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Abstract
Beyond their conventional roles in intracellular energy production, some traditional metabolites also function as extracellular 
messengers that activate cell-surface G-protein-coupled receptors (GPCRs) akin to hormones and neurotransmitters. These 
signalling metabolites, often derived from nutrients, the gut microbiota or the host’s intermediary metabolism, are now 
acknowledged as key regulators of various metabolic and immune responses. This review delves into the multi-dimensional 
aspects of succinate, a dual metabolite with roots in both the mitochondria and microbiome. It also connects the dots between 
succinate’s role in the Krebs cycle, mitochondrial respiration, and its double-edge function as a signalling transmitter within 
and outside the cell. We aim to provide an overview of the role of the succinate–succinate receptor 1 (SUCNR1) axis in 
diabetes, discussing the potential use of succinate as a biomarker and the novel prospect of targeting SUCNR1 to manage 
complications associated with diabetes. We further propose strategies to manipulate the succinate–SUCNR1 axis for better 
diabetes management; this includes pharmacological modulation of SUCNR1 and innovative approaches to manage suc-
cinate concentrations, such as succinate administration and indirect strategies, like microbiota modulation. The dual nature 
of succinate, both in terms of origins and roles, offers a rich landscape for understanding the intricate connections within 
metabolic diseases, like diabetes, and indicates promising pathways for developing new therapeutic strategies.
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SCFA  Short-chain fatty acid
SDH  Succinate dehydrogenase
SUCNR1  Succinate receptor 1
VEGF  Vascular endothelial growth factor

Succinate: a dual metabolite 
from multifaceted perspectives—origin 
and functions

Succinate, a key dicarboxylic acid in energy metabolism, 
has two main origins in humans: the mitochondria and the 
gut microbiota [1, 2]. Understanding the diverse origins of 
succinate provides important insights into the complex inter-
play between host metabolism and the gut microbiota, with 
potential implications for health and disease.

Succinate: born in the mitochondria—connecting 
the Krebs cycle to mitochondrial respiration

Within mitochondria, succinate comes from converting 
α-ketoglutarate via a Krebs cycle enzyme, succinyl-CoA 
synthetase, which is central to ATP production. Suc-
cinate links the Krebs cycle to mitochondrial respira-
tion via succinate dehydrogenase (SDH), facilitating 
the oxidation of succinate to fumarate and transferring 
electrons to the electron transport chain (ETC) for ATP 
generation. As a key intermediary between the Krebs 
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cycle and mitochondrial respiration (Fig. 1), succinate 
has gained attention as a potential biomarker of cellu-
lar energy state. Dysregulation in cellular metabolism 
triggered by factors such as tissue damage, hypoxia and 
immune activation, can lead to alterations in intracel-
lular succinate levels, resulting in increased circulating 

levels [1]. Accumulation of succinate is associated with 
conditions like obesity [3], diabetes [3–5], cardiovascu-
lar diseases [6–9] and non-alcoholic fatty liver disease 
(NAFLD) [10–12]. Thus, monitoring succinate levels 
in blood could help diagnose, predict risk and develop 
treatments for these conditions.
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Fig. 1  The dual nature of succinate: origins and functions. Succinate 
(depicted by red circles), which is generated both by the host and the 
microbiota, is widely recognised as a key metabolic substrate crucial 
for ATP production. Within the mitochondria, succinate serves as the 
link between the Krebs cycle (also known as the tricarboxylic acid 
cycle [TCA]) and respiration, influencing various pathways such as 
reactive oxygen species (ROS) production, branched-chain amino 
acid (BCAA) metabolism, haem synthesis and utilisation of ketone 
bodies. However, succinate’s function extends beyond these meta-
bolic roles. It can also be translocated to the intracellular space where 
it plays several signalling roles, including dioxygenase inhibition 
(thus, promoting stabilisation of hypoxia inducible factor 1 subunit 

alpha [HIF1α] and DNA/histone demethylation), protein succinyla-
tion and allosteric modulation of the SDH enzyme. Additionally, suc-
cinate can be transported outside of the cell via a series of transport-
ers, where it interacts with its specific receptor, SUCNR1. Upon this 
interaction, succinate functions similarly to a hormone, leading to the 
activation of cell-specific signalling pathways. Signal transduction 
associated with the succinate–SUCNR1 axis contributes to physi-
ological responses to factors such as exercise and food intake. How-
ever, its overactivation has also been implicated in the development 
of metabolic disorders, including obesity, and diabetes and its related 
complications. I–IV, Complex I–IV; Cyt C, cytochrome c. This figure 
is available as a downl oadab le slide

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-023-06063-7/MediaObjects/125_2023_MOESM1_ESM.pptx
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Succinate: a metabolite of microbial ancestry

The gut microbiota metabolises dietary and host nutrients, 
producing beneficial compounds like short-chain fatty acids 
(SCFAs) and organic anions, including succinate. Once seen 
as only an SCFA precursor, recent findings highlight succi-
nate as a byproduct of anaerobic fermentation from Bacteroi-
detes phylum, particularly Bacteroides and Prevotella genus, 
which are primary succinate producers in the mammalian 
gut [13]. Succinate levels in faeces are generally low due 
to bacterial cross-feeding, resulting in succinate being con-
verted into propionate. Like SCFAs, microbiota-derived suc-
cinate can be an energy source for intestinal cells [14] and 
can regulate the intestinal immune system [15]. Microbially 
produced succinate can enter the bloodstream, contributing 
to systemic succinate levels. While mitochondrial succinate 
production seems to be the primary source of succinate in 
healthy individuals [16], dysbiosis conditions, like inflam-
matory bowel disease and obesity, show a clear association 
between gut microbiota and circulating succinate in humans 
[3, 15]. Notably, the gut microbiota is a major source of 
elevated succinate levels in obesity [16]. Hence, targeting 
microbial succinate production might be a promising thera-
peutic strategy. As described below, however, metabolic 
studies reveal benefits from both succinate-producing [14, 
17–19] and -consuming bacteria [3, 16, 20] at the molecular 
level, which underscores the complex symbiosis between the 
host metabolism and gut microbiota.

Succinate as a double agent: intracellular 
and extracellular signalling mechanisms 
of a versatile molecule

Succinate’s functional repertoire extends beyond the con-
fines of the respiratory chain, positioning it as a critical met-
abolic crossroads. Its metabolism is entwined with diverse 
pathways, including homeostasis of mitochondrial reactive 
oxygen species (ROS), metabolism of branched-chain amino 
acids, haem synthesis and utilisation of ketone bodies [21]. 
Further, it moonlights as a signalling molecule, exerting 
diverse functions within and outside of the cell (Fig. 1). 
Intracellularly, succinate also functions as a signalling mol-
ecule in three main ways: (1) it acts as a competitive inhibi-
tor of α-ketoglutarate-dependent dioxygenases, influencing 
processes like DNA and histone demethylation, hypoxic 
response and epigenetic regulation; (2) it serves as an allos-
teric modulator of metabolic enzymes, like SDH, creating 
a positive feedback loop; and (3) it acts as a substrate for 
succinyl-CoA, enabling post-translational modification 
of proteins via succinylation, which regulates metabolic 
enzyme activities [1].

Succinate’s role as an extracellular signalling molecule 
was unravelled with the landmark discovery of succinate 

receptor 1 (SUCNR1, also known as G protein-coupled 
receptor 91 [GPR91]) [22]. As a member of the G protein-
coupled receptor (GPCR) family, SUCNR1 exhibits wide 
tissue distribution, being present in adipose tissue, the liver, 
intestine and kidney [23]. The receptor is largely specific for 
succinate, with other carboxylic acids showing comparatively 
lower binding affinities [1, 22]. The extracellular region of 
SUCNR1 governs ligand accessibility, while the intracellular 
region manages signalling transmission. SUCNR1 activation 
initiates interaction with heterotrimeric GTPases, thereby 
stimulating downstream signalling events that vary with cell 
type, leading to different downstream signals and effects in a 
cell-dependent manner. Succinate–SUCNR1 signalling has 
been implicated in various transduction pathways, such as 
ERK pathways in cardiomyocytes [24] and AMP-activated 
protein kinase (AMPK) pathways in adipocytes [25]. Though 
the desensitisation and internalisation processes of SUCNR1 
are similar to those of other GPCRs, our understanding of 
these mechanisms remains rudimentary.

Initially known as a GPCR involved in inflammatory 
pathologies [4, 15, 26, 27], our understanding of SUCNR1 
has evolved to consider it as a critical regulator of the com-
plete inflammatory response, particularly in macrophages. 
During the early stages of inflammation, succinate is pro-
duced to elicit a robust response, but it also exerts anti-
inflammatory effects, thereby participating in resolving 
inflammation [1, 27, 28]. However, prolonged metabolic 
stress, such as with obesity and type 2 diabetes, disrupts this 
coordinated mechanism [27], tipping the balance towards a 
proinflammatory response, thereby contributing to chronic 
inflammation [28].

Further, emerging research has challenged the conven-
tional belief of SUCNR1 being inactive under healthy condi-
tions. Studies have observed transiently elevated succinate 
levels during physiological states, like exercise [29] and food 
intake [30], implying additional metabolic functions. In this 
context, it has been revealed that SUCNR1 signalling con-
tributes to paracrine communication in skeletal muscle dur-
ing exercise, resulting in muscle remodelling [29] and con-
trols leptin production by adipose tissue in response to food 
ingestion [25]. The transient increase in succinate levels, 
which appears to be essential for regulating physiological 
responses to exercise and feeding via SUCNR1, differs nota-
bly from the consequences of chronic succinate elevation 
that are observed in metabolic disorders. These disparities 
between acute increases in health and chronic rises in dis-
ease conditions parallel findings related to blood glucose and 
inflammation. Furthermore, chronic elevation may induce a 
succinate-resistant state, similar to the observed phenom-
enon of leptin resistance in the context of obesity, where 
hyperleptinaemia is associated with reduced leptin sensi-
tivity [31]. Consequently, the effects of succinate admin-
istration may vary, proving either beneficial or detrimental 
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depending on the specific pathophysiological state (see 
‘Succinate administration’ section below for details), with 
potential favourability limited to the early stages of disease.

In summary, succinate is a remarkably versatile metabo-
lite, acting as a pivotal constituent in metabolic pathways 
and an effector molecule that influences cell behaviour. 
Succinate’s multifaceted nature helps to maintain cellular 
homeostasis and coordinate physiological responses. Never-
theless, the chronic elevations in succinate that are observed 
in metabolic disorders are closely linked to disease progres-
sion. The role of succinate and SUCNR1 in diabetes will be 
further explored in the subsequent sections.

Diabetes and the succinate–SUCNR1 axis

The role of succinate and its receptor in the pathophysiology 
of diabetes has gained significant attention in recent years. 
This section aims to provide a comprehensive review of the 
current knowledge on the interplay between diabetes and the 
succinate–SUCNR1 axis, shedding light on the underlying 
mechanisms and potential therapeutic implications.

Succinate levels in diabetes

Precise quantification of succinate levels within the circu-
latory, faecal and intracellular environments is essential to 
fully understand the role of succinate as both a metabolic 
and signalling molecule in the context of diabetes.

Type 2 diabetes In the context of metabolic disorders, spe-
cifically in rodent models of type 2 diabetes, obesity and 
hypertension, Sadagopan and colleagues were pioneers in 
documenting elevated levels of circulating succinate [9]. 
These findings generated considerable interest; however, 
Sadagopan et al were not able to replicate them in stud-
ies involving humans with hypertension or diabetes. None-
theless, subsequent research unveiled that individuals with 
type 2 diabetes and obesity did, in fact, exhibit elevated 
levels of succinate in the circulation [3, 4]. The discrepan-
cies in findings may have resulted from variations in the 
analytical methods used or may be owing to the differ-
ing phenotypic characteristics of the human cohorts used. 
Several studies show that increased succinate levels in the 
blood correlate with BMI, insulin, glucose, HOMA-IR and 
plasma triglycerides [3, 5, 16, 30], with changes in micro-
biota composition leading to an increased ratio of succinate 
producers:consumers [3]. Our recent study involving indi-
viduals with class III obesity demonstrated a negative cor-
relation between circulating and faecal succinate [16], which 
hints at a possible overflow of succinate into the systemic 
circulation within the obesity context.

The elevated succinate levels observed in obesity and 
type 2 diabetes tend to decrease 1 year after metabolic 
surgery [5, 30], potentially due to weight loss and reduced 
inflammation, though these effects may vary over time. 
Interestingly, a bypass surgery study reported an increase 
in circulating succinate at 3 months post-surgery, which 
correlated with decreased jejunal levels [32]; this may 
indicate a shift in substrate flow and utilisation during the 
early stages after surgery. Furthermore, succinate levels 
are influenced by nutritional status, with changes seen in 
response to a mixed meal [30] typically being observed 
in healthy individuals. In contrast, this response was lost 
in individuals with obesity and type 2 diabetes, although 
recoverable post-surgery [30]. Interestingly, adults with 
the metabolic syndrome and a late chronotype displayed 
reduced insulin sensitivity and higher fasting succinate 
levels than those with an early chronotype [33]. Thus, it is 
reasonable to consider succinate as a potential biomarker 
for type 2 diabetes. In fact, our findings suggested that 
pre-bariatric surgery circulating succinate could indicate 
potential for diabetes remission and help to identify the 
best surgical procedure to achieve it [5].

Type 1 diabetes In the context of type 1 diabetes, suc-
cinate has not been deeply explored. However, reduced 
serum levels at birth in children who later developed 
type 1 diabetes [34] suggest its potential as a predictive 
biomarker. In relation to succinate and type 1 diabetes, 
most research has investigated changes in SDH activ-
ity and mitochondrial function (these are less studied in 
type 2 diabetes). Consistent findings indicate a decrease 
in SDH activity in the muscles of rat models of diabe-
tes [35] and people with type 1 diabetes [36]. Notably, 
individuals with type 1 diabetes maintain a physiological 
succinate response to exercise in peripheral blood [37]. 
These studies have mainly involved male participants, 
demanding further research in female participants. By 
contrast, increased SDH activity has been documented 
in the liver in type 1 diabetes [38]. The implications of 
these variations require further investigation.

Gestational diabetes Succinate levels rise before deliv-
ery in women with gestational diabetes mellitus (GDM), 
particularly those receiving insulin treatment [39]. This 
suggests that the increase in succinate observed may pri-
marily be due to insulin administration or GDM severity. 
Additionally, increased levels of succinate and SUCNR1 
have been observed in placental tissue from women with 
GDM [40]. SUCNR1, which is present in endothelial cells, 
can promote proliferation, chemoattraction, wound healing 
and vascular endothelial growth factor (VEGF) production 
[40], potentially contributing to the increased angiogenic 
response in GDM.
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Succinate–SUCNR1 signalling in diabetes‑related 
complications

Research highlights the association between abnormal 
succinate levels, hyperactivation of SUCNR1 and various 
disorders, including diabetes and its related complications. 
Maintaining a balanced succinate–SUCNR1 axis may be 
crucial for optimal physiological functioning, with dys-
regulation potentially contributing to diseases like diabe-
tes. Indeed, higher succinate levels were noted in people 
with diabetic complications compared with those with 
well-controlled type 2 diabetes [41]. A SUCNR1 polymor-
phism (rs73168929), affecting the 3′ untranslated region 
(UTR) of the gene, which is an important zone involved 
in miRNA binding, has recently been linked to type 2 dia-
betes and hypertension susceptibility in a Chinese popu-
lation [42]. Thus, changes in SUCNR1 expression due to 
alterations in miRNA binding may serve as a predictive 
biomarker of type 2 diabetes and hypertension, although 
further research is needed. The role of SUCNR1 activa-
tion in common diabetic complications, including diabetic 
nephropathy, retinopathy, and NAFLD, all of which have a 
significant impact on patient health, is the focus of ongo-
ing research and the following subsections.

Diabetic nephropathy Diabetic nephropathy, which 
affects 20–50% of individuals with diabetes, is a wide-
spread, costly long-term diabetes complication and the 
main cause of end-stage renal disease. Its progression is 
linked to overactivation of the renin–angiotensin system, 
which is crucial for blood pressure regulation and renal 
balance. Overactivation of the renin–angiotensin system 
leads to renal inflammation, fibrosis, endothelial dysfunc-
tion and progressive kidney damage [43]. Succinate’s role 
in renin release, first identified in rat glomeruli in 1976 
[44], is SUCNR1-dependent [22], corroborated by elevated 
receptor expression in kidney [22, 23]. High succinate lev-
els in the urine of individuals with progressive diabetic 
nephropathy [45] and of murine models of streptozocin-
induced type 1 diabetes [43], along with high glucose driv-
ing increased renin and prorenin release via activation of 
the succinate–SUCNR1 pathway [43], underscore this sig-
nificance of the succinate–SUCNR1 axis in the pathophysi-
ology of diabetic nephropathy. Expressed in glomerular 
endothelial cells and the macula densa, SUCNR1 influ-
ences renin production by triggering secretion of prosta-
glandin, cyclooxygenase (COX)-1, COX-2 and endothelial 
nitric oxide synthase (eNOS) [46]. SUCNR1’s expression 
extends to tubular cells, which are the predominant produc-
ers of (pro)renin in individuals with diabetes [47]. Further-
more, succinate enhances renal damage by inducing renal 
tubular cell apoptosis via the ERK pathway [48]. Despite 
these insights suggesting that SUCNR1 inhibition may be 

a possible treatment avenue for diabetic nephropathy, no 
such interventions have been executed.

Diabetic retinopathy Diabetic retinopathy is intricately tied 
to SUCNR1; this receptor is found in key areas of the retina, 
such as the retinal ganglion cell layer and the retinal pig-
ment epithelium [49]. Research involving Sucnr1-deficient 
mice highlights the receptor's importance in retinal devel-
opment and function as these mice exhibit early sub-retinal 
dystrophy [49]. Studies further indicate that modulation of 
SUCNR1 through succinate supplementation or SUCNR1 
knockdown can influence retinal vasculature develop-
ment [50], thereby asserting a role for succinate-mediated 
SUCNR1 function in maintaining retinal vascular health. 
Recent investigations, however, also implicate succinate and 
SUCNR1 in the progression of diabetic retinopathy, particu-
larly in retinal vascular dysfunction and neurodegeneration 
[51]. Observations of elevated succinate levels in the vit-
reous fluid of individuals with active proliferative diabetic 
retinopathy [52] and in retinas from rat models of diabetes 
[53] underscore a link between succinate accumulation, 
hypoxia and retinal neovascularisation, key pathological 
features of diabetic retinopathy [51]. Interestingly, fasting 
succinate levels in the serum of individuals with prolifera-
tive retinopathy exceed those of people with type 2 diabe-
tes [54]. In contrast, individuals with diabetic retinopathy 
exhibit lower faecal succinate levels than healthy control 
participants [55], echoing the inverse relationship between 
circulating and faecal succinate levels that have been found 
in obesity studies [16]. Experimental use of Sucnr1 short 
hairpin RNA (shRNA) in diabetic rats has demonstrated 
retinal damage reduction and functional improvement [53]. 
Mechanistically, succinate-mediated SUCNR1 activation has 
been connected to angiogenesis, wherein hyperglycaemia-
induced increases in succinate levels activate SUCNR1, 
stimulating VEGF release and promoting endothelial cell 
proliferation and migration in vitro [56]. Recent work has 
also highlighted the interaction between iron, SUCNR1 and 
the renin–angiotensin system in diabetes-related neurode-
generation and vascular abnormalities [57], stressing the role 
of iron homeostasis in preventing retinal oxidative stress. 
Collectively, these findings underline the critical involve-
ment of succinate and SUCNR1 in the pathogenesis of 
diabetic retinopathy, suggesting new potential therapeutic 
targets.

NAFLD NAFLD, affecting roughly 25% of the global popu-
lation, is linked with insulin resistance, obesity and type 2 
diabetes, with prevalence soaring to 50–70% in people with 
diabetes [58]. The role of succinate and SUCNR1 in the 
progression of NAFLD is under investigation, especially as 
high blood succinate levels are found in individuals with 
NAFLD [10–12]. Notably, the analysis of recent clinical 
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data has further highlighted the potential of succinate as 
a non-invasive biomarker for diagnosing fatty liver [12]. 
Research has also reported elevated SUCNR1 expression 
in the liver during non-alcoholic steatohepatitis (NASH) in 
both animal models [12, 26] and humans [12, 59], hinting 
that SUCNR1 expression might serve as a valuable prog-
nostic marker for NASH [12]. Mechanistic studies in cell 
cultures and animal models show that hepatocyte-released 
succinate triggers fibrotic changes in the liver through 
activation of hepatic stellate cells [26, 60], suggesting the 
potential of SUCNR1 as a target for anti-fibrotic NAFLD 
treatment [61]. However, the contribution of SUCNR1 sig-
nalling in other liver cell populations to NAFLD progression 
remains underexplored. In fact, our latest findings propose 
that the succinate–SUCNR1 pathway might be protective in 
early NAFLD by mitigating lipid accumulation and glyco-
gen depletion in damaged hepatocytes [12]. Further inves-
tigations are warranted, but these recent findings suggest 
that cell-directed pharmacology could be a more effective 
strategy than SUCNR1 agonists or antagonists for managing 
NAFLD [62].

Strategies for manipulating the succinate–
SUCNR1 axis in the management of diabetes

Pharmacological modulation of SUCNR1: 
the interplay of agonists and antagonists

The succinate–SUCNR1 axis, with SUCNR1 acting as a 
GPCR, presents a promising target for innovative diabetes 
therapies. SUCNR1 exhibits broad tissue distribution in a 
cell-specific manner, although its expression profile may 
vary across species. According to data from the Human Pro-
tein Atlas (www. prote inatl as. org/ search/ sucnr1, accessed 9 
October 2023), SUCNR1 is prominently expressed in the 
human kidney, thyroid gland and bone marrow. At a cel-
lular level, it is highly expressed in proximal tubular cells, 
macrophages and monocytes. However, in mice, SUCNR1 
is mostly located in the adipose tissue, liver and kidney [23, 
63]. This variability in tissue distribution, coupled with its 
cell-specific functions, should be considered when contem-
plating SUCNR1 as a pharmacological target.

Small molecules acting as agonists or antagonists can 
modulate this receptor. In 2017, two SUCNR1 agonists, 
cis-epoxy succinic acid and cis-1,2-cyclopropane carbox-
ylic acid, were discovered. They showed significant in vivo 
activity and comparable efficacy to succinate, albeit without 
the corresponding intracellular actions. Indeed, the former 
was 10- to 20-fold more potent than the natural ligand [64]. 
Later, novel agonists with higher stability were identified 
[65]. SUCNR1 antagonists, such as the human-specific NF-
56-EJ40 [66], were also reported, underscoring the need for 

compounds with activity on rodent receptor orthologues 
so that the effects of SUNCR1 antagonists can be further 
explored using preclinical models. Notably, agonist and 
antagonist tracers for mouse and human SUCNR1 ortho-
logues have recently been developed [67]. SUCNR1 antago-
nists offer potential benefits in counteracting the harmful 
effects of succinate signalling observed in diabetes, promis-
ing a reduction in inflammation and metabolic balance res-
toration. Inhibiting SUCNR1 could prevent diabetes-related 
retinal neovascularisation [50] and kidney disease [43], 
although these potential benefits have yet to be scientifically 
substantiated. However, using SUCNR1 as a pharmaceutical 
target requires an extensive understanding of its physiologi-
cal and pathological roles. In fact, in the context of NAFLD, 
while SUCNR1 antagonists may reduce fibrosis [61], they 
could also worsen steatosis [12]. Similarly, while the inhibi-
tion of SUCNR1 has been proposed as a strategy to alleviate 
various inflammatory conditions [4], its blockade might be 
detrimental in treating inflammation and glucose intolerance 
in obesity [27]. However, no preclinical studies involving 
animal models treated with selective SUCNR1 modulators 
as pharmacological therapies have been reported to date.

Strategies for manipulating succinate 
concentrations

Circulating levels of succinate can be influenced by cellular 
mitochondrial activity, microbiota composition and diet. As 
discussed below, several studies have explored the impact of 
dietary succinate supplementation and probiotic modulation 
on energy homeostasis, though some of the findings have 
been inconsistent.

Succinate administration Despite chronically high succi-
nate levels being a characteristic of metabolic diseases [3, 
5, 6, 10–12], some research has examined its therapeutic 
use in obesity and diabetes management (Table 1). In ani-
mal models of type 1 diabetes, succinate administration has 
been shown to alleviate liver damage and lower lipid per-
oxidation [68]. Combined with oleic acid, it improves the 
control of blood glucose levels and promotes weight loss 
[69]. Research using short-term high-caloric diets in mice 
or genetic models of obesity has indicated that succinate 
can stimulate beige adipose tissue development [70], induce 
thermogenesis in brown adipose tissue [71] and improve 
glucose homeostasis [71]. Specifically, succinate was found 
to improve glucose homeostasis and reduce hyperglycaemia 
by activating intestinal gluconeogenesis [14, 18]. Most of 
the available research concerning the therapeutic potential 
of succinate has predominantly focused on obesity rather 
than diabetes, often emphasising a preventative rather than 
therapeutic strategy. It is noteworthy that the development 
of hyperglycaemia and impaired glucose-stimulated insulin 

http://www.proteinatlas.org/search/sucnr1
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secretion in high-fat-diet (HFD)-induced obesity models 
occur over a period of time, akin to the mild progression of 
diabetes observed in humans [72, 73]. Indeed, detrimental 
effects have been observed with extended treatment regi-
mens, where succinate supplementation has been shown to 
increase fasting glucose and LDL-cholesterol levels without 
significantly affecting body weight, albeit with a reduction 
in adiposity [74]. These findings collectively suggest that 
the timing of succinate administration may hold a pivotal 
role in achieving favourable outcomes. Consequently, fur-
ther investigations will be imperative to explore the poten-
tial of succinate supplementation once the pathology is 
already established. In addition, studies on zebrafish, an 
appealing model for obesity and type 2 diabetes, have 
yielded deleterious outcomes concerning weight gain, 
hepatic fat accumulation and gut microbiota composition 
[75], which points to potential species differences.

It is worth noting that the use of disodium succinate in 
some of the above-mentioned articles may introduce poten-
tial confounding factors due to hypertonicity. However, 
Lund et al demonstrated that, unlike the observed effects 
with sodium lactate, the anti-obesogenic effect of succinate 
administration is independent of sodium [76]. Finally, suc-
cinic acid derivatives or succinate combinations with other 
drugs have shown the potential to improve cognitive and 
depressive symptoms related to diabetes in humans [77]. 
In summary, the available data suggest that the adminis-
tration of succinate during the early stages of obesity may 
offer potential benefits in counteracting weight gain and 
disturbances in glucose homeostasis. However, as obesity 
progresses, succinate's efficacy appears to be compromised 
due to the development of resistance, likely stemming from 
elevated circulating succinate concentrations.

Microbiota modulation and other indirect strategies In 
addition to direct succinate administration, various strate-
gies focusing on microbiota modulation and other indirect 
approaches have been employed to influence intestinal suc-
cinate production and absorption (Table 2). However, only 
two interventions, a lifestyle modification study involving 
women with obesity [3] and the administration of the suc-
cinate-consuming bacteria Odoribacter laneus in murine 
models of obesity and diabetes [16], have assessed mod-
ulation of circulating succinate levels. In both instances, 
a reduction in blood succinate was observed. In the first 
study, this reduction was associated with weight loss and 
a decrease in the ratio of succinate producers:consumers 
within the gut microbiota [3]. In the second study, reduced 
blood succinate was linked to improved glucose control and 
reduced inflammation [16]. Conversely, studies following 
pre- and probiotic administration or faecal microbiota trans-
plantation have predominantly examined succinate levels 

or production within the gut or faeces, where increases in 
succinate or succinate producers have generally been asso-
ciated with protective effects [14, 17, 18, 78]. Specifically, 
the genus Prevotella, with a particular focus on Prevotella 
copri [14, 17] has been extensively investigated. Strategies 
to enhance Prevotella presence in the gut, including dietary 
interventions with fibre [17], the oral gavage of bacteria [14, 
17] or faecal microbiota transplantation [17], have resulted 
in improvements in glucose homeostasis[14, 17]. Similarly, 
hemicellulose supplementation has demonstrated enhanced 
glucose tolerance, improved gut function and reduced sys-
temic inflammation in db/db mice [78].

Administration of Parabacteroides distasonis, another 
succinate-producing bacterium, led to an increase in gut 
succinate concentration concurrent with reduced weight 
gain, improved blood glucose levels and mitigated hepatic 
steatosis in mouse models of genetic and diet-induced obe-
sity [18]. Meanwhile, Blautia wexlerae, also a succinate 
producer, counteracted obesity and diabetes induced by an 
HFD, with succinate levels reported to increase primarily 
in adipose tissue and the liver [19]. Focusing on diabetes 
complications, daily topical application of the beneficial 
bacterium Lactiplantibacillus plantarum was found to pro-
duce succinate and expedite wound healing in rat models 
of type 1 diabetes [79]. It is crucial to emphasise, however, 
that none of these studies have conclusively established that 
the observed beneficial effects are solely attributable to suc-
cinate. In fact, it is evident that the involvement of other 
metabolites, which are also likely to be modulated with these 
interventions, cannot be ruled out. In contrast, increasing 
succinate consumers in the gut through faecal microbiota 
transplantation, or decreasing succinate in the gut through 
supplementation with fermented rice bran has also proven 
effective in ameliorating obese and diabetic phenotypes in 
mice [20, 80]. These findings align with results obtained 
in our study, where a probiotic intervention involving O. 
laneus revealed that the beneficial effects of reducing suc-
cinate levels were contingent on its signalling capacities 
through SUCNR1 [16]. This underscores the need for further 
research to elucidate whether modulating succinate produc-
tion or consumption in the gut holds therapeutic promise. 
The outcome may depend on the amount of succinate that 
enters the circulation and reaches other tissues, influenced 
by changes in its production:consumption ratio, cross-feed-
ing reactions and intestinal permeability.

Conclusions and future directions

In sum, our knowledge of the role of the succi-
nate–SUCNR1 system in health and disease continues to 
grow. Despite their importance in maintaining metabolic 
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and immune balance, succinate and its receptor can also 
contribute to chronic diseases, complicating therapeutic 
strategies. This is especially true in diabetes, where dis-
rupted succinate signalling plays a part in disease progres-
sion. Heightened succinate levels in people with diabetes 
and animal models of this disease hint at a relationship 
between succinate and insulin resistance, disturbed glu-
cose metabolism and co-existing conditions. As our review 
outlines, circulating and faecal succinate emerge as poten-
tial clinical tools for diabetes prediction. Although tissue-
specific determination of succinate could provide more 
clinical value, blood and faecal succinate are more eas-
ily accessible and measurable via non-invasive methods, 
providing a window into the metabolic disruptions linked 
to diabetes, including changes in mitochondrial function, 
oxidative stress and dysbiosis. These characteristics make 
succinate a potentially valuable biomarker for early detec-
tion and risk stratification in diabetes. However, there is 
still much to learn; standardised measurement methods 
and large-scale studies are needed to validate succinate's 
utility in predicting diabetes. Due to its duality in func-
tion and source, its interactions with other metabolic fac-
tors and contradictory effects on metabolic health require 
a comprehensive research approach. As a central mol-
ecule in diabetes research, succinate offers insights into 
the dichotomous outcomes of metabolic diseases. Thus, 
understanding succinate's roles and interactions with other 
cellular pathways could be helpful for diabetes manage-
ment. Moreover, striking a balance between blocking the 
harmful effects of SUCNR1 while maintaining its benefi-
cial ones offers a promising path for novel diabetes treat-
ments. We must fully uncover the mechanisms driving suc-
cinate–SUCNR1 signalling and their impact on disease 
progression; this knowledge could help to develop inter-
ventions to curb succinate’s detrimental effects in diabetes, 
improving patient outcomes.
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