comes and reduce the long-term burden of chronic metabolic 
conditions such as type 2 diabetes [4, 5].

Genetic variation significantly influences susceptibility 
to human diseases, providing valuable insights into dis-
ease aetiology and innovative approaches to prevention and 
treatment [6]. However, our understanding of key genes and 
molecular pathways related to GDM onset remains limited 
because of the challenges in collecting extensive genetic 
data and conducting RCTs in pregnant populations. Cur-
rent genome-wide association studies (GWAS) on GDM in 
Asian populations have been constrained to relatively small 

sample sizes, typically in the hundreds or thousands [7]. 
Unlike type 2 diabetes, for which twin studies have estimated 
heritability of 72% [8], the heritability of GDM remains 
unclear. Furthermore, while those with GDM demonstrate 
individual variability in disease severity, as reflected in gly-
caemic levels and medication requirements, there is a dearth 
of knowledge regarding the genetic and molecular factors 
contributing to this phenotypic spectrum.

In this study, we aimed to integrate data from a routine 
pregnancy screening programme in Shenzhen City, China, 
including genetic data obtained through non-invasive 
prenatal testing (NIPT) [9], blood test measurements and 
comprehensive electronic medical records, from a sample 
of 30,699 pregnant women to investigate the genetic and 
molecular risk factors associated with GDM. This is the 
largest GWAS of GDM susceptibility in an Asian pop-
ulation to date, involving 3317 participants with GDM 
(14.5%) and 19,565 control participants without GDM 
(85.5%), and including four quantitative glycaemic traits 
(fasting plasma glucose [FPG] and 0 h, 1 h and 2 h OGTTs 
[OGTT0H, OGTT1H and OGTT2H, respectively]). Addi-
tionally, we explored potential causal associations between 
55 biochemical biomarkers assessed early in the first or 
second trimester during pregnancy screening and GDM 
and glycaemic levels in pregnancy using Mendelian ran-
domisation (MR).
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Methods

Study design and participants  NIPT, a genomic sequenc-
ing technology for identifying fetal trisomy by sequencing 
maternal plasma-free DNA (cfDNA), has been widely used 
in screening programmes in pregnancy since 2011 [10]. In 
our previous study, we established the utility of NIPT data 
for GWAS analysis [9]. In this study, we recruited 30,699 
Chinese pregnant women who visited Shenzhen Baoan 
Women’s and Children’s Hospital (Shenzhen, China) for 
maternity check-ups and received an NIPT test in the first 
or second trimester between 2017 and 2019. The birthplace 
distribution of participants is detailed in the electronic sup-
plementary material (ESM), Table 1, with a predominant 
concentration in southern China. Maternal genotypes were 
inferred from low-depth whole-genome sequencing data 
generated from NIPT using previously described methods 
[9]. Blood tests were conducted to assess 55 biomarkers 
(ESM Table 2) and the FPG level during gestational weeks 
16–18. The remaining three glycaemic traits (OGTT0H, 
OGTT1H and OGTT2H) were assessed during gestational 
weeks 24–28. Physical measurements, including maternal 
age, gestational week, maternal weight, early pregnancy 
BMI and blood pressure, as well as the diagnosis of GDM, 
were obtained through the hospital’s electronic medical 
record system. In the case of multiple records, we used the 
first measurements taken during gestational weeks 13–18. 
Among the 30,699 participants, 7817 participants did not 
have complete records for glucose tests and clinical diag-
nosis and were excluded from the GWAS analysis of GDM. 
Of the remaining participants, 3317 were diagnosed as hav-
ing GDM and 19,565 were included as control participants.

We integrated the genetic data, blood test results and 
medical records to investigate the genetic and molecular 
risk factors underlying the phenotypic spectrum of GDM 
and glycaemic traits. The overall study design is shown in 
Fig. 1.This study received approval from the Institutional 
Review Board of the School of Public Health (Shenzhen), 
Sun Yat-sen University (2021.No.8), and the Institutional 
Board of Shenzhen Baoan Women’s and Children’s Hos-
pital (LLSC2019-07-11-KCW). All study participants pro-
vided written informed consent.

Phenotype definition  After excluding participants with 
pregestational diabetes mellitus, GDM was diagnosed by 
administering a 75 g OGTT during gestational weeks 24–28. 
A participant was diagnosed with GDM if any of the fol-
lowing criteria were met: (1) OGTT0H glucose level ≥5.1 
mmol/l; (2) OGTT1H glucose level ≥10.0 mmol/l; or (3) 
OGTT2H glucose level ≥8.5 mmol/l [11]. Glucose levels 
were measured using an AU(GLU) kit and assayed using 
an AU5800 biochemical analyser (Beckman Coulter, USA).

Statistical analyses  Means and SDs were used to depict the 
basic characteristics of the study participants (ESM Table 3). 
The associations of GDM and the four quantitative glycaemic 
traits (FPG, OGTT0H, OGTT1H and OGTT2H) with the 55 
biomarkers were assessed using multiple regression analyses, 
in which maternal age, maternal BMI and the gestational 
week of the OGTT tests were included as covariates. To 
facilitate the comparison of results, the quantitative depend-
ent and independent variables in the regression analyses 
were normalised using quantile transformation. All statisti-
cal analyses were conducted using R (version 4.0.4, https://​
mirror-​hk.​koddos.​net/​CRAN/, accessed 4 January 2023).

Genotype imputation from NIPT data  Genotype imputa-
tion was performed using STITCH software (version 1.2.7, 
http://​www.​well.​ox.​ac.​uk/​rwdav​ies/​stitch_​2017_​02_​14.​
html, accessed 15 February 2023), as described in our pre-
vious study [9]. Following imputation, we selected variants 
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Fig. 1   Study design, depicting the data sources and analyses per-
formed. We collected NIPT sequencing data, blood test data and 
information from electronic medical records. Subsequently, a GWAS 
was conducted to investigate the associations between NIPT-derived 
genotypes and GDM diagnosis, baseline glycaemic levels and glycae-
mic levels post-glucose challenge. Additionally, one-sample MR anal-
yses to explore potential causal relationships between the biochemi-
cal measurements and the risk of GDM and glycaemic levels were 
carried out. FT4, free thyroxine; GL, globulin; LYM_P, lymphocyte 
percentage; MONO, absolute monocyte count; NEUT, absolute neu-
trophil count; NEUT_P, neutrophil percentage; TC, total cholesterol; 
TG, triglyceride; WBC, white blood cell count. Created with BioRen-
der.com

https://mirror-hk.koddos.net/CRAN/
https://mirror-hk.koddos.net/CRAN/
http://www.well.ox.ac.uk/rwdavies/stitch_2017_02_14.html
http://www.well.ox.ac.uk/rwdavies/stitch_2017_02_14.html
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with an information score >0.4, a minor allele frequency 
(MAF) <0.01 and a Hardy–Weinberg equilibrium p value 
<10−6 for subsequent analysis [9]. The average imputation 
accuracy, evaluated in a subset of 110 participants with 
high-coverage sequencing data (>20×), was 0.89, consist-
ent with previous assessments [9].

Genome‑wide association analysis  Following rigorous 
quality control of the sequencing data, including princi-
pal component analysis and genotype imputation using an 
established protocol [9], we conducted GWAS to examine 
the association of GDM, the four quantitative glycaemic 
traits (FPG, OGTT0H, OGTT1H and OGTT2H) and the 
55 biomarkers with the imputed genotype dosage from 
NIPT, assuming additive genotype effects. The GWAS was 
conducted using a multiple linear regression or logistic 
regression model implemented in PLINK 2.0 [12]. We 
included gestational week, maternal age, maternal BMI 
and the top five principal components to account for popu-
lation stratification as covariates. GWAS summary statis-
tics, including effect size, SE and p value, were used for 
subsequent genome-wide and regional association plots 
and MR analyses. We compiled the Manhattan and quan-
tile–quantile (QQ) plots using an R (version 4.0.4) script 
and generated regional association plots using Locuszoom 
(version 1.4) [13].

To replicate GWAS findings for GDM, FPG, OGTT0H, 
OGTT1H and OGTT2H, we employed two additional 
cohorts: the NIPT PLUS cohort, comprising 4688 inde-
pendent pregnancies with deeper sequencing of mater-
nal plasma-free DNA (ESM Methods: ‘The NIPT PLUS 
cohort’), and the Born in Guangzhou Cohort Study 
(BIGCS) [14], encompassing whole-genome sequenc-
ing and electronic medical records for 1854 unrelated 
pregnancies. As well as individual replication within 
these two independent cohorts, we conducted a meta-
analysis using METAL (release 25 March 2011, http://​
www.​sph.​umich.​edu/​csg/​abeca​sis/​Metal/, accessed 15 
September 2023) and replicated our findings with the 
results of this meta-analysis. Differences in SNP genetic 
effects between our study and the meta-analysis of the 
two independent cohorts were assessed using a hetero-
geneity test integrated into METAL, along with a com-
parison of the direction and significance of effect size 
estimates. Furthermore, we compared the GWAS results 
for FPG and OGTT2H with summary statistics data from 
the MAGIC consortium (https://​www.​magic​inves​tigat​
ors.​org/, accessed 4 March 2023) [15]. Additionally, 
we applied a two-sample t test to examine the different 
genetic effects on baseline glucose levels and glucose 
levels after an OGTT (ESM Methods: ‘Statistical test of 
different genetic effects between two GWAS’).

Genetic correlation  We employed linkage disequilibrium 
(LD) score regression [16] to assess genetic correlations 
between GDM and glycaemic traits in our study and type 
2 diabetes in an East Asian population comprising 77,418 
type 2 diabetes cases and 356,122 controls [17] and a Euro-
pean population comprising 74,124 type 2 diabetes cases 
and 824,006 controls [18]. We also estimated genetic cor-
relations in the female subset of the East Asian population, 
including 27,370 type 2 diabetes cases and 135,055 controls 
[17]. These genetic correlations were estimated using the 
same LD score regression settings employed in heritability 
calculations [19].

Mendelian randomisation analyses  We employed bidirec-
tional MR analyses using two-sample methods within a 
single cohort [20] and the TwoSampleMR package [21] to 
identify potential causal associations between biomarkers 
and both GDM and glycaemic levels. We used genome-
wide complex trait analysis–conditional and joint asso-
ciation analysis (GCTA-COJO) and selected independent 
SNPs with a p value <5×10–8 as genetic instruments [22], 
using high-depth sequencing data consisting of 10,000 
Chinese people as a reference panel [23]. In this analy-
sis, we excluded loci with a MAF <0.01, and the thresh-
old of the LD r2 was set at 0.2 (command of analysis: 
gcta64 –bfile reference_panel_file –cojo-file gwas_file –
cojo—slct –cojo-p 5e-8 --cojo-collinear 0.2 --maf 0.01). 
We restricted valid genetic instruments to those with F 
statistics >10.

To test the independence and restriction exclusion 
assumptions for MR, we conducted pleiotropy and hetero-
geneity tests. We also performed sensitivity analyses using 
alternative MR methods, including MR Egger, simple mode, 
weighted median and weighted mode. Among these meth-
ods, we primarily relied on the inverse variance weighted 
(IVW) method, known for its superior statistical power in 
estimating potential causal associations [24]. We considered 
potential causal estimates as significant when they met a 
Bonferroni-adjusted p value threshold in IVW analysis and 
either showed no evidence of heterogeneity (p≥0.05) and 
horizontal pleiotropy (p≥0.05) or, in the presence of hetero-
geneity or horizontal pleiotropy (p<0.05), a least one of the 
additional estimates from MR Egger, simple mode, weighted 
median or weighted mode was significant (p<0.05). To cal-
culate the power of the MR analyses, we used an online tool 
(http://​cnsge​nomics.​com/​shiny/​mRnd/, accessed 20 Septem-
ber 2023) [25].

To ensure the reliability of the MR results, we conducted 
a meta-analysis using METAL (release 25 March 2011) 
between this study and NIPT PLUS. Subsequently, we per-
formed bidirectional MR analyses on the metadata [21] 
using the TwoSampleMR package [22].

http://www.sph.umich.edu/csg/abecasis/Metal/
http://www.sph.umich.edu/csg/abecasis/Metal/
https://www.magicinvestigators.org/
https://www.magicinvestigators.org/
http://cnsgenomics.com/shiny/mRnd/
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Results

Clinical and epidemiological characteristics of the study 
participants  We recruited 30,699 eligible pregnant women 
between 2017 and 2019. After excluding 163 individuals 
with pregestational diabetes based on clinical diagnoses, 
3317 women (10.8%) were diagnosed with GDM and 19,565 
were included as control participants without diabetes (ESM 
Table 3). Age, weight, BMI and blood pressure exhibited 
significant associations with both GDM and glycaemic lev-
els (ESM Table 4).

We employed multiple regression analysis to examine 
potential associations between specific biomarkers, meas-
ured during early pregnancy screening (16–18 weeks of 
gestation), and GDM, as well as four quantitative glycae-
mic traits measured during pregnancy. GDM and the four 
glycaemic traits (FPG, OGTT0H, OGTT1H and OGTT2H) 
were regressed on 55 pregnancy screening biomarkers cate-
gorised into seven biological categories—routine blood tests 
(n=28), biomarkers for anaemia (n=6), blood lipids (n=2), 
kidney function (n=3), liver function (n=8), thyroid function 
(n=3) and infection (n=5) (ESM Table 2)—adjusting for 
BMI, maternal age and gestational week. Following Bon-
ferroni correction, we found positive associations between 
the onset of GDM and triglyceride, 25-hydroxyvitamin D 
and folic acid levels, haematocrit and red blood cell count, 
while total bile acid and triglyceride levels exhibited posi-
tive associations with FPG and OGTT2H, respectively (ESM 
Fig. 1). Conversely, total bilirubin level, immature granulo-
cyte count and percentage and monocyte absolute value and 
percentage showed negative associations with GDM, and 
monocyte percentage showed a negative association with 
FPG (ESM Fig. 1).

Genetic determinants of GDM and glycaemic traits among 
Chinese pregnant women  To investigate the genetic fac-
tors underlying GDM susceptibility and the distribution 
of the four glycaemic traits, we conducted the following 
GWAS analyses: (1) GDM cases (n=3317) vs controls 
(n=19,565); and (2) linear regression on FPG (n=26,751), 
OGTT0H (n=24,929), OGTT1H (n=24,931) and OGTT2H 
(n=24,931). Our power analysis indicated that we had the 
ability to identify genetic loci with a minimum MAF of 0.01 
and a minimum OR of 1.4, or a minimum MAF of 0.05 
and a minimum OR of 1.2, or a minimum MAF of 0.2 and 
a minimum OR of 1.1 for GDM analysis. For the analy-
sis of the four glycaemic traits, we could detect loci with 
a minimum MAF of 0.01 and an effect size of 0.29 (ESM 
Fig. 2). We estimated the SNP heritability ( h2

g
 ) for GDM 

to be 3.2% (SE 1.9%) and for the four glycaemic traits to 
be between 5.3% and 10.2% (SE 2.2%) (ESM Table 5). We 
found a strong genetic correlation between GDM and type 

2 diabetes in the female subset of the East Asian population 
from Spracklen et al [16] (rg=0.84, SE 0.31, p=0.006), as 
well as between GDM and the total East Asian population 
(rg=0.81, SE 0.24, p=8.0×10–4), but not between GDM and 
the European population from Mahajan et al [17] (rg=0.51, 
SE 0.21, p=0.013) (ESM Table 5). In addition, our study, 
in conjunction with data from the MAGIC consortium [15], 
suggests higher heritability for OGTT2H than FPG (ESM 
Tables 5 and 6).

We identified four genome-wide significant loci asso-
ciated with GDM susceptibility. The most significant 
locus was situated within the intron of the MTNR1B gene 
(lead SNP rs10830963-G, OR [95% CI] 1.57 [1.45, 1.70], 
p=4.42×10–29), while three additional loci were identified 
within the CDKAL1 gene (lead SNP rs7766070-A, intronic 
variant, OR [95% CI] 1.27 [1.18, 1.35], p=8.07×10–12), 
SLC30A8 gene (lead SNP rs13266634-C, missense variant, 
OR [95% CI] 1.29 [1.19, 1.40], p=1.83×10–10) and CPO 
gene (lead SNP rs1597916-C, intronic variant, OR [95% CI] 
1.65 [1.39, 1.97], p=1.98×10–8) (Fig. 2a, Table 1).

All four loci were replicated in the meta-analysis of two 
independent cohorts: the BIGCS birth cohort [14], compris-
ing 289 GDM cases and 1514 controls, and the NIPT PLUS 
cohort, comprising 798 GDM cases and 2782 controls. These 
findings showed consistent effect directions and no statisti-
cally significant differences in the effect estimates between 
our study and the meta-analysis of the independent cohorts 
(phet>0.05) (ESM Table 7). Notably, while rs10830963 
exhibits the most pronounced genetic effect on GDM (OR 
[95% CI] 1.57 [1.45, 1.70], p=4.42×10–29), it does not serve 
as a major genetic determinant for female type 2 diabetes 
(OR [95% CI] 1.05 [1.03, 1.08], p=3.88×10–5) or all type 2 
diabetes (OR [95% CI] 1.04 [1.02, 1.05], p=4.49×10–8) in 
the studied East Asian population [16] (Table 1). This indi-
cates a different genetic aetiology between GDM and type 
2 diabetes, despite their high genetic correlation. Addition-
ally, in a GWAS analysis of all GDM cases (n=3317) when 
comparing those receiving insulin (n=419) with those not 
receiving glucose-lowering medication (n=2898), no signifi-
cant loci were identified (ESM Fig. 3). While further replica-
tion and validation are necessary, these findings suggest that 
genetics may have a limited role in explaining susceptibility 
to insulin medication in people with GDM.

We also identified 31 loci that were significantly associ-
ated with the four glycaemic traits (p<5×10–8), including 
14 newly discovered associations (Fig. 2b–e, ESM Table 8). 
These 31 loci were compared with GWAS data from the meta-
analysis of the NIPT PLUS and BIGCS cohorts for the four 
glycaemic traits, and the NIPT PLUS cohort for FPG. The 
replication rates for FPG, OGTT0H, OGTT1H and OGTT2H 
were 6 out of 9, 10 out of 11, 5 out of 7 and 4 out of 4, respec-
tively, showing a consistent direction of effect and a lack of 
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heterogeneity between our study and the independent cohorts 
(ESM Table 7). Notably, the consistency rates were 6 out of 9 
and 1 out of 4 for the nine and four significant associations for 

FPG and OGTT2H, respectively, using the East Asian sum-
mary statistics from the MAGIC consortium (ESM Table 9). 
A comparison of the genome-wide association analysis for 
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Fig. 2   Manhattan and QQ plots for GDM and the four glycae-
mic traits in pregnancy. GWAS results for (a) GDM, (b) FPG, (c) 
OGTT0H, (d) OGTT1H and (e) OGTT2H. In the Manhattan plots, 
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FPG and OGTT2H between the MAGIC East Asian popula-
tion and our study suggests a lack of power for OGTT2H 
in MAGIC and a potential genetic difference between the 
East Asian population included in MAGIC and the Chinese 
population included in this study (ESM Fig. 4). This analysis 
included several notable discoveries. First, MTNR1B was the 
most significant signal for all of the glycaemic traits, includ-
ing OGTT1H, which was not previously investigated, and 
OGTT2H, for which no MTNR1B association was previously 
reported in either the East Asian or European populations 
[15]. Second, the genetic determinants of FPG (examined 
in the first trimester) and OGTT0H (examined between 24 
and 28 gestational weeks) were highly similar, sharing seven 
significant genetic loci (Fig. 2b,c). Third, despite a similar 
sample size, the genetic determinants of the baseline glycae-
mic level (i.e. FPG and OGTT0H) demonstrated substantial 
differences from the genetic determinants of the glycaemic 
level after a glucose challenge (i.e. OGTT1H and OGTT2H) 
(Fig. 2d,e).

We compared the genetic effects of the FPG lead SNPs on 
OGTT1H and OGTT2H, revealing an inconsistency rate of 7 
out of 9 and 8 out of 9 for OGTT1H and OGTT2H, respec-
tively (ESM Table 10), reflecting the genetic differences in 

fasting glucose levels and glucose levels in response to an 
OGTT. After adjusting for FPG, the principal effector genes 
associated with OGTT1H and OGTT2H remained unaltered, 
implying that these genes are involved in glucose regulation 
and remain unaffected by variations in fasting glucose levels. 
It is noteworthy that MTNR1B influences FPG, OGTT1H 
and OGTT2H at the same time. In addition, CDKAL1 exerts 
an influence on both OGTT1H and OGTT2H glucose lev-
els, while having no impact on FPG. Furthermore, HKDC1 
affects OGTT2H glucose levels without influencing FPG or 
OGTT1H (ESM Fig. 5). Specifically, four loci, including the 
lncRNA gene locus LOC101929710 (lead SNP rs10476553), 
previously known to be associated with BMI, the ABCB11 
(lead SNP rs853774) locus, related to severe cholestatic 
liver disease, the GCK (lead SNP rs730497) locus, associ-
ated with multiple types of diabetes, and the FOXA2 (lead 
SNP rs6048209) locus, linked to MODY, were specifically 
associated with baseline FPG and OGTT0H glucose levels 
but not OGTT1H and OGTT2H glucose levels (Fig. 2c–e, 
ESM Table 8).

Finally, there were several loci that were significantly 
associated with the glycaemic traits (p<5×10–8) but that 
did not contribute to GDM susceptibility, such as the 

Table 1   Comparison of genome-wide significant association signals

BP, base position; Chr, chromosome; EAF, effect allele frequency; T2D, type 2 diabetes

Population Sample size Information 
compared

rs1597916 rs7766070 rs13266634 rs10830963

Chr 2 6 8 11
BP(GRCh38) 206947000 20686342 117172544 92975544
Consequence Intronic Intronic Missense Intronic
Gene CPO CDKAL1 SLC30A8 MTNR1B
Effect allele C A C G
Other allele G C T C

GDM (this study) Case/control=3317/19,565 EAF 0.06 0.37 0.56 0.45
OR (95% CI) 1.65 (1.39, 1.97) 1.27 (1.18, 1.35) 1.29 (1.19, 1.40) 1.57 (1.45, 1.70)
p 1.98×10–8 8.07×10–12 1.83×10–10 4.42×10–29

NIPT PLUS Case/control=798/2782 EAF 0.08 0.41 0.58 0.43
OR (95% CI) 1.46 (1.08, 1.97) 1.14 (0.99, 1.31) 1.15 (0.98, 1.35) 1.50 (1.28, 1.75)
p 1.42×10–2 6.86×10–2 9.69×10–2 3.82×10–7

GDM (BIGCS) Case/control=289/1514 EAF 0.06 0.36 0.54 0.43
OR (95% CI) 1.04 (0.70, 1.53) 1.22 (1.00, 1.48) 1.17 (0.97, 1.40) 1.46 (1.20, 1.76)
p 8.59×10–1 4.83×10–2 9.84×10–2 1.07×10–4

NIPT PLUS and 
BIGCS meta data

Case/control=1087/4296 OR (95% CI) 1.28 (1.01, 1.63) 1.16 (1.04, 1.31) 1.16 (1.02, 1.31) 1.48 (1.31, 1.67)
p 4.03×10–2 8.55×10–3 1.93×10–2 1.74×10–10

T2D (East Asian 
population)

Case/control=77,418/356,122 EAF 0.13 0.42 0.59 0.42
OR (95% CI) 0.99 (0.97, 1.01) 1.21 (1.20, 1.23) 1.12 (1.11, 1.14) 1.04 (1.02, 1.05)
p 0.35 1.81×10–182 3.73×10–67 4.49×10–8

T2D (female East 
Asian population)

Case/control=27,370/135,055 EAF 0.104 0.42 0.58 0.42
OR (95% CI) 1.003 (0.97, 1.04) 1.27 (1.25, 1.30) 1.15 (1.12, 1.17) 1.05 (1.03, 1.08)
p 0.89 4.37×10–97 1.04×10–31 3.88×10–5



710	 Diabetologia (2024) 67:703–713

abovementioned LOC101929710, ABCB11, GCK and 
FOXA2 loci. The regional association plots showing all of 
the genes in a 1 Mbp window flanking the lead SNP gener-
ated by Locuszoom are presented in ESM Fig. 6.

Potential causal effects of 55 biomarkers on GDM and gly‑
caemic levels  In our study, we found that genes involved in 
circadian rhythm regulation and glucose homeostasis have 
a significant effect on GDM susceptibility and glycaemic 
levels. We also investigated whether specific biochemical 
measurements (n=55; ESM Table 2), reflecting various body 
functions and assayed during early pregnancy (16–18 weeks 
of gestation) as part of the pregnancy screening programme, 
may have a potential causal effect on GDM or glycaemic lev-
els. To achieve this, we employed bidirectional MR analysis 
using a two-sample method on a single dataset [20]. This 
approach underscores the reliability of applying two-sample 
MR methods for one-sample MR when sufficient instrumen-
tal variable strength is present (see Methods).

Based on the IVW MR model results, we identified sev-
eral significant potential causal associations between routine 
blood biomarkers and GDM susceptibility (Fig. 3, ESM 
Table 11) as well as glycaemic levels in pregnancy (ESM 
Figs 7 and 8). Genetically higher absolute neutrophil count 
(OR [95% CI] 0.77 [0.68, 0.86], p=6.57×10–5), neutrophil 
percentage (OR [95% CI] 0.65 [0.53, 0.78], p=9.47×10–6) and 
total white blood cell count (OR [95% CI] 0.79 [0.70, 0.89], 
p=1.38×10–4) demonstrated significant protective effects on 
GDM risk (Fig. 3a–c) and resulted in decreased FPG and 
OGTT0H glucose levels (ESM Figs 7 and 8). Conversely, 
a genetically higher lymphocyte percentage was associated 
with increased GDM risk (OR [95% CI] 1.55 [1.26, 1.90] 
p=3.74×10–5) (Fig. 3d) and elevated FPG and OGTT0H glu-
cose levels (ESM Figs 7 and 8). All instrumental variables 
for these biomarkers are presented in ESM Table 12, and they 
exhibited no heterogeneity or pleiotropy (ESM Table 11). 
Additionally, in the MR analyses with GDM as the outcome, 
the statistical power exceeded 0.98 for absolute neutrophil 
count, lymphocyte percentage, neutrophil percentage and 
white blood cell count as exposures, while the F statistics 
for these four measurements exceeded 1000 (ESM Table 13). 
These results were consistent with the direction of the effect 
in the observational associations (ESM Fig. 1). The reverse 
MR analysis revealed no potential causal association of GDM 
with the aforementioned biomarkers (ESM Figs 9 and 10).

Furthermore, we conducted bidirectional MR analyses 
using meta-analysis results from the discovery study (the 
data collected from the whole population of 30,699 women) 
and the NIPT PLUS cohort to investigate the associations 
between absolute neutrophil count, lymphocyte percentage, 
neutrophil percentage, white blood cell count and GDM, as 
well as glycaemic levels. These findings closely aligned with 
the MR analyses conducted without the NIPT PLUS cohort. 

Specifically, a genetically higher total white blood cell count 
(OR [95% CI] 0.81 [0.72 0.92], p=8.97×10–4), absolute neu-
trophil count (OR [95% CI] 0.79 [0.69 0.90], p=4.44×10–4) 
and neutrophil percentage (OR [95% CI] 0.72 [0.59, 0.91], 
p=5.06×10–3) showed significant protective effects on GDM 
risk (ESM Fig. 11a–c) and resulted in decreased FPG and 
OGTT0H glucose levels (ESM Table 14). A genetically 
higher lymphocyte percentage was significantly associated 
with lower FPG and OGTT0H glucose levels, although the 
potential causal relationship between lymphocyte percentage 
and GDM showed less significance.

Discussion

In this study, we harnessed extensive genetic and phenotypic 
data from a standard pregnancy screening programme to 
explore the genetic and molecular factors associated with 
GDM susceptibility and glycaemic levels during pregnancy. 
We identified four significant loci (MTNR1B, CDKAL1, 
SLC30A8 and CPO) associated with GDM susceptibility at 
a genome-wide level. The most significant locus, MTNR1B, 
encodes the melatonin receptor 1B, predominantly found in 
the retina and brain, where it plays a role in light-depend-
ent functions and regulates the reproductive and circadian 
effects of melatonin. This receptor also exerts an inhibitory 
influence on insulin secretion [26] and previous studies have 
linked the lead SNP (rs10830963) located in the intron of the 
MTNR1B gene to FPG levels, HbA1c measurements, type 2 
diabetes and birth weight [7].

While a Korean study of GDM [27] with a smaller sam-
ple size (1399 cases and 2025 controls) previously reported 
both MTNR1B and CDKAL1 as GDM-associated loci, with 
CDKAL1 exhibiting the largest genetic effect, our study, 
along with the NIPT PLUS and BIGCS replication cohorts, 
indicates that MTNR1B plays a more substantial role in 
GDM susceptibility than CDKAL1 (Table 1). Importantly, 
our study rigorously excluded participants with preges-
tational diabetes from the GDM group, providing a more 
accurate picture of the genetic determinants of GDM suscep-
tibility than the Korean study. Furthermore, our study, with 
nearly ten times the sample size of the Korean study, enables 
more precise estimation of the genetic effect size. These two 
loci also have varying roles in the risk of developing type 2 
diabetes. For type 2 diabetes in both East Asian and Euro-
pean populations, CDKAL1 was recognised as the second 
strongest genetic locus [17, 28], whereas the MTNR1B locus 
either barely passed or did not reach the genome-wide sig-
nificance threshold (Table 1), underscoring the differences 
in genetic architecture between GDM and type 2 diabetes.

Furthermore, we identified 31 genetic loci associated 
with four glycaemic traits (FPG, OGTT0H, OGTT1H and 
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OGTT2H) that are commonly used for GDM diagnosis. 
Fourteen of these loci were newly discovered associations. 
The high replication rate of the FPG loci and better per-
formance of the OGTT2H loci when compared with the 
MAGIC consortium indicates the reliability of our dis-
coveries and supports the value of using low-pass NIPT 
sequencing data to investigate genotype–phenotype corre-
lations [9]. In the GWAS of the four glycaemic traits, the 
MTNR1B locus, which was previously known to be associ-
ated with FPG [7], was first discovered to have the great-
est genetic effect on OGTT1H and OGTT2H. Notably, we 

identified substantial differences in the genetic determinants 
of baseline glycaemic levels (FPG and OGTT0H) and gly-
caemic levels after an oral glucose challenge (OGTT1H 
and OGTT2H), which mainly involved four genetic loci in 
LOC101929710, ABCB11, GCK and FOXA2. These four 
genetic loci specifically contribute to FPG and OGTT0H 
but not OGTT1H and OGTT2H, indicating that there are 
distinct biological mechanisms regulating the baseline glu-
cose concentration and glucose metabolism after glucose 
intake. Furthermore, many of the genetic loci that play a 
major role in regulating glycaemic concentrations, such as 
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Fig. 3   Scatterplots of MR analysis results with biomarkers as the 
exposures and GDM as the outcome: (a) Absolute neutrophil count, 
(b) neutrophil percentage, (c) white blood cell count and (d) lympho-
cyte percentage. The effect size and p values for the IVW analysis are 
shown in the figure. The slope of the regression line in each panel 

indicates the direction of the effect of the exposure on GDM, with a 
positive slope representing a positive effect and a negative slope indi-
cating a negative effect. The effects of these biomarkers on the four 
glycaemic traits are shown in ESM Fig. 8
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the abovementioned LOC101929710, ABCB11, GCK and 
FOXA2 loci, do not contribute to GDM susceptibility.

Of the 55 biochemical measurements, which were cat-
egorised into seven groups (routine blood biomarkers, 
biomarkers of anaemia, blood lipid, kidney function, liver 
function, thyroid function and infection), four immune cell 
measurements (white blood cell count, lymphocyte percent-
age, absolute neutrophil count and neutrophil percentage) in 
the routine blood biomarkers category demonstrated poten-
tial causal risk or protective effects on GDM and glycaemic 
levels (Fig. 3). Previous research has hinted at associations 
between obesity and type 2 diabetes and the accumulation 
of immune cells, including lymphocytes and neutrophils 
and other subtypes of immune cells, in various tissues [29]. 
However, establishing a potential causal link between inflam-
mation and metabolic dysfunction remains challenging. 
Therefore, we conducted a bidirectional MR analysis, which 
suggested that inflammation may potentially contribute to 
GDM risk and higher FPG and OGTT0H glucose levels. 
Notably, this potential effect on GDM aligns with its impact 
on FPG and OGTT0H glucose levels but not OGTT1H and 
OGTT2H glucose levels after a glucose challenge.

It is important to note the limitations of our study and 
potential directions for future research. Despite being the 
largest GWAS on GDM in Asia to date, our design was lim-
ited to common variants (MAF>0.01) with intermediate or 
mild effects. Investigating low-frequency and rare variants 
may uncover additional genetic risks associated with GDM 
[30]. Furthermore, although our study provides new insights 
into the potential causal role of circadian rhythm regula-
tion, glucose homeostasis, inflammation and oxidative stress 
pathways as genetic and molecular risk factors for GDM, 
functional validation and clinical trials are essential for a 
deeper understanding of these findings.

We must also acknowledge that instrumental variable 
analysis focuses on estimating the effects of fixed-point or 
time-stable exposures, which might not account for ‘lifetime 
effects’ [23] Assessing temporal variations in exposures was 
challenging because of the lack of pre-pregnancy measure-
ments for these 55 biomarkers. Although we managed to rep-
licate the MR outcomes using available metadata, potential 
bias in MR estimates might exist if the exposures demon-
strated substantial lifetime variability. Future research should 
consider functional validation to confirm these findings.

Finally, it is noteworthy that factors such as family his-
tory of diabetes, educational background and lifestyle fac-
tors may influence GDM susceptibility. However, as these 
factors do not influence an individual’s genotype and were 
not considered confounding factors, their impact on the 
GWAS and MR results in this study is likely to be minimal. 
Nevertheless, it will be valuable to explore how adjusting 
for these factors affects the study’s conclusions in future 
research studies.
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