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Abstract
The liver plays a crucial role in the control of glucose homeostasis and is therefore of great interest in the investigation of the 
development of type 2 diabetes. Hepatic glucose uptake (HGU) can be measured through positron emission tomography (PET) 
imaging with the tracer [18F]-2-fluoro-2-deoxy-d-glucose (FDG). HGU is dependent on many variables (e.g. plasma glucose, 
insulin and glucagon concentrations), and the metabolic state for HGU assessment should be chosen with care and coherence 
with the study question. In addition, as HGU is influenced by many factors, protocols and measurement conditions need to be 
standardised for reproducible results. This review provides insights into the protocols that are available for the measurement of 
HGU by FDG PET and discusses the current state of knowledge of HGU and its impairment in type 2 diabetes. Overall, a scanning 
modality that allows for the measurement of detailed kinetic information and influx rates (dynamic imaging) may be preferable 
to static imaging. The combination of FDG PET and insulin stimulation is crucial to measure tissue-specific insulin sensitivity. 
While the hyperinsulinaemic–euglycaemic clamp allows for standardised measurements under controlled blood glucose levels, 
some research questions might require a more physiological approach, such as oral glucose loading, with both advantages and 
complexities relating to fluctuations in blood glucose and insulin levels. The available approaches to address HGU hold great 
potential but await more systematic exploitation to improve our understanding of the mechanisms underlying metabolic diseases. 
Current findings from the investigation of HGU by FDG PET highlight the complex interplay between insulin resistance, hepatic 
glucose metabolism, NEFA levels and intrahepatic lipid accumulation in type 2 diabetes and obesity. Further research is needed 
to fully understand the underlying mechanisms and potential therapeutic targets for improving HGU in these conditions.
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EGP  Endogenous glucose production
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G6P  Glucose-6-phosphate
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HEC  Hyperinsulinaemic–euglycaemic clamp
HGU  Hepatic glucose uptake

IDIF  Image-derived input function
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NAFLD  Non-alcoholic fatty liver disease
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Introduction

The liver plays a crucial role in the control of glucose home-
ostasis and is therefore of great interest in the investigation 
of the development of diseases that involve dysregulation of 
blood glucose levels, such as type 2 diabetes and non-alco-
holic fatty liver disease (NAFLD). While the investigation 
of hepatic endogenous glucose production (EGP) and of its 
regulation by insulin has been extensive, much less is known 
regarding the regulation of hepatic glucose uptake (HGU). 
This is mainly because of the complexity of its measure-
ment and interpretation. Considering that HGU plays a key 
role in the regulation of blood glucose homeostasis, and is 
known to be dysregulated in insulin resistance, for example, 
[1] a better understanding of the mechanisms of HGU (dys)
regulation could pave the way for targeted therapies based 
on specific pathways that are affected in type 2 diabetes, thus 
improving the management of type 2 diabetes and related 
metabolic disorders; and [2] the definition and harmonisa-
tion of HGU imaging protocols, differentiating requirements 
under diverse metabolic states (e.g. steady state in insulin 
clamp studies, unsteady state under meal or glucose load-
ing), could expand its clinical usefulness. The measurement 
of HGU is mainly challenging because of the difficulty in 
accessing the hepatic blood supply for invasive measure-
ment of glucose uptake. With advances in positron emission 
tomography (PET) technology, a growing number of studies 
have made use of non-invasive imaging with the radioactive 
tracer [18F]-2-fluoro-2-deoxy-d-glucose (FDG) to measure 
liver-specific glucose uptake. These studies have provided 
valuable insights into the mechanisms that lead to impair-
ments in HGU. However, as HGU is dependent on many 
variables, such as plasma glucose and portal vein insulin 
and glucagon levels, additional efforts are required to stand-
ardise protocols and conditions for measuring HGU with 
FDG PET, and to achieve full understanding of its role in 
the pathophysiology of type 2 diabetes [1–4]. In this review, 
we aim to provide insights into the protocols that have been 
made available for the measurement of HGU by FDG PET. 
We will also discuss the current state of knowledge of HGU 
and its impairment in type 2 diabetes.

Fate of FDG in the liver

The fate of FDG in the liver is described in Fig. 1. Uptake 
of FDG into hepatocytes is mediated by the highly abun-
dant GLUT2 glucose transporter, which is not saturated 

even when glucose levels are high [5]. Therefore, the rate 
and direction of movement of glucose (and by extension 
FDG) is strongly influenced by the relative concentrations 
of glucose inside and outside the cell. In the postprandial 
state, glucokinase (responsible for the phosphorylation 
of FDG into FDG-6-phosphate) is activated through its 
translocation from the nucleus to the cytoplasm. This 
translocation is mainly stimulated by increasing concen-
trations of glucose (and/or fructose) [6]. In the majority 
of tissues except for the liver, once FDG is taken up and 
phosphorylated into FDG-6-phosphate, it mostly becomes 
‘trapped’. The liver expresses glucose-6-phosphatase 
(G6Pase), which is responsible for the dephosphoryla-
tion of glucose-6-phosphate (G6P) into glucose. Liver 
dephosphorylation of FDG within the typical time win-
dow of most imaging protocols may be limited but should 
be considered, especially in fasted or insulin-resistant 
states. This has consequences in terms of the mathemati-
cal model that should be employed to appropriately inter-
pret FDG PET-derived HGU.

Scanning modalities and analysis 
for studying HGU

Static and dynamic FDG PET The advantages and disad-
vantages of static imaging and the standardised uptake 
value (SUV) (Text box 1) for HGU research have been 
extensively discussed by others [7]. Static scanning pro-
vides limited information on glucose fluxes, as FDG 
kinetics cannot be described, and uptake and phosphoryl-
ation cannot be dissected from dephosphorylation. The 
selection of a single appropriate time point to represent 
‘net’ glucose uptake is challenging. If blood radioactivity 
over time is independently measured (by repeated blood 
sampling and gamma counting), a fractional uptake rate 
can also be calculated from a static scan, which is more 
quantitative than the SUV [8, 9]. Dynamic imaging (Text 
box 2 [2, 10]) provides a more informative and robust 
description of hepatic FDG kinetics [11]. After image 
reconstruction and data extraction, dynamic data (time–
activity curves) allow the calculation of detailed kinetic 
information and fluxes using mathematical modelling. 
The most common models are discussed in the follow-
ing sections. An overview of studies employing dynamic 
scanning to investigate HGU is presented in Table 1 and 
the pros and cons of each technique used are summarised 
in Table 2.
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Compartmental models To describe FDG kinetics in the liver, 
a three-compartment model was suggested, first described by 
Sokoloff et al [12]. The model and rate constants  (k1–k4) are 
described in Fig. 1. While in most tissues the rate of dephospho-
rylation  (k4) is null, the liver has high levels of G6Pase activ-
ity, especially in the fasted condition, as insulin levels are low 
and hepatic glucose output is high. Consequently,  k4 cannot be 
assumed to be zero in the liver. From the single rate constants 
(Fig. 1), the tissue fractional extraction rate constant for FDG 
(Ki) can be calculated, that is,  k1×k3/(k2+k3). FDG can also 
enter the pentose phosphate pathway (PPP) to some extent, in 
which G6P is converted to ribulose-5-phosphate, generating 

NADPH. This is mostly apparent 45–180 min following FDG 
injection; therefore, one could consider adding more compart-
ments to the kinetic model in studies with an extended duration 
[13]. Furthermore, FDG can also be incorporated into glyco-
gen, but to a much smaller extent, which is therefore mostly 
considered negligible, at least in pigs under fasting or hyperin-
sulinaemic–euglycaemic clamp (HEC) states [13, 14].

Patlak model The Patlak model (or plot) is a sophisticated 
approach, leading to a simplified graphical analysis [15]. This 
approach assumes that the behaviour of the tracer can be approx-
imated by two main compartments: a reversible compartment 
that is in rapid equilibrium with plasma (e.g. FDG in cytoplasm) 
and an irreversible compartment, where tracer enters and is 
trapped in tissue during the measurement time (FDG-6-phos-
phate). Using a graphical technique combining FDG activity 
curves in the tissue of interest (e.g. liver) and in plasma, a curve 
is generated, reaching linearity at time=t*. A regression line can 
be fitted to the data after t*. The slope of the line represents the 
net influx rate constant of the tracer in the irreversible compart-
ment, that is, influx of FDG (Ki) from plasma to tissue.

The metabolic state studied (fasted, insulin stimulation) 
should be considered in the design and interpretation of Pat-
lak analysis in the liver, and a corrective algorithm for the loss 
of tracer from irreversible compartments has been proposed 
to overcome the underestimation of Ki when some tracer is 
actually dephosphorylated and not trapped [16]. Under insulin 
stimulation, rates of dephosphorylation should be considerably 
suppressed and the Patlak model is commonly adopted without 
such correction; it is the most commonly used method for the 
investigation of HGU using FDG PET (Table 1). From the 
Ki value and blood glucose levels, the glucose metabolic rate 
(MRGlu) can be determined (Text box 3 [14, 17]).

Text box 3: Glucose uptake and 
lumped constant

Glucose uptake (MRGlu) can be calculated as:
KiFDG×plasma glucose/lumped constant (LC)

Plasma glucose levels are obtained from blood 
sampling

The LC accounts for different affinities of FDG and 
glucose for glucose transporters and 
phosphorylating enzymes

Importantly, the LC may differ by tissue and 
metabolic stimulus. In the liver, a LC of 1 is usually 
assumed, based on experiments in pigs (fasted 
1.18±0.26 vs hyperinsulinaemia 0.98±0.10)

Text box 1: Static imaging

Static imaging consists of the acquisition of a single 
image at a given time frame after tracer administra-
tion

It is typically used in clinical settings, where image 
analysis is often qualitative or supported by semi-
quantitative analysis, such as the standardised up-
take value (SUV)

The hepatic SUV estimates the proportion of the in-
jected dose (per unit of body mass) that is extracted 
and retained by the liver during the scanning time

Static imaging does not take into consideration the 
amount of FDG that is available in plasma over time 
for tissue extraction

Static imaging does not provide kinetic information

Text box 2: Dynamic imaging
Dynamic scanning allows the measurement of 
tracer activity in the tomographic field of view over 
time

Image acquisition is typically started together with 
tracer injection

In most scanners the axial field of view (i.e. one bed 
position) is in the range 15–25 cm, that is, sufficient 
to image the heart and liver

For more distant organs, the heart and liver region 
can be imaged first (e.g. 10 min after injection) fol-
lowed by repeated imaging of other body regions

Dynamic scanning provides kinetic information
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Input function To quantify FDG tissue uptake from 
dynamic imaging, knowledge of the input function is 
required (Text box 4 [18–20]). Under physiological cir-
cumstances, the liver receives 80% or more of its blood 
from the portal vein and 20% from the arterial circulation 
[21, 22]. Ideally, the dual input function supplying the 
liver should be known. This is complicated by the fact 
that the injected tracer is first distributed to the intestines, 
spleen and pancreas before reaching the portal vein enter-
ing the liver. The tracer concentration in the portal vein 
differs from that in the arteries, and the portal vein is 
very difficult to access for sampling. To date, measuring 
the image-derived input function (IDIF) from the portal 
vein has seldom been attempted and could result in high 
noise and partial volume effects [23]. Some authors have 
proposed methods to approximate the portal venous input 
[24, 25] mathematically or by adding the gut as a com-
partment in modelling [26, 27]. Studies of FDG PET in 
pigs in fasted and insulin-stimulated states [14, 28] have 
consistently shown that three-compartment analysis using 
a single arterial input does lead to an underestimation of 
rate constants and HGU [14, 28]. However, this underesti-
mation seems to be systematic, as highlighted by a strong 
correlation between the HGU calculated from dual input 
functions and that calculated from single input functions, 
regardless of whether in a fasted or insulin simulated state 
[14]. Patlak analysis may be less dependent on the dual vs 
arterial input function to estimate the net influx rate (Ki) 
[28]. However, with advances in scanner technology, such 
as time-of-flight imaging, improvements in image quality 
and resolution have allowed an IDIF to be obtained from 
the portal vein [29], which is expected to increase preci-
sion in HGU quantification. Overall, the use of a single 
arterial input is informative for HGU, provided that results 
are viewed in light of the limitation regarding a potential 
underestimation of HGU [14, 28].

Measuring HGU under different conditions

When designing a study involving the measurement of HGU 
by FDG PET, one needs to decide under which metabolic 
state participants will be characterised (e.g. fasted, fed, insu-
lin-stimulated). The choice will depend on the research ques-
tion and population of interest. An overview of the advan-
tages and disadvantages of each state is provided in Table 2.

Fasted state Several metabolic studies have investigated 
HGU in the fasted state, during dynamic or static acquisition 
protocols [4, 30]. Because examinations in the fasted state 
are most common in routine clinical contexts, one advantage 
is that large numbers of participant data are available for 
retrospective or prospective analysis compared with more 
demanding studies, that is, studies carried out under stim-
ulated conditions [1, 4]. In terms of pathophysiology, the 
fasted state is best suited to examine glucose output rather 
than uptake. In addition, detection of liver inflammation via 
FDG uptake may benefit from low hepatocyte FDG reten-
tion under fasting conditions. Recent studies have shown the 
feasibility of a dynamic protocol with kinetic modelling for 
the assessment of hepatic inflammation against histopatho-
logical inflammation grades from biopsies [31, 32]. Addi-
tionally, the  k1 rate constant has been shown to be inversely 
correlated with hepatic inflammation scores in individuals 
with NAFLD or non-alcoholic steatohepatitis (NASH) [32]. 
In a preclinical study, HGU measured by FDG PET was 
shown to discriminate histology-proven NAFLD from initial 
NASH [33] in rats. Importantly, fasting measures are essen-
tial to demonstrate the magnitude of a stimulus, for example 
comparing fasted and insulin-stimulated states to quantify 
the relevance of insulin regulation. Some studies have shown 
that differences in HGU between participants with and with-
out type 2 diabetes are detectable during insulin stimulation 
and not in the fasted state [30].

Hyperinsulinaemic–euglycaemic clamp By combining the 
HEC (Text box 5 [34]) with FDG PET, one can quantify 
tissue-specific insulin-stimulated glucose uptake in any 
tissue that is in the tomographic field of view. Compared 
with the fasting state, a HEC inhibits dephosphorylation 
and stimulates phosphorylation, lipogenesis and glycogen 
synthesis, amplifying differences in HGU between indi-
viduals and providing relevant information on metabolic 
diseases such as type 2 diabetes, insulin resistance, obesity 
and NAFLD. Throughout the PET acquisition, insulin is 
continuously infused and euglycaemia is maintained. The 
FDG injection and PET acquisition are started at the time 
of steady state, which typically occurs at 60–90 min into 
the clamp, depending on the protocol (Table 1). Acquisition 

Text box 4: Input function
The input function represents the availability of 
FDG in the inflowing vessels and is required for 
modelling of the data

The input function can be measured through arterial 
or arterialised blood sampling

Alternatively, it can be measured non-invasively 
from PET images of the heart, aorta or carotid 
arteries (image-derived input function [IDIF])

The input function is validated against arterial 
sampling
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often consists of one or two dynamic bed positions, over 
the liver/thoracic area, to obtain the input function from the 
cardiac left ventricle. As mentioned, sometimes multiple bed 
positions over additional regions of interest (skeletal muscle, 
adipose tissue, brain) and/or whole-body dynamic protocols 
in combination with a HEC have also been performed [2, 10] 
(Table 1). The multi-organ approach allows estimation of the 
relative contribution of each organ to whole-body tissue-
specific insulin resistance. HEC protocols in combination 
with FDG PET have a typical duration of 2–3 h in total, with 
around 40-60 min of PET acquisition (Table 1). An example 
of a whole-body PET map of glucose uptake and a Ki map 
(image generated by the calculation of Ki for every pixel) 
from a HEC FDG PET scan is provided in Fig. 2.

Peripheral infusion of insulin and glucose: advantages and 
disadvantages During a HEC, glucose and insulin are 
infused through the systemic circulation, which is con-
siderably different from what happens physiologically in 
response to consuming a meal. Under physiological con-
ditions, glucose is absorbed by the gut and undergoes first 
pass extraction in the liver before reaching the systemic 
circulation. The same is true for insulin, which reaches 
the liver directly through the portal vein after secretion by 
the pancreas. During the first pass, 40–80% of this insu-
lin is cleared by the liver and the rest is released into the 
systemic circulation [35, 36]. The liver is therefore always 
exposed to much higher insulin and glucose concentra-
tions than other organs. Recent studies in unconscious 
dogs [37] clearly showed that peripheral insulin infusion 
during a clamp led to under-stimulation of HGU com-
pared with portal insulin infusion, which can lead to mis-
interpretation of the role of the liver compared with other 
organs [37, 38]. This highlights that the route of insulin 
and glucose delivery is key to the assessment of HGU, 
and one should be aware of the potential underestimation 

of HGU in the absence of portal delivery. This concept is 
further supported by studies in rats [39] in which hepatic 
glycogen synthesis was lower under systemic than por-
tal insulin infusion [39]. Importantly, this bias cannot be 
corrected by simply adjusting the dose of the peripheral 
infusion of insulin. Indeed, increasing the insulin levels 
would enhance the amount of insulin reaching the liver 
but would also stimulate skeletal muscle glucose uptake 
proportionally [37], perpetuating the imbalance.

Oral glucose load (and FDG) Performing a scan after oral 
ingestion of glucose can be a more physiological alter-
native to a HEC or hyperglycaemic–hyperinsulinaemic 
clamp [40, 41]. In fact, an oral glucose load was shown 
to produce a threefold higher HGU than similar levels of 
blood glucose and insulinaemia achieved through periph-
eral glucose infusion [38, 42]. This may be a first pass 
effect, as glucose concentrations in the portal vein are 
a lot higher than in the peripheral circulation during a 
glucose bolus, enhancing HGU. However, an oral glucose 
load also presents its own challenges. In insulin-depend-
ent organs such as the myocardium [43], image quality 
from FDG PET was superior during a HEC than 1 h after 
a glucose load, mainly because of the lower competition 
during a HEC between glucose and FDG levels for organ 
entry, together with protracted insulin stimulation in the 
HEC as insulin is continuously infused. In line with this, 
the Patlak slope (Ki) was clearly different after a glu-
cose load compared with the clamp, but glucose uptake 
(accounting for blood glucose levels) was similar [43]. 
Notably, however, the image quality in the case of the 
heart and liver is not affected by the same factors, as 
insulin is a major driver of cardiac glucose uptake (less 
prominent for HGU), whereas glucose is the primary 
stimulus for HGU. Consequently, an oral glucose load 
should maximise HGU and improve the quality of liver 
imaging. An oral glucose load generates variable levels of 
glucose and insulin, either over time or between individu-
als, introducing complexity in modelling, but with the 
advantage that the test is personalised to the real-life situ-
ation of each individual. Measurement of the portal vein 
glucose concentration as an input function also remains 
challenging. In spite of these technical complexities, the 
combination of an oral glucose load and FDG injection 
has been performed for investigation of the effects of 
glucose-lowering medications on glucose uptake in the 
brain, liver and adipose tissue [40, 41]. In these studies, 
an oral glucose load of 75 g, which is the standard dose 
for OGTTs, was ingested at the same time as injection of 
FDG, following drug or placebo administration. The mod-
elling procedure was refined to adjust for glucose varia-
tions. Overall, the combination of oral glucose ingestion 

Text box 5: Hyperinsulinaemic–
euglycaemic clamp (HEC)

The HEC is the gold standard for the assessment of 
whole-body insulin sensitivity

Plasma insulin levels are maintained at postprandial 
levels by continuous insulin infusion

Simultaneously, glucose levels are clamped at a 
constant level, usually 5–6 mmol/l, using variable 
glucose infusion rates



412 Diabetologia (2023) 67:407–419

1 3

and FDG PET seems to be a viable option to investigate 
the physiological response, reflecting real-life interper-
sonal differences.

Interestingly, a recent study also showed the feasibil-
ity of oral administration of FDG for the investigation of 
HGU in animals [44]. Oral administration of FDG may 
reflect the physiology of HGU more closely than periph-
eral administration. To our knowledge, this approach has 
rarely been used in humans, and outside of the current 
context, but may in fact be key to the understanding of 
normal physiology.

Current FDG PET data on insulin‑stimulated 
HGU in type 2 diabetes and metabolic 
research

An overview of studies that have used FDG PET imag-
ing during insulin stimulation to specifically investi-
gate HGU is given in Table 3. Insulin has been shown 
to stimulate net glucose uptake in the liver compared 
with the fasted state [1] and this glucose uptake was 

impaired in individuals with type 2 diabetes and in 
those without diabetes with morbid obesity [3, 10, 
30, 45] (Table 3). Commonly used medication for the 
treatment of type 2 diabetes, such as metformin and 
rosiglitazone, significantly improved insulin-stimulated 
HGU after 26 weeks of treatment [46]. Bariatric sur-
gery increased insulin-stimulated HGU and suppressed 
EGP in morbidly obese individuals after 6 months [30] 
whereas a diet very low in energy (very low calorie diet) 
of shorter duration only reduced EGP [47]. While it is 
clear that insulin-stimulated HGU is impaired in type 2 
diabetes and morbid obesity, it is not fully understood 
where the defects occur and whether they extend to less 
extreme insulin-resistant conditions [1, 10]. It has been 
suggested that these defects originate from changes in 
glucokinase activity and/or expression and an impaired 
ability of insulin to suppress G6Pase activity. Indirect 
factors such as high circulating NEFA levels as a result 
of adipose tissue insulin resistance seem to also play a 
major role in impaired suppression of HGU by insulin; 
high NEFA levels are also key in hepatic lipid accumula-
tion, which is a hallmark of type 2 diabetes and has been 
shown to impair HGU. The cellular pathways involved in 

FDG in PPP

Glucokinase

Glucose-6-phosphatase

GLUT2FDG

Insulin

FDG FDG-6-P

FDG in glycogen

?

k1 k3

k4k2

Compartment
1

Compartment
2

Compartment
3

Fig. 1  FDG kinetics in the liver. FDG enters tissues via glucose trans-
porters, mainly GLUT2 in the case of the liver. Once inside cells, 
FDG is phosphorylated to FDG-6-phosphate (FDG-6-P). This reac-
tion is catalysed by the enzyme glucokinase [50]. The liver expresses 
glucose-6-phosphatase (G6Pase), which is responsible for the dephos-
phorylation of glucose-6-phosphate (G6P) into glucose and by exten-
sion of FDG-6-P into FDG. G6Pase activity is to some extent sup-
pressed by insulin. The model representing FDG kinetics in the liver 
most typically includes three compartments, namely FDG in inflow-
ing vessels, FDG in hepatocytes and FDG-6-P in hepatocytes. The 
rate constants  k1–k4 describe the exchange of FDG between blood 
and tissue  (k1 for influx,  k2 for efflux) and within tissue  (k3 for phos-

phorylation,  k4 for dephosphorylation). Additional compartments can 
be added to take into account FDG entering the pentose phosphate 
pathway (PPP), in which G6P is converted to ribulose-5-phosphate, 
generating NADPH, and the incorporation of FDG into glycogen. 
The amount of FDG that enters into the PPP pathway is considered 
to be quite small, with the amount incorporated into glycogen being 
even smaller. Compartmental modelling addresses the illustrated 
intracellular pathways, beyond the overall FDG influx (Ki), and is 
well suited to insulin-stimulated studies and fasting studies. The Pat-
lak model allows for the estimation of Ki but not its (k) components 
and is better suited to insulin-stimulated states than fasting states. 
This figure is available as part of a downl oadab le slide set 

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-023-06055-7/MediaObjects/125_2023_6055_MOESM1_ESM.pptx
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the (dys)regulation of hepatic glucose metabolism have 
been extensively described [38, 48, 49] and are beyond 
the scope of this review; some cellular pathways can-
not be specifically measured using FDG PET and others 
require a range of kinetic parameters (e.g. see the follow-
ing section), which have been addressed in a few studies 
and should be better exploited in the future. A summary 
of the findings from clinical trials investigating insulin-
stimulated HGU with FDG PET is provided in Fig. 3

Glucokinase and G6Pase The glucokinase gene (GCK) 
was one of the first genes identified in association with 

diabetes [50] and changes in glucokinase activity and 
expression are associated with type 2 diabetes and hepatic 
steatosis [50]. Some studies have shown a 50% decrease 
in glucokinase activity in individuals with type 2 diabe-
tes and obesity compared with obese or lean individu-
als without type 2 diabetes [51]. In line with this, stud-
ies investigating the combination of hyperglycaemia and 
hyperinsulinaemia on splanchnic glucose uptake [52, 53] 
have provided further evidence that the defect in glucose 
uptake occurs at a proximal metabolic step. This evidence 
supports the involvement of glucokinase in the impairment 

Table 1  Description of FDG PET insulin-stimulated HGU protocols in humans

BP, bed position; BG, blood glucose; WB, whole body

Author FDG dose (MBq) PET protocol Input function Clamp protocol Model

Eriksson (2021) [59] 331 10 min dynamic scan of 
thoracic region

6×WB series 10BP

Image-derived and arterial 
blood for validation

Insulin: 56 mU  m–2  min–1

Target BG: 5.6 mmol/l
Patlak

Johansson (2018) [2] 331 10 min dynamic scan of 
thoracic region

6×WB series 10BP

Image-derived and arterial 
blood for validation

Insulin: 56 mU  m–2  min–1

Target BG: 5.6 mmol/l
Patlak

Boersma (2018) [10] 331 10 min dynamic scan of 
thoracic region

6×WB series 10BP

Image-derived and arterial 
blood for validation

Insulin: 56 mU  m–2  min–1

Target BG: 5.6 mmol/l
Patlak

Honka (2018) [61] – Dynamic scans of abdomen 
and femoral regions

Arterial or arterialised 
samples

Insulin 40 mU  m–2  min–1

Target BG: 5 mmol/l
Patlak

Keramida (2017) [4] 400 1BP torso for 30 min + WB 
scan 60 min post injection

Image-derived Fasted Patlak

Immonen (2014) [30] – Brain (55 min), liver/abdo-
men/legs (15 min each)

Arterialised samples Fasted and
Insulin:1 mU  kg–1  min–1

Target BG: 5 mmol/l

Patlak

Rijzewijk (2010) [3] 170 60 min dynamic scan Image-derived Insulin 40 mU  m–2  min–1

Target BG 5 mmol/l
Patlak

Viljanen (2009) [47] Liver (15 min)
Skeletal muscle (15 min)

Arterialised sample Insulin: 1 mU  kg–1  min–1

Target BG: 5 mmol/l
Patlak

Borra (2008) [58] 220–260 40 min dynamic scan of 
liver

20 min dynamic scan of 
femoral region

Blood samples Insulin: 1 mU  kg–1  min–1

Target BG: 5 mmol/l
Patlak

Iozzo (2004) [55] 220 40 min dynamic scan of 
cardiac region and liver

Arterialised sample Insulin: 40 mU  m–2  min–1

Target BG: 5 mmol/l
Patlak and 

three-
com-
partment 
model

Iozzo 2003 [1] 250 40 min dynamic scan of 
cardiac and thoracic 
regions

Arterialised samples and 
image-derived (left heart 
chamber)

Insulin infusion: 40 mU 
 m–2  min–1

Mean BG: 5.1 mmol/l

Three-
com-
partment 
model vs 
Patlak

Iozzo 2003 [45] – 20 min dynamic scan of 
thigh

18 min dynamic scan of 
liver

Arterial samples Insulin 40 mU  m–2  min–1

Mean BG: 5.2 mmol/l
Patlak

Iozzo 2003 [46] – 2×18 min scans of liver/
abdomen

Image-derived and arterial 
samples

Insulin 40 mU  m–2  min–1

Mean BG: 5.1 mmol/l
Patlak
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of insulin-mediated HGU observed in type 2 diabetes by 
FDG PET.

A three-compartment model was used to determine 
FDG kinetics in the liver in insulin-resistant and insu-
lin-sensitive individuals without diabetes [1], providing 
detailed information on each transfer rate constant  (k1, 
 k2,  k3,  k4). The authors found that, on insulin stimula-
tion,  k3 values were similar between insulin-sensitive and 
insulin-resistant participants, but the  k3/k4 ratio (phospho-
rylation/dephosphorylation) was significantly lowered in 
the insulin-resistant group. This suggests an impaired abil-
ity of insulin to suppress dephosphorylation (thus G6Pase 
activity) in insulin-resistant individuals without diabetes, 
whereas phosphorylation remains normally stimulated. 
Further FDG PET studies, including participants with 
more advanced forms of insulin resistance, with or without 
fatty liver involvement, may allow the sequence of pro-
gressive impairments in hepatic metabolism contributing 

to type 2 diabetes or liver damage to be determined. The 
 k3/k4 ratio could be a valuable measure of hepatic insulin 
resistance, which has been shown to correlate with whole-
body insulin-stimulated glucose disposal [1]. In addition, 
the estimation of EGP by FDG plasma kinetics, as vali-
dated in pigs [54] and implemented in the human studies 
described above [30, 47], may corroborate  k3/k4 findings 
and the resulting HGU vs EGP balance.

Plasma NEFA and NAFLD The observed inability of insulin 
to suppress the dephosphorylation of FDG  (k4) in insulin-
resistant individuals could be an indirect effect of circu-
lating levels of NEFAs. Plasma NEFA levels have been 
shown to be inversely related to net HGU under fasting 
conditions [55] and to directly impair insulin-stimulated 
net HGU in healthy men [55], highlighting that plasma 
NEFAs play a key role in the regulation of HGU. The rela-
tionship between high NEFA levels (from unsuppressed 
adipose tissue lipolysis) and impaired EGP suppression 
by insulin has been reviewed extensively [48, 49]. Higher 
NEFA levels in insulin-resistant individuals may stimu-
late G6Pase activity [56] and could explain the observed 
lack of suppression of  k4 in these individuals [1]. Another 
effect of elevated plasma NEFA levels in insulin-resist-
ant conditions is the accumulation of intrahepatic lipids 
(IHLs). Indeed, circulating NEFAs are the main source 
(60%) of fatty acids accumulating in the liver [57]. High 
liver fat and NAFLD are strongly related to hepatic insu-
lin resistance [48]. Several studies have shown an inverse 
association between IHLs and insulin-stimulated HGU [3, 
58, 59]. Additionally, interventions such as weight loss 
through a very low calorie diet [47] reduce IHLs and at 
the same time improve insulin-stimulated HGU (non-sig-
nificantly) and EGP suppression by insulin (significantly) 
in individuals with obesity and without type 2 diabe-
tes (Fig. 3). Likewise, after bariatric surgery the strong 
decrease in IHL was paralleled by significant improve-
ments in insulin-stimulated HGU and EGP suppression 
[30]. This correlative evidence suggests a relationship 
between adipose tissue insulin resistance, IHL content 
and impaired insulin-stimulated HGU. It would therefore 
be of value to further investigate the mechanistic interplay 
between these factors in future studies.

Defect in the ability of glucose to promote its own 
uptake HGU is stimulated by both hyperinsulinaemia 
and hyperglycaemia. Typically, in a clamp, euglycae-
mia is maintained whereas postprandial insulin levels 
are induced to specifically understand the role of insu-
lin. As mentioned previously, this approach neglects the 
important action of hyperglycaemia in the regulation of 
HGU. A (non-imaging) study by Nielsen et al [60] inves-
tigated whether glucose-induced stimulation of HGU was 

Fig. 2  (a) Transaxial fused Ki map and CT image. Brighter areas 
(white-yellow) indicate a higher net influx rate constant (Ki). (b) Cor-
onal view of a whole-body PET map of glucose uptake. Darker areas 
represent higher glucose uptake. This figure is available as part of a 
downl oadab le slide set 

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-023-06055-7/MediaObjects/125_2023_6055_MOESM1_ESM.pptx
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abnormal in type 2 diabetes. To this end, they performed 
a clamp in which insulinaemia was kept at baseline lev-
els and glucose levels were progressively increased. They 
found a defect in glucose-stimulated HGU in type 2 dia-
betes, which was also seen at high insulin levels [60]. 
Interestingly, the difference in glucose-stimulated HGU 
between participants with type 2 diabetes and healthy 
control participants was removed at glucose levels lower 
than 7.2 mmol/l. To date, studies of this kind using FDG 
PET have not been reported, but glucose sensitivity 
should be addressed to comprehensively understand HGU 
pathophysiology, as disregarding this factor may lead to 

pathophysiologically important abnormalities in HGU 
being underestimated or missed.

Conclusion

In conclusion, understanding the unique physiology and meta-
bolic complexity of the liver is essential in designing protocols 
to measure HGU. In metabolic research, a scanning modality 
that allows for the provision of detailed kinetic information 
and influx rates (dynamic imaging) may be preferable to static 

Table 3  Summary of human studies of FDG PET for the measurement of HGU

CAD, coronary artery disease; IS, insulin sensitivity; T2D, type 2 diabetes

Author Design/intervention Participants Findings

Eriksson (2021)
[59]

Cross-sectional T2D (n=13), prediabetes (n=16), 
control (n=12)

Strong and inverse correlation between 
IHL levels and HGU

Johansson (2018)
[2]

Cross-sectional T2D (n=5), healthy control matched for 
BMI, age and sex (n=5)

Feasibility of WB dynamic protocol in 
combination with HEC

No significant correlation between  
M value and HGU

Boersma (2018)
[10]

Cross-sectional T2D+metformin (n=13), prediabetes 
(n=12), control (n=10)

HGU reduced in T2D but prediabetics 
and control participants have similar 
HGU

Honka (2018)
[61]

Cohort analysis Without diabetes (n=326) NEFAs during clamp negatively cor-
related with rate of HGU

Keramida (2017)
[4]

Retrospective Men (n=44), women (n=11) Fasting HGU higher in men than women

Immonen (2014)
[30]

Before and 6 months after bariatric 
surgery

Morbidly obese (T2D, n=9; without 
diabetes, n=14), healthy lean control 
(n=10)

Bariatric surgery improved insulin-stimu-
lated HGU and reduced IHL levels and 
improved EGP suppression by insulin

Rijzewijk (2010)
[3]

Cross-sectional Men with T2D (n=59), age-matched 
normoglycaemic men (n=18)

IHLs correlated negatively with insulin-
stimulated HGU

High IHLs in T2D decreased perfusion 
and insulin-stimulated HGU

Viljanen (2009)
[47]

Very low calorie diet, 6 weeks Healthy with obesity (n=34) Insulin-stimulated HGU unchanged
EGP suppression by insulin improved
IHL levels and body weight decreased

Borra (2008)
[58]

RCT, 16 weeks, rosiglitazone T2D (total, n=54; placebo, n=27; 
rosiglitazone, n=27), healthy control 
(n=8)

Inverse association between IHL levels 
and HGU in T2D

Iozzo (2004)
[55]

Cross-sectional Healthy men (n=8) NEFAs impair insulin-stimulated HGU 
and WB glucose uptake

HGU correlated with phosphorylation 
rate  (k3)

Iozzo 2003
[1]

Cross-sectional Low IS: CAD patients (n=7), normal 
IS: healthy sedentary men (n=16), 
high IS: athletes (n=8)

HGU increased with hyperinsulinaemia 
vs fasting

k3/k4 ratio decreased in those with low IS
Glucose influx rates negatively correlated 

with fasting plasma NEFA levels
Iozzo 2003
[45]

Cross-sectional Diet-treated T2D (n=38), control 
(n=22)

HGU decreased in T2D

Iozzo 2003
[46]

RCT, 26 weeks, rosiglitazone, met-
formin or placebo

T2D, no treatment (n=30) Both rosiglitazone and metformin 
increased HGU in T2D
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imaging. The combination of FDG PET and the HEC provides 
a precise method to measure tissue-specific insulin sensitiv-
ity. However, the HEC technique can misinterpret the muscle/
HGU balance because of the unnatural route and patterns of 
insulin and glucose delivery. While the HEC allows for stand-
ardised measurement under controlled blood glucose levels, 
many research questions (other than those focusing on insulin 
action per se) require a more ‘physiological’ approach, such as 
oral glucose loading, which has both advantages and disadvan-
tages relating to fluctuations in blood glucose and insulin lev-
els. For selected research questions, the use of a hyperglycae-
mic–hyperinsulinaemic clamp may be a practical compromise. 
When analysing the data, one should be aware of possible 
G6Pase and PPP activity and hence explore whether a simpli-
fied Patlak analysis is valid; otherwise, a three-compartment 
model may be used instead. In addition, choosing the right 
input function (arterial, portovenous or mixed) should be con-
sidered when analysing the data. Overall, after over 20 years 
of research in this field, the available approaches and technolo-
gies to address HGU using FDG PET hold great potential but 
require more intensive and systematic exploitation to improve 
our understanding of the mechanisms underlying metabolic 
diseases and to guide the development of new treatments.
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