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Abstract

Beyond their conventional roles in intracellular energy production, some traditional metabolites also function as extracellular
messengers that activate cell-surface G-protein-coupled receptors (GPCRs) akin to hormones and neurotransmitters. These
signalling metabolites, often derived from nutrients, the gut microbiota or the host’s intermediary metabolism, are now
acknowledged as key regulators of various metabolic and immune responses. This review delves into the multi-dimensional
aspects of succinate, a dual metabolite with roots in both the mitochondria and microbiome. It also connects the dots between
succinate’s role in the Krebs cycle, mitochondrial respiration, and its double-edge function as a signalling transmitter within
and outside the cell. We aim to provide an overview of the role of the succinate—succinate receptor 1 (SUCNR1) axis in
diabetes, discussing the potential use of succinate as a biomarker and the novel prospect of targeting SUCNRI1 to manage
complications associated with diabetes. We further propose strategies to manipulate the succinate—SUCNRI axis for better
diabetes management; this includes pharmacological modulation of SUCNRI1 and innovative approaches to manage suc-
cinate concentrations, such as succinate administration and indirect strategies, like microbiota modulation. The dual nature
of succinate, both in terms of origins and roles, offers a rich landscape for understanding the intricate connections within
metabolic diseases, like diabetes, and indicates promising pathways for developing new therapeutic strategies.
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GPCR G-protein-coupled receptor

HFD High-fat diet Succinate, a key dicarboxylic acid in energy metabolism,
NAFLD  Non-alcoholic fatty liver disease has two main origins in humans: the mitochondria and the
NASH Non-alcoholic steatohepatitis gut microbiota [1, 2]. Understanding the diverse origins of
SCFA Short-chain fatty acid succinate provides important insights into the complex inter-
SDH Succinate dehydrogenase play between host metabolism and the gut microbiota, with
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cycle and mitochondrial respiration (Fig. 1), succinate
has gained attention as a potential biomarker of cellu-
lar energy state. Dysregulation in cellular metabolism
triggered by factors such as tissue damage, hypoxia and
immune activation, can lead to alterations in intracel-
lular succinate levels, resulting in increased circulating

levels [1]. Accumulation of succinate is associated with
conditions like obesity [3], diabetes [3-5], cardiovascu-
lar diseases [6—9] and non-alcoholic fatty liver disease
(NAFLD) [10-12]. Thus, monitoring succinate levels
in blood could help diagnose, predict risk and develop
treatments for these conditions.
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Fig. 1 The dual nature of succinate: origins and functions. Succinate
(depicted by red circles), which is generated both by the host and the
microbiota, is widely recognised as a key metabolic substrate crucial
for ATP production. Within the mitochondria, succinate serves as the
link between the Krebs cycle (also known as the tricarboxylic acid
cycle [TCA]) and respiration, influencing various pathways such as
reactive oxygen species (ROS) production, branched-chain amino
acid (BCAA) metabolism, haem synthesis and utilisation of ketone
bodies. However, succinate’s function extends beyond these meta-
bolic roles. It can also be translocated to the intracellular space where
it plays several signalling roles, including dioxygenase inhibition
(thus, promoting stabilisation of hypoxia inducible factor 1 subunit

alpha [HIFla] and DNA/histone demethylation), protein succinyla-
tion and allosteric modulation of the SDH enzyme. Additionally, suc-
cinate can be transported outside of the cell via a series of transport-
ers, where it interacts with its specific receptor, SUCNR1. Upon this
interaction, succinate functions similarly to a hormone, leading to the
activation of cell-specific signalling pathways. Signal transduction
associated with the succinate—-SUCNRI axis contributes to physi-
ological responses to factors such as exercise and food intake. How-
ever, its overactivation has also been implicated in the development
of metabolic disorders, including obesity, and diabetes and its related
complications. I-IV, Complex I-IV; Cyt C, cytochrome c. This figure
is available as a downloadable slide
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Succinate: a metabolite of microbial ancestry

The gut microbiota metabolises dietary and host nutrients,
producing beneficial compounds like short-chain fatty acids
(SCFAs) and organic anions, including succinate. Once seen
as only an SCFA precursor, recent findings highlight succi-
nate as a byproduct of anaerobic fermentation from Bacteroi-
detes phylum, particularly Bacteroides and Prevotella genus,
which are primary succinate producers in the mammalian
gut [13]. Succinate levels in faeces are generally low due
to bacterial cross-feeding, resulting in succinate being con-
verted into propionate. Like SCFAs, microbiota-derived suc-
cinate can be an energy source for intestinal cells [14] and
can regulate the intestinal immune system [15]. Microbially
produced succinate can enter the bloodstream, contributing
to systemic succinate levels. While mitochondrial succinate
production seems to be the primary source of succinate in
healthy individuals [16], dysbiosis conditions, like inflam-
matory bowel disease and obesity, show a clear association
between gut microbiota and circulating succinate in humans
[3, 15]. Notably, the gut microbiota is a major source of
elevated succinate levels in obesity [16]. Hence, targeting
microbial succinate production might be a promising thera-
peutic strategy. As described below, however, metabolic
studies reveal benefits from both succinate-producing [14,
17-19] and -consuming bacteria [3, 16, 20] at the molecular
level, which underscores the complex symbiosis between the
host metabolism and gut microbiota.

Succinate as a double agent: intracellular
and extracellular signalling mechanisms
of a versatile molecule

Succinate’s functional repertoire extends beyond the con-
fines of the respiratory chain, positioning it as a critical met-
abolic crossroads. Its metabolism is entwined with diverse
pathways, including homeostasis of mitochondrial reactive
oxygen species (ROS), metabolism of branched-chain amino
acids, haem synthesis and utilisation of ketone bodies [21].
Further, it moonlights as a signalling molecule, exerting
diverse functions within and outside of the cell (Fig. 1).
Intracellularly, succinate also functions as a signalling mol-
ecule in three main ways: (1) it acts as a competitive inhibi-
tor of a-ketoglutarate-dependent dioxygenases, influencing
processes like DNA and histone demethylation, hypoxic
response and epigenetic regulation; (2) it serves as an allos-
teric modulator of metabolic enzymes, like SDH, creating
a positive feedback loop; and (3) it acts as a substrate for
succinyl-CoA, enabling post-translational modification
of proteins via succinylation, which regulates metabolic
enzyme activities [1].

Succinate’s role as an extracellular signalling molecule
was unravelled with the landmark discovery of succinate
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receptor 1 (SUCNRI, also known as G protein-coupled
receptor 91 [GPRI1]) [22]. As a member of the G protein-
coupled receptor (GPCR) family, SUCNRI1 exhibits wide
tissue distribution, being present in adipose tissue, the liver,
intestine and kidney [23]. The receptor is largely specific for
succinate, with other carboxylic acids showing comparatively
lower binding affinities [1, 22]. The extracellular region of
SUCNRI1 governs ligand accessibility, while the intracellular
region manages signalling transmission. SUCNRI activation
initiates interaction with heterotrimeric GTPases, thereby
stimulating downstream signalling events that vary with cell
type, leading to different downstream signals and effects in a
cell-dependent manner. Succinate—SUCNRI1 signalling has
been implicated in various transduction pathways, such as
ERK pathways in cardiomyocytes [24] and AMP-activated
protein kinase (AMPK) pathways in adipocytes [25]. Though
the desensitisation and internalisation processes of SUCNR1
are similar to those of other GPCRs, our understanding of
these mechanisms remains rudimentary.

Initially known as a GPCR involved in inflammatory
pathologies [4, 15, 26, 27], our understanding of SUCNRI1
has evolved to consider it as a critical regulator of the com-
plete inflammatory response, particularly in macrophages.
During the early stages of inflammation, succinate is pro-
duced to elicit a robust response, but it also exerts anti-
inflammatory effects, thereby participating in resolving
inflammation [1, 27, 28]. However, prolonged metabolic
stress, such as with obesity and type 2 diabetes, disrupts this
coordinated mechanism [27], tipping the balance towards a
proinflammatory response, thereby contributing to chronic
inflammation [28].

Further, emerging research has challenged the conven-
tional belief of SUCNRI1 being inactive under healthy condi-
tions. Studies have observed transiently elevated succinate
levels during physiological states, like exercise [29] and food
intake [30], implying additional metabolic functions. In this
context, it has been revealed that SUCNRI1 signalling con-
tributes to paracrine communication in skeletal muscle dur-
ing exercise, resulting in muscle remodelling [29] and con-
trols leptin production by adipose tissue in response to food
ingestion [25]. The transient increase in succinate levels,
which appears to be essential for regulating physiological
responses to exercise and feeding via SUCNRI, differs nota-
bly from the consequences of chronic succinate elevation
that are observed in metabolic disorders. These disparities
between acute increases in health and chronic rises in dis-
ease conditions parallel findings related to blood glucose and
inflammation. Furthermore, chronic elevation may induce a
succinate-resistant state, similar to the observed phenom-
enon of leptin resistance in the context of obesity, where
hyperleptinaemia is associated with reduced leptin sensi-
tivity [31]. Consequently, the effects of succinate admin-
istration may vary, proving either beneficial or detrimental
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depending on the specific pathophysiological state (see
‘Succinate administration’ section below for details), with
potential favourability limited to the early stages of disease.

In summary, succinate is a remarkably versatile metabo-
lite, acting as a pivotal constituent in metabolic pathways
and an effector molecule that influences cell behaviour.
Succinate’s multifaceted nature helps to maintain cellular
homeostasis and coordinate physiological responses. Never-
theless, the chronic elevations in succinate that are observed
in metabolic disorders are closely linked to disease progres-
sion. The role of succinate and SUCNRI1 in diabetes will be
further explored in the subsequent sections.

Diabetes and the succinate-SUCNR1 axis

The role of succinate and its receptor in the pathophysiology
of diabetes has gained significant attention in recent years.
This section aims to provide a comprehensive review of the
current knowledge on the interplay between diabetes and the
succinate—-SUCNRI1 axis, shedding light on the underlying
mechanisms and potential therapeutic implications.

Succinate levels in diabetes

Precise quantification of succinate levels within the circu-
latory, faecal and intracellular environments is essential to
fully understand the role of succinate as both a metabolic
and signalling molecule in the context of diabetes.

Type 2 diabetes In the context of metabolic disorders, spe-
cifically in rodent models of type 2 diabetes, obesity and
hypertension, Sadagopan and colleagues were pioneers in
documenting elevated levels of circulating succinate [9].
These findings generated considerable interest; however,
Sadagopan et al were not able to replicate them in stud-
ies involving humans with hypertension or diabetes. None-
theless, subsequent research unveiled that individuals with
type 2 diabetes and obesity did, in fact, exhibit elevated
levels of succinate in the circulation [3, 4]. The discrepan-
cies in findings may have resulted from variations in the
analytical methods used or may be owing to the differ-
ing phenotypic characteristics of the human cohorts used.
Several studies show that increased succinate levels in the
blood correlate with BMI, insulin, glucose, HOMA-IR and
plasma triglycerides [3, 5, 16, 30], with changes in micro-
biota composition leading to an increased ratio of succinate
producers:consumers [3]. Our recent study involving indi-
viduals with class III obesity demonstrated a negative cor-
relation between circulating and faecal succinate [16], which
hints at a possible overflow of succinate into the systemic
circulation within the obesity context.

The elevated succinate levels observed in obesity and
type 2 diabetes tend to decrease 1 year after metabolic
surgery [5, 30], potentially due to weight loss and reduced
inflammation, though these effects may vary over time.
Interestingly, a bypass surgery study reported an increase
in circulating succinate at 3 months post-surgery, which
correlated with decreased jejunal levels [32]; this may
indicate a shift in substrate flow and utilisation during the
early stages after surgery. Furthermore, succinate levels
are influenced by nutritional status, with changes seen in
response to a mixed meal [30] typically being observed
in healthy individuals. In contrast, this response was lost
in individuals with obesity and type 2 diabetes, although
recoverable post-surgery [30]. Interestingly, adults with
the metabolic syndrome and a late chronotype displayed
reduced insulin sensitivity and higher fasting succinate
levels than those with an early chronotype [33]. Thus, it is
reasonable to consider succinate as a potential biomarker
for type 2 diabetes. In fact, our findings suggested that
pre-bariatric surgery circulating succinate could indicate
potential for diabetes remission and help to identify the
best surgical procedure to achieve it [5].

Type 1 diabetes In the context of type 1 diabetes, suc-
cinate has not been deeply explored. However, reduced
serum levels at birth in children who later developed
type 1 diabetes [34] suggest its potential as a predictive
biomarker. In relation to succinate and type 1 diabetes,
most research has investigated changes in SDH activ-
ity and mitochondrial function (these are less studied in
type 2 diabetes). Consistent findings indicate a decrease
in SDH activity in the muscles of rat models of diabe-
tes [35] and people with type 1 diabetes [36]. Notably,
individuals with type 1 diabetes maintain a physiological
succinate response to exercise in peripheral blood [37].
These studies have mainly involved male participants,
demanding further research in female participants. By
contrast, increased SDH activity has been documented
in the liver in type 1 diabetes [38]. The implications of
these variations require further investigation.

Gestational diabetes Succinate levels rise before deliv-
ery in women with gestational diabetes mellitus (GDM),
particularly those receiving insulin treatment [39]. This
suggests that the increase in succinate observed may pri-
marily be due to insulin administration or GDM severity.
Additionally, increased levels of succinate and SUCNRI1
have been observed in placental tissue from women with
GDM [40]. SUCNRI1, which is present in endothelial cells,
can promote proliferation, chemoattraction, wound healing
and vascular endothelial growth factor (VEGF) production
[40], potentially contributing to the increased angiogenic
response in GDM.
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Succinate-SUCNRT1 signalling in diabetes-related
complications

Research highlights the association between abnormal
succinate levels, hyperactivation of SUCNRI1 and various
disorders, including diabetes and its related complications.
Maintaining a balanced succinate—SUCNRI1 axis may be
crucial for optimal physiological functioning, with dys-
regulation potentially contributing to diseases like diabe-
tes. Indeed, higher succinate levels were noted in people
with diabetic complications compared with those with
well-controlled type 2 diabetes [41]. A SUCNRI polymor-
phism (rs73168929), affecting the 3" untranslated region
(UTR) of the gene, which is an important zone involved
in miRNA binding, has recently been linked to type 2 dia-
betes and hypertension susceptibility in a Chinese popu-
lation [42]. Thus, changes in SUCNRI1 expression due to
alterations in miRNA binding may serve as a predictive
biomarker of type 2 diabetes and hypertension, although
further research is needed. The role of SUCNRI activa-
tion in common diabetic complications, including diabetic
nephropathy, retinopathy, and NAFLD, all of which have a
significant impact on patient health, is the focus of ongo-
ing research and the following subsections.

Diabetic nephropathy Diabetic nephropathy, which
affects 20-50% of individuals with diabetes, is a wide-
spread, costly long-term diabetes complication and the
main cause of end-stage renal disease. Its progression is
linked to overactivation of the renin—angiotensin system,
which is crucial for blood pressure regulation and renal
balance. Overactivation of the renin—angiotensin system
leads to renal inflammation, fibrosis, endothelial dysfunc-
tion and progressive kidney damage [43]. Succinate’s role
in renin release, first identified in rat glomeruli in 1976
[44], is SUCNR1-dependent [22], corroborated by elevated
receptor expression in kidney [22, 23]. High succinate lev-
els in the urine of individuals with progressive diabetic
nephropathy [45] and of murine models of streptozocin-
induced type 1 diabetes [43], along with high glucose driv-
ing increased renin and prorenin release via activation of
the succinate—SUCNRI1 pathway [43], underscore this sig-
nificance of the succinate—SUCNRI1 axis in the pathophysi-
ology of diabetic nephropathy. Expressed in glomerular
endothelial cells and the macula densa, SUCNRI1 influ-
ences renin production by triggering secretion of prosta-
glandin, cyclooxygenase (COX)-1, COX-2 and endothelial
nitric oxide synthase (eNOS) [46]. SUCNR1’s expression
extends to tubular cells, which are the predominant produc-
ers of (pro)renin in individuals with diabetes [47]. Further-
more, succinate enhances renal damage by inducing renal
tubular cell apoptosis via the ERK pathway [48]. Despite
these insights suggesting that SUCNRI1 inhibition may be
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a possible treatment avenue for diabetic nephropathy, no
such interventions have been executed.

Diabetic retinopathy Diabetic retinopathy is intricately tied
to SUCNRI,; this receptor is found in key areas of the retina,
such as the retinal ganglion cell layer and the retinal pig-
ment epithelium [49]. Research involving Sucnrl-deficient
mice highlights the receptor's importance in retinal devel-
opment and function as these mice exhibit early sub-retinal
dystrophy [49]. Studies further indicate that modulation of
SUCNRI1 through succinate supplementation or SUCNRI1
knockdown can influence retinal vasculature develop-
ment [50], thereby asserting a role for succinate-mediated
SUCNRI function in maintaining retinal vascular health.
Recent investigations, however, also implicate succinate and
SUCNRUI in the progression of diabetic retinopathy, particu-
larly in retinal vascular dysfunction and neurodegeneration
[51]. Observations of elevated succinate levels in the vit-
reous fluid of individuals with active proliferative diabetic
retinopathy [52] and in retinas from rat models of diabetes
[53] underscore a link between succinate accumulation,
hypoxia and retinal neovascularisation, key pathological
features of diabetic retinopathy [51]. Interestingly, fasting
succinate levels in the serum of individuals with prolifera-
tive retinopathy exceed those of people with type 2 diabe-
tes [54]. In contrast, individuals with diabetic retinopathy
exhibit lower faecal succinate levels than healthy control
participants [55], echoing the inverse relationship between
circulating and faecal succinate levels that have been found
in obesity studies [16]. Experimental use of Sucnrl short
hairpin RNA (shRNA) in diabetic rats has demonstrated
retinal damage reduction and functional improvement [53].
Mechanistically, succinate-mediated SUCNRI1 activation has
been connected to angiogenesis, wherein hyperglycaemia-
induced increases in succinate levels activate SUCNRI,
stimulating VEGF release and promoting endothelial cell
proliferation and migration in vitro [56]. Recent work has
also highlighted the interaction between iron, SUCNRI1 and
the renin—angiotensin system in diabetes-related neurode-
generation and vascular abnormalities [57], stressing the role
of iron homeostasis in preventing retinal oxidative stress.
Collectively, these findings underline the critical involve-
ment of succinate and SUCNRI in the pathogenesis of
diabetic retinopathy, suggesting new potential therapeutic
targets.

NAFLD NAFLD, affecting roughly 25% of the global popu-
lation, is linked with insulin resistance, obesity and type 2
diabetes, with prevalence soaring to 50-70% in people with
diabetes [58]. The role of succinate and SUCNRI in the
progression of NAFLD is under investigation, especially as
high blood succinate levels are found in individuals with
NAFLD [10-12]. Notably, the analysis of recent clinical
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data has further highlighted the potential of succinate as
a non-invasive biomarker for diagnosing fatty liver [12].
Research has also reported elevated SUCNRI expression
in the liver during non-alcoholic steatohepatitis (NASH) in
both animal models [12, 26] and humans [12, 59], hinting
that SUCNRI1 expression might serve as a valuable prog-
nostic marker for NASH [12]. Mechanistic studies in cell
cultures and animal models show that hepatocyte-released
succinate triggers fibrotic changes in the liver through
activation of hepatic stellate cells [26, 60], suggesting the
potential of SUCNRI1 as a target for anti-fibrotic NAFLD
treatment [61]. However, the contribution of SUCNRI1 sig-
nalling in other liver cell populations to NAFLD progression
remains underexplored. In fact, our latest findings propose
that the succinate—SUCNRI pathway might be protective in
early NAFLD by mitigating lipid accumulation and glyco-
gen depletion in damaged hepatocytes [12]. Further inves-
tigations are warranted, but these recent findings suggest
that cell-directed pharmacology could be a more effective
strategy than SUCNRI1 agonists or antagonists for managing
NAFLD [62].

Strategies for manipulating the succinate-
SUCNRT1 axis in the management of diabetes

Pharmacological modulation of SUCNR1:
the interplay of agonists and antagonists

The succinate—SUCNRI1 axis, with SUCNRI acting as a
GPCR, presents a promising target for innovative diabetes
therapies. SUCNRI exhibits broad tissue distribution in a
cell-specific manner, although its expression profile may
vary across species. According to data from the Human Pro-
tein Atlas (www.proteinatlas.org/search/sucnrl, accessed 9
October 2023), SUCNRI1 is prominently expressed in the
human kidney, thyroid gland and bone marrow. At a cel-
lular level, it is highly expressed in proximal tubular cells,
macrophages and monocytes. However, in mice, SUCNR1
is mostly located in the adipose tissue, liver and kidney [23,
63]. This variability in tissue distribution, coupled with its
cell-specific functions, should be considered when contem-
plating SUCNRI as a pharmacological target.

Small molecules acting as agonists or antagonists can
modulate this receptor. In 2017, two SUCNRI1 agonists,
cis-epoxy succinic acid and cis-1,2-cyclopropane carbox-
ylic acid, were discovered. They showed significant in vivo
activity and comparable efficacy to succinate, albeit without
the corresponding intracellular actions. Indeed, the former
was 10- to 20-fold more potent than the natural ligand [64].
Later, novel agonists with higher stability were identified
[65]. SUCNRI1 antagonists, such as the human-specific NF-
56-EJ40 [66], were also reported, underscoring the need for

compounds with activity on rodent receptor orthologues
so that the effects of SUNCRI1 antagonists can be further
explored using preclinical models. Notably, agonist and
antagonist tracers for mouse and human SUCNRI1 ortho-
logues have recently been developed [67]. SUCNRI1 antago-
nists offer potential benefits in counteracting the harmful
effects of succinate signalling observed in diabetes, promis-
ing a reduction in inflammation and metabolic balance res-
toration. Inhibiting SUCNRI1 could prevent diabetes-related
retinal neovascularisation [50] and kidney disease [43],
although these potential benefits have yet to be scientifically
substantiated. However, using SUCNRI as a pharmaceutical
target requires an extensive understanding of its physiologi-
cal and pathological roles. In fact, in the context of NAFLD,
while SUCNRI1 antagonists may reduce fibrosis [61], they
could also worsen steatosis [12]. Similarly, while the inhibi-
tion of SUCNRI has been proposed as a strategy to alleviate
various inflammatory conditions [4], its blockade might be
detrimental in treating inflammation and glucose intolerance
in obesity [27]. However, no preclinical studies involving
animal models treated with selective SUCNR1 modulators
as pharmacological therapies have been reported to date.

Strategies for manipulating succinate
concentrations

Circulating levels of succinate can be influenced by cellular
mitochondrial activity, microbiota composition and diet. As
discussed below, several studies have explored the impact of
dietary succinate supplementation and probiotic modulation
on energy homeostasis, though some of the findings have
been inconsistent.

Succinate administration Despite chronically high succi-
nate levels being a characteristic of metabolic diseases [3,
5, 6, 10-12], some research has examined its therapeutic
use in obesity and diabetes management (Table 1). In ani-
mal models of type 1 diabetes, succinate administration has
been shown to alleviate liver damage and lower lipid per-
oxidation [68]. Combined with oleic acid, it improves the
control of blood glucose levels and promotes weight loss
[69]. Research using short-term high-caloric diets in mice
or genetic models of obesity has indicated that succinate
can stimulate beige adipose tissue development [70], induce
thermogenesis in brown adipose tissue [71] and improve
glucose homeostasis [71]. Specifically, succinate was found
to improve glucose homeostasis and reduce hyperglycaemia
by activating intestinal gluconeogenesis [14, 18]. Most of
the available research concerning the therapeutic potential
of succinate has predominantly focused on obesity rather
than diabetes, often emphasising a preventative rather than
therapeutic strategy. It is noteworthy that the development
of hyperglycaemia and impaired glucose-stimulated insulin
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secretion in high-fat-diet (HFD)-induced obesity models
occur over a period of time, akin to the mild progression of
diabetes observed in humans [72, 73]. Indeed, detrimental
effects have been observed with extended treatment regi-
mens, where succinate supplementation has been shown to
increase fasting glucose and LDL-cholesterol levels without
significantly affecting body weight, albeit with a reduction
in adiposity [74]. These findings collectively suggest that
the timing of succinate administration may hold a pivotal
role in achieving favourable outcomes. Consequently, fur-
ther investigations will be imperative to explore the poten-
tial of succinate supplementation once the pathology is
already established. In addition, studies on zebrafish, an
appealing model for obesity and type 2 diabetes, have
yielded deleterious outcomes concerning weight gain,
hepatic fat accumulation and gut microbiota composition
[75], which points to potential species differences.

It is worth noting that the use of disodium succinate in
some of the above-mentioned articles may introduce poten-
tial confounding factors due to hypertonicity. However,
Lund et al demonstrated that, unlike the observed effects
with sodium lactate, the anti-obesogenic effect of succinate
administration is independent of sodium [76]. Finally, suc-
cinic acid derivatives or succinate combinations with other
drugs have shown the potential to improve cognitive and
depressive symptoms related to diabetes in humans [77].
In summary, the available data suggest that the adminis-
tration of succinate during the early stages of obesity may
offer potential benefits in counteracting weight gain and
disturbances in glucose homeostasis. However, as obesity
progresses, succinate's efficacy appears to be compromised
due to the development of resistance, likely stemming from
elevated circulating succinate concentrations.

Microbiota modulation and other indirect strategies In
addition to direct succinate administration, various strate-
gies focusing on microbiota modulation and other indirect
approaches have been employed to influence intestinal suc-
cinate production and absorption (Table 2). However, only
two interventions, a lifestyle modification study involving
women with obesity [3] and the administration of the suc-
cinate-consuming bacteria Odoribacter laneus in murine
models of obesity and diabetes [16], have assessed mod-
ulation of circulating succinate levels. In both instances,
a reduction in blood succinate was observed. In the first
study, this reduction was associated with weight loss and
a decrease in the ratio of succinate producers:consumers
within the gut microbiota [3]. In the second study, reduced
blood succinate was linked to improved glucose control and
reduced inflammation [16]. Conversely, studies following
pre- and probiotic administration or faecal microbiota trans-
plantation have predominantly examined succinate levels

or production within the gut or faeces, where increases in
succinate or succinate producers have generally been asso-
ciated with protective effects [14, 17, 18, 78]. Specifically,
the genus Prevotella, with a particular focus on Prevotella
copri [14, 17] has been extensively investigated. Strategies
to enhance Prevotella presence in the gut, including dietary
interventions with fibre [17], the oral gavage of bacteria [14,
17] or faecal microbiota transplantation [17], have resulted
in improvements in glucose homeostasis[14, 17]. Similarly,
hemicellulose supplementation has demonstrated enhanced
glucose tolerance, improved gut function and reduced sys-
temic inflammation in db/db mice [78].

Administration of Parabacteroides distasonis, another
succinate-producing bacterium, led to an increase in gut
succinate concentration concurrent with reduced weight
gain, improved blood glucose levels and mitigated hepatic
steatosis in mouse models of genetic and diet-induced obe-
sity [18]. Meanwhile, Blautia wexlerae, also a succinate
producer, counteracted obesity and diabetes induced by an
HFD, with succinate levels reported to increase primarily
in adipose tissue and the liver [19]. Focusing on diabetes
complications, daily topical application of the beneficial
bacterium Lactiplantibacillus plantarum was found to pro-
duce succinate and expedite wound healing in rat models
of type 1 diabetes [79]. It is crucial to emphasise, however,
that none of these studies have conclusively established that
the observed beneficial effects are solely attributable to suc-
cinate. In fact, it is evident that the involvement of other
metabolites, which are also likely to be modulated with these
interventions, cannot be ruled out. In contrast, increasing
succinate consumers in the gut through faecal microbiota
transplantation, or decreasing succinate in the gut through
supplementation with fermented rice bran has also proven
effective in ameliorating obese and diabetic phenotypes in
mice [20, 80]. These findings align with results obtained
in our study, where a probiotic intervention involving O.
laneus revealed that the beneficial effects of reducing suc-
cinate levels were contingent on its signalling capacities
through SUCNRI [16]. This underscores the need for further
research to elucidate whether modulating succinate produc-
tion or consumption in the gut holds therapeutic promise.
The outcome may depend on the amount of succinate that
enters the circulation and reaches other tissues, influenced
by changes in its production:consumption ratio, cross-feed-
ing reactions and intestinal permeability.

Conclusions and future directions
In sum, our knowledge of the role of the succi-

nate—SUCNRI1 system in health and disease continues to
grow. Despite their importance in maintaining metabolic
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and immune balance, succinate and its receptor can also
contribute to chronic diseases, complicating therapeutic
strategies. This is especially true in diabetes, where dis-
rupted succinate signalling plays a part in disease progres-
sion. Heightened succinate levels in people with diabetes
and animal models of this disease hint at a relationship
between succinate and insulin resistance, disturbed glu-
cose metabolism and co-existing conditions. As our review
outlines, circulating and faecal succinate emerge as poten-
tial clinical tools for diabetes prediction. Although tissue-
specific determination of succinate could provide more
clinical value, blood and faecal succinate are more eas-
ily accessible and measurable via non-invasive methods,
providing a window into the metabolic disruptions linked
to diabetes, including changes in mitochondrial function,
oxidative stress and dysbiosis. These characteristics make
succinate a potentially valuable biomarker for early detec-
tion and risk stratification in diabetes. However, there is
still much to learn; standardised measurement methods
and large-scale studies are needed to validate succinate's
utility in predicting diabetes. Due to its duality in func-
tion and source, its interactions with other metabolic fac-
tors and contradictory effects on metabolic health require
a comprehensive research approach. As a central mol-
ecule in diabetes research, succinate offers insights into
the dichotomous outcomes of metabolic diseases. Thus,
understanding succinate's roles and interactions with other
cellular pathways could be helpful for diabetes manage-
ment. Moreover, striking a balance between blocking the
harmful effects of SUCNR1 while maintaining its benefi-
cial ones offers a promising path for novel diabetes treat-
ments. We must fully uncover the mechanisms driving suc-
cinate—SUCNRI signalling and their impact on disease
progression; this knowledge could help to develop inter-
ventions to curb succinate’s detrimental effects in diabetes,
improving patient outcomes.
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