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Abstract
Aims/hypothesis We hypothesised that islet beta cell antigen presentation in the gut along with a tolerising cytokine would 
lead to antigen-specific tolerance in type 1 diabetes. We evaluated this in a parallel open-label Phase 1b study using oral 
AG019, food-grade Lactococcus lactis bacteria genetically modified to express human proinsulin and human IL-10, as a 
monotherapy and in a parallel, randomised, double-blind Phase 2a study using AG019 in combination with teplizumab.
Methods Adults (18–42 years) and adolescents (12–17 years) with type 1 diabetes diagnosed within 150 days were enrolled, 
with documented evidence of at least one autoantibody and a stimulated peak C-peptide level >0.2 nmol/l. Participants were 
allocated to interventions using interactive response technology. We treated 42 people aged 12–42 years with recent-onset type 
1 diabetes, 24 with Phase 1b monotherapy (open-label) and 18 with Phase 2a combination therapy. In the Phase 2a study, after 
treatment of the first two open-label participants, all people involved were blinded to group assignment, except for the Data 
Safety Monitoring Board members and the unblinded statistician. The primary endpoint was safety and tolerability based on 
the incidence of treatment-emergent adverse events, collected up to 6 months post treatment initiation. The secondary endpoints 
were pharmacokinetics, based on AG019 detection in blood and faeces, and pharmacodynamic activity. Metabolic and immune 
endpoints included stimulated C-peptide levels during a mixed meal tolerance test,  HbA1c levels, insulin use, and antigen-specific 
 CD4+ and  CD8+ T cell responses using an activation-induced marker assay and pooled tetramers, respectively.
Results Data from 24 Phase 1b participants and 18 Phase 2a participants were analysed. No serious adverse events were 
reported and none of the participants discontinued AG019 due to treatment-emergent adverse events. No systemic exposure 
to AG019 bacteria, proinsulin or human IL-10 was demonstrated. In AG019 monotherapy-treated adults, metabolic variables 
were stabilised up to 6 months (C-peptide, insulin use) or 12 months  (HbA1c) post treatment initiation. In participants treated 
with AG019/teplizumab combination therapy, all measured metabolic variables stabilised or improved up to 12 months and 
 CD8+ T cells with a partially exhausted phenotype were significantly increased at 6 months. Circulating preproinsulin-specific 
 CD4+ and  CD8+ T cells were detected before and after treatment, with a reduction in the frequency of preproinsulin-specific 
 CD8+ T cells after treatment with monotherapy or combination therapy.
Conclusions/interpretation Oral delivery of AG019 was well tolerated and safe as monotherapy and in combination with 
teplizumab. AG019 was not shown to interfere with the safety profile of teplizumab and may have additional biological 
effects, including changes in preproinsulin-specific T cells. These preliminary data support continuing studies with this agent 
alone and in combination with teplizumab or other systemic immunotherapies in type 1 diabetes.
Trial registration ClinicalTrials.gov NCT03751007, EudraCT 2017-002871-24
Funding This study was funded by Precigen ActoBio
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Abbreviations
CTCAE  Common Terminology Criteria for Adverse 

Events
CyTOF  Cytometry by time of flight
EOMES  Eomesodermin
FIH  First-in-human
GI  Gastrointestinal
hIL-10  Human IL-10
hPINS  Human type 1 diabetes autoantigen proinsulin
ITT  Intention-to-treat
KLRG1  Killer cell lectin-like receptor G1
MMTT  Mixed meal tolerance test
PK  Pharmacokinetic
PP  Per protocol
PPI  Preproinsulin
qPCR  Quantitative PCR
TEAE  Treatment-emergent adverse event
TIGIT  T cell immunoreceptor with Ig and ITIM 

domains
Tr1  Regulatory type 1 T cell
Treg  Regulatory T cell

Introduction

Type 1 diabetes is a T cell-mediated autoimmune disease 
with progressive destruction of insulin-producing beta cells 

in the pancreas [1]. Standard of care involves tight manage-
ment of glycaemic control through life-long insulin therapy, 
but optimal metabolic management needed to prevent acute 
(e.g. ketoacidosis and severe hypoglycaemia) and chronic 
(e.g. retinopathy, nephropathy and heart disease) compli-
cations is not achieved in most people living with type 1 
diabetes [2–5]. Immune-modulating disease-modifying 
therapies are progressively entering the field, with the 
first agent (the anti-CD3 monoclonal antibody teplizumab 
[Tzield]) approved by the Food and Drug Administration 
(FDA) for stage 2 diabetes (multiple autoantibody positiv-
ity and dysglycaemia). T cell-directed immune therapies, 
such as teplizumab, low-dose anti-thymocyte globulin and 
the fusion protein abatacept (cytotoxic T lymphocyte-asso-
ciated antigen-4-immunoglobulin), and antigen-specific 
immune therapies, such as IMCY-0098, have shown prom-
ising results and are currently under clinical investigation 
for treatment of recent-onset type 1 diabetes [6]. Combining 
immune modulation with antigen introduction in a tolero-
genic manner could lead to antigen-specific immune thera-
pies, able to reset or arrest underlying disease processes, and 
is an appealing approach to treat type 1 diabetes with fewer 
off-target effects and a more sustainable efficacy compared 
with systemic immunosuppressive therapies [7].

Oral tolerance, using the oral route and the gut-associated 
lymphoid tissue to induce immunoregulatory mechanisms, 
has been successfully explored in other diseases such as 
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arthritis [8]. The proposed mechanism of action of AG019, 
Lactococcus lactis bacteria delivering the human type 1 
diabetes autoantigen proinsulin (hPINS) and human IL-10 
(hIL-10) directly to the intestinal mucosa, is to re-educate 
immune cells towards antigen-specific tolerance without sys-
temically impacting the natural protective functions of the 
peripheral immune system. Preclinical studies with AG019 
in combination with a low dose of anti-CD3 monoclonal 
antibody stably reverted diabetes in up to 89% of newly diag-
nosed NOD mice [9–12]. Treatment was associated with 
increased frequencies and accumulation of insulin-reactive 
regulatory T cells (Tregs) in and around the pancreatic 
islets and a reduction in disease-specific autoreactive  CD8+ 
T cells, without inducing generalised immune suppression.

Teplizumab, an Fc receptor non-binding humanised anti-
CD3 antibody, demonstrated therapeutic efficacy in multiple 
clinical trials in recent-onset and stage 2 diabetes [13–19] 
by selectively inactivating and eventually eliminating path-
ogenic cells while preserving Tregs [20–23]. Importantly, 
teplizumab induces a state of exhaustion [13, 19, 20, 24–26], 
a mechanism of action that may be complementary to the 
antigen-specific AG019 immune therapy as indicated by the 
preclinical data in the NOD mice.

These preclinical and clinical data have been the basis 
of a first-in-human (FIH) Phase 1b/2a study with AG019, 
administered as monotherapy and in combination with tepli-
zumab, in adults and adolescents with recent-onset type 1 
diabetes and residual beta cell function. The main study 
objective was to assess the safety and tolerability of AG019. 
Secondary endpoints included pharmacokinetic (PK) data 
to examine AG019 exposure, metabolic data to examine 
functional beta cell preservation and glycaemic control, and 
immunological data to gain insight into the mode of action 
of AG019 in type 1 diabetes.

Methods

We performed an FIH Phase 1b/2a study with AG019 and 
teplizumab in participants with recent-onset type 1 diabetes, 
recruited from 15 clinical sites in the USA and Belgium. The 
study protocol and its amendments, and the informed con-
sent forms, were approved by an independent ethics commit-
tee and institutional review board. All participants/parents/
guardians provided written informed consent before study 
entry. A data safety monitoring board reviewed the safety 
data at prespecified timepoints.

Study population Screening was done within 28 days of 
drug administration. Adults (aged 18–42 years) and ado-
lescents (aged 12–17 years) with type 1 diabetes, accord-
ing to ADA criteria [27], and diagnosed within 150 days, 
were enrolled. Enrolment required evidence of at least one 

autoantibody and a stimulated peak C-peptide level >0.2 
nmol/l during a 4 h mixed meal tolerance test (MMTT). 
Ethnicity and sex were investigator assessed or self-reported.

Study design The study consisted of two parts. In the open-
label Phase 1b study, two single ascending doses (low and 
high dose: one or three capsules twice daily, respectively) 
of AG019 monotherapy were administered in adults and 
adolescents. Participants were enrolled in four sequential 
AG019 monotherapy cohorts (low-dose adult, high-dose 
adult, low-dose adolescent, high-dose adolescent) follow-
ing a multi-step enrolment plan (electronic supplementary 
material [ESM] Fig. 1). Single-dose participants received 
AG019 on day 1 and were followed until the end-of-study 
visit on day 4. Repeat-dose participants started AG019 treat-
ment on day 1 with repeated daily doses for 8 weeks and 
were followed for 12 months.

In the randomised, double-blind Phase 2a study, adult 
and adolescent participants were enrolled in the AG019/
teplizumab combination therapy cohort. Three AG019 (or 
placebo) capsules were administered twice daily for 8 weeks, 
and teplizumab or placebo infusions were administered daily 
for the first 12 days. In each combination therapy cohort, 
the first two participants were enrolled in a staggered way 
as a safety measure and received active treatment (AG019 
plus teplizumab) in an open-label fashion. The remaining 
ten participants were randomised (4:1) to active treatment 
or placebo in a double-blind fashion. Participants were ran-
domised and started treatment on day 1 and were followed 
for 12 months (8 weeks of treatment and 10 months of post-
treatment follow-up).

Treatment AG019 is an oral capsule formulation consist-
ing of environmentally contained L. lactis bacteria (1×1011 
colony forming units per capsule) genetically engineered to 
secrete hPINS and hIL-10. AG019 (or placebo) capsules 
were taken at home: two capsules (one in the morning, one 
in the evening) for low-dose participants in the Phase 1b 
study, and six capsules (three in the morning, three in the 
evening) for high-dose participants in the Phase 1b study 
and the participants in the Phase 2a study. Participants in 
the combination therapy cohorts received i.v. infusions of 
teplizumab (or placebo) at the study site for 12 days (total 
cumulative dose of ∼9034 µg/m2, supplied by Macrogen-
ics, USA). All participants received diabetes management 
therapy with treatment-to-target goals according to ADA or 
equivalent guidelines [27].

Safety assessments The primary endpoint was the incidence 
of treatment-emergent adverse events (TEAEs), collected 
from all participants up to 6 months post treatment initia-
tion. Safety data collected up to the 12 month follow-up visit 
were assessed as a secondary safety endpoint. Throughout 
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the study, all repeat-dose participants recorded daily insulin 
use in an electronic diary.

PK assessments Systemic and local exposure to AG019 or 
its secreted proteins was assessed as a secondary endpoint. 
Blood and plasma samples were collected from all repeat-
dose participants at screening, on day 12 and day 56 (last 
day of treatment), and at month 3 to evaluate the presence of 
AG019 in whole blood using plating and quantitative PCR 
(qPCR) and AG019-secreted hPINS and hIL-10 in plasma 
using ELISA. Faecal samples were collected from all repeat-
dose participants in the high-dose monotherapy cohorts and 
all combination therapy cohorts at screening and on days 

56, 58, 60, 62 and 64 to evaluate the presence of AG019 
using qPCR.

Pharmacodynamic assessments Pharmacodynamic activ-
ity was assessed as a secondary endpoint by measurement 
of metabolic and immunological variables. Blood samples, 
collected from all repeat-dose participants in the monother-
apy and combination therapy cohorts at screening, on day 
56, and at months 3, 6, 9 and 12, were analysed for  HbA1c 
(%). C-peptide levels were measured during an MMTT 
performed at screening and at months 3, 6 and 12. These 
laboratory assessments were performed by Eurofins Central 
Laboratory (USA). Peripheral blood mononuclear cells were 
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Fig. 1  Participant disposition. aA total of three single-dose par-
ticipants were re-enrolled as repeat-dose participants in the different 
monotherapy cohorts. bSingle-dose participants were not included in 

the ITT and PP analysis sets. FU, follow-up; PD, protocol deviation; 
RD, repeat dose; SAF, safety analysis set; SD, single dose
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isolated from blood samples collected from all repeat-dose 
participants in the high-dose monotherapy and all combina-
tion therapy cohorts at screening; on days 1, 12 and 56; and 
at months 3, 6, 9 and 12 for assessment of antigen-specific 
(preproinsulin [PPI]-specific)  CD4+ and  CD8+ T cell popu-
lations. Antigen-specific  CD4+ T cell populations were 
identified using an activation assay and analysed by flow 
cytometry on a CYTEK Aurora spectral cytometer (USA). 
Antigen-specific  CD8+ T cells were stained using tetram-
ers according to established methods [28] and analysed by 
cytometry by time of flight (CyTOF) on a Helios CyTOF 
mass cytometer (USA). A full list of peptides and antibodies 
is provided in ESM Tables 1 and 2, and the gating strategy 
is depicted in ESM Fig. 2.

Statistical analysis The safety analysis set comprised all 
42 enrolled participants who received at least one AG019 
dose. All repeat-dose participants in the AG019 mono-
therapy (n=19) and AG019/teplizumab combination ther-
apy cohorts (n=18) were included in the intention-to-treat 
(ITT) analysis. The per protocol (PP) analysis set included 
all repeat-dose participants who received at least 75% of the 
scheduled AG019 doses and, in the combination therapy 
cohorts, at least one dose of teplizumab, and had no major 
protocol deviations. Two participants (one adult and one 
adolescent) from the high-dose monotherapy cohort and one 
participant who did not start teplizumab in the combination 
therapy cohort were excluded from the PP analysis. Enrol-
ment of adolescents in the combination therapy cohort was 
prematurely terminated due to the impact of the COVID-19 
pandemic.

Safety data were descriptively analysed based on the 
safety analysis set. ANOVA was used to compare demo-
graphic and baseline characteristics between all cohorts and 
between active and placebo groups in the AG019/teplizumab 
cohorts. PK data were descriptively analysed based on a 
subset of the ITT analysis set (no PK faecal samples were 
collected from low-dose monotherapy participants). All 
metabolic data analyses were based on the PP analysis set. 
The 2 h AUC of C-peptide from the MMTT was calculated 
using the linear trapezoidal rule over a 2 h period (0–120 
min), and the C-peptide mean AUC was obtained by divid-
ing the calculated AUC values by the time period (120 min). 
The 2 h mean C-peptide AUC was used to identify treatment 
responders post hoc according to published criteria [29, 30]; 
a participant was classified as a responder when the change 
from baseline (at 6 or 12 months) was either non-negative 
or, if negative, represented a CV ≤9.7%.  HbA1c and insulin 
use data were summarised using descriptive statistics and a 
post hoc analysis (paired t test vs baseline).  CD4+ and  CD8+ 
T cell analyses were based on a subset of the PP analysis 
set; no samples were collected from low-dose monotherapy 
participants. Changes from baseline in antigen-specific 

 CD4+ T cell frequencies were analysed using the Wilcoxon 
matched-pairs signed-rank test. Mixed-effects analysis was 
used to compare antigen-specific  CD8+ T cell frequencies 
over time. Unpaired t tests were used to compare frequencies 
(expressed as log fold change vs baseline) between treatment 
groups and a Spearman or Pearson correlation was used for 
assessment of bivariate data. All statistical tests were two-
sided. Statistical significance was set at p<0.05. Immunolog-
ical and metabolic analyses were performed using GraphPad 
Prism v9.0.2 (GraphPad Software, USA). Data are expressed 
as means ± SEM or as means ± SD.

Details of study population, sample size, interim analysis, 
randomisation and blinding, and pharmacodynamic assess-
ments are provided in the ESM Methods.

Results

Participant disposition and baseline characteristics The study 
was conducted between October 2018 and October 2021. Par-
ticipant enrolment in Phase 1b (AG019 monotherapy) and 
Phase 2a (AG019/teplizumab combination therapy) is shown 
in Fig. 1. Sixty participants were screened, 18 of whom were 
excluded from participation in the study. Twenty-four partici-
pants were enrolled and treated in the AG019 monotherapy 
cohorts; two participants voluntarily withdrew after the 3 
month visit. In the AG019/teplizumab combination therapy 
cohorts, 18 participants were enrolled and treated. All par-
ticipants completed the study PP, except for one AG019/tepli-
zumab adolescent (open-label) who did not start teplizumab 
infusions due to a non-TEAE and one placebo adolescent who 
was lost to follow-up after the 9 month visit.

All groups were equally balanced for age, sex, autoanti-
body positivity and ethnicity (Table 1), and the mean time 
from diagnosis to treatment start was 102.2 days. Partici-
pants’ baseline characteristics were similar in each study 
arm. All but one of the participants were taking insulin at 
study entry.

Safety and tolerability of AG019 No serious adverse events, 
deaths or TEAEs leading to discontinuation of AG019 treat-
ment were reported.

TEAEs according to severity and to system organ class 
are summarised in ESM Tables 3 and 4, respectively. All 
TEAEs in Phase 1b were of Common Terminology Crite-
ria for Adverse Events (CTCAE) grade 1 or 2; no severe 
TEAEs (grade ≥3) were reported. The majority of TEAEs 
(89.7%) were ‘not reasonably related to AG019’. There 
was no evidence of an effect of dose or age on incidence 
of adverse events. In Phase 2a, 95.3% of TEAEs were of 
CTCAE grade 1 or 2. Nine TEAEs of grade 3 or higher 
were reported in six AG019/teplizumab-treated participants 
(none in placebo). TEAEs reported as reasonably related to 
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Table 1  Demographics and baseline characteristics

Characteristic AG019 monotherapy AG019/teplizumab combination therapy

Adults Adolescents Adults Adolescents

RD low (n=5) RD high (n=5) RD low (n=4) RD high (n=5) Placebo (n=2) Active (n=10) Placebo (n=1) Active (n=5)

Age (years)
 Mean 27.2 25.4 14.3 15.0 29.0 27.9 12.0 13.6
 [SD] [8.9] [7.4] [2.2] [1.9] [5.7] [6.7] – [1.1]
Sex, n (%)
 Male 4 (80) 3 (60) 2 (50) 2 (40) 1 (50) 6 (60) 0 (0) 2 (40)
 Female 1 (20) 2 (40) 2 (50) 3 (60) 1 (50) 4 (40) 1 (100) 3 (60)
Ethnicity, n (%)
 Hispanic or 

Latino
0 (0) 1 (20) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

 Not His-
panic or 
Latino

5 (100) 4 (80) 4 (100) 5 (100) 2 (100) 10 (100) 1 (100) 5 (100)

Time from diagnosis to treatment start (days)
 Mean 91.0 100.0 95.0 126.4 70.0 101.0 90.0 122.6
 [SD] [38.2] [42.2] [21.3] [19.4] [15.6] [35.9] – [36.3]
HbA1c (mmol/mol)
 Mean 46.2a 53.0 46.5 45.1 56.8 52.1 68.3 54.5
 [SD] [6.1]a [17.1] [5.6] [9.7] [33.2] [15.5] – [26.6]
HbA1c (%)
 Mean 6.38a 7.00 6.40 6.28 7.35 6.92 8.40 7.14
 [SD] [0.56]a [1.57] [0.51] [0.89] [3.04] [1.42] – [2.43]
Insulin dose-adjusted  HbA1c

 Mean 7.39a 8.25 9.09 8.39 8.53 8.41 10.64 9.61a

 [SD] [1.30]a [2.37] [1.09] [2.47] [4.54] [1.73] – [2.58]a

C-peptide fasting (nmol/l)
 Mean 0.27 0.38 0.33 0.27a 0.36 0.18 0.16 0.25
 [SD] [0.15] [0.20] [0.08] [0.14]a [0.22] [0.13] – [0.06]
C-peptide peak (nmol/l)
 Mean 0.92 1.26 0.97 0.81 1.10 0.71 0.28 0.76
 [SD] [0.35] [1.00] [0.45] [0.21] [0.11] [0.26] – [0.29]
C-peptide mean 2 h AUC (nmol/l)
 Mean 0.62 0.89 0.78 0.57 0.73 0.48 0.25 0.57
 [SD] [0.28] [0.61] [0.35] [0.13] [0.01] [0.19] – [0.21]
Insulin use (IU  kg–1  day–1)
 Mean 0.23 0.39a 0.67 0.53 0.30 0.37 0.56 0.51a

 [SD] [0.18] [0.20]a [0.27] [0.46] [0.37] [0.14] – [0.18]a

Insulin antibodies, n (%)b

 Negative 2 (40) 2 (40) 1 (25) 2 (40) 1 (50) 5 (50) 0 (0) 3 (60)
 Positive 3 (60) 3 (60) 1 (25) 2 (40) 1 (50) 0 (0) 1 (100) 1 (20)
 Missing 0 (0) 0 (0) 2 (50) 1 (20) 0 (0) 5 (50) 0 (0) 1 (20)
IA-2 antibodies, n (%)b

 Negative 2 (40) 1 (20) 2 (50) 2 (40) 1 (50) 5 (50) 0 (0) 1 (20)
 Positive 2 (40) 4 (80) 2 (50) 2 (40) 1 (50) 3 (30) 1 (100) 4 (80)
 Missing 1 (20) 0 (0) 0 (0) 1 (20) 0 (0) 2 (20) 0 (0) 0 (0)
GAD65 antibodies, n (%)b

 Negative 0 (0) 0 (0) 1 (25) 0 (0) 0 (0) 0 (0) 0 (0) 2 (40)
 Positive 5 (100) 5 (100) 3 (75) 5 (100) 2 (100) 10 (100) 1 (100) 3 (60)
 Missing 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
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AG019 were mostly gastrointestinal (GI) disorders (diar-
rhoea and vomiting). One AG019/teplizumab-treated adult 
reported two grade 3 TEAEs considered reasonably related 
to AG019 and teplizumab (diarrhoea and vomiting) but 
AG019 or teplizumab treatment was not discontinued. In 
line with protocol-defined infusion-withholding criteria, 
teplizumab treatment was discontinued in five participants 
due to TEAEs (ESM Table  5); all participants contin-
ued AG019 treatment and completed the study. Transient 
changes in laboratory safety variables were observed in 
AG019/teplizumab-treated participants (including increases 
in liver function tests and decreases in lymphocyte, leuco-
cyte and platelet counts), which were considered clinically 
significant and were reported as TEAEs in nine participants.

AG019 PK analysis AG019 bacteria were not detected in 
blood by plating or by qPCR, nor were there indications 
of AG019-related hPINS or hIL-10 in plasma measured by 
ELISA, either during treatment or 1 month after the last dose 
of AG019 (day 90).

Twenty-five participants (nine high-dose AG019-treated, 
13 AG019/teplizumab-treated and three placebo-treated) 
provided faecal samples. AG019 bacteria were detected 
in faecal samples of 18/22 (82%) repeat-dose participants 
treated with AG019 high-dose monotherapy or AG019/tepli-
zumab combination therapy at one or more post-screening 
sampling timepoints, indicating GI exposure to AG019 after 
oral dosing (Fig. 2). Of the four participants who lacked 

faecal bacterial recovery, two were excluded from the PP 
analysis set due to a major protocol deviation (the use of 
antibiotics, etc.) or AG019 compliance <75%. No AG019 
bacteria were detected in the faecal samples from placebo-
treated participants.

On day 64 (1 week after last AG019 dosing), AG019 was 
undetectable in 11/15 (73%) of the participants who pro-
vided a sample and had detectable levels of AG019 bacteria 
at one or more earlier timepoints. AG019 levels were detect-
able but strongly decreased (mean 2.9 log decrease from 
peak levels) in the other four participants.

Effects of treatments on metabolic responses The C-peptide 
analysis results are shown in Fig. 3 and ESM Fig. 3. In the 
adult monotherapy cohort, the mean 2 h C-peptide AUC at 
6 months was not significantly changed from baseline (85%) 
but declined at 12 months (60% of baseline, p=0.03 on abso-
lute values). Among adolescents, the mean 2 h C-peptide 
AUC declined at 6 months (70% of baseline, p=0.044 on 
absolute values) and 12 months (66% of baseline, p=0.07 
on absolute values). In the adult combination therapy cohort, 
the C-peptide response increased (112%) at 6 months and 
was unchanged (100%) at 12 months compared with declines 
in the placebo-treated group (73% and 54% of baseline, 
n=2). Similarly in adolescents, the C-peptide increased to 
124% of baseline levels at 6 months (p=0.007) and 108% 
at 12 months vs 77% in the placebo-treated adolescent at 6 
months (no data at 12 months).

All data are based on the safety analysis set in repeat-dose participants, except for C-peptide values, which are based on the ITT analysis set in 
repeat-dose participants
a n=4
b If evidence of autoantibody positivity to at least one beta cell autoantigen was documented in a participant’s medical file, the assessment was 
not required as part of eligibility verification
RD, repeat dose

Table 1  (continued)

Characteristic AG019 monotherapy AG019/teplizumab combination therapy

Adults Adolescents Adults Adolescents

RD low (n=5) RD high (n=5) RD low (n=4) RD high (n=5) Placebo (n=2) Active (n=10) Placebo (n=1) Active (n=5)

ZnT8 antibodies, n (%)b

 Negative 0 (0) 2 (40) 1 (25) 1 (20) 0 (0) 2 (20) 0 (0) 0 (0)
 Positive 2 (40) 2 (40) 3 (75) 3 (60) 0 (0) 5 (50) 0 (0) 3 (60)
 Missing 3 (60) 1 (20) 0 (0) 1 (20) 2 (100) 3 (30) 1 (100) 2 (40)
Cytomegalovirus antibodies, n (%)
 Negative 5 (100) 5 (100) 3 (75) 5 (100) 1 (50) 5 (50) 1 (100) 4 (80)
 Positive 0 (0) 0 (0) 1 (25) 0 (0) 1 (50) 5 (50) 0 (0) 0 (0)
 Missing 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (20)
Epstein–Barr virus antibodies, n (%)
 Negative 2 (40) 4 (80) 4 (100) 4 (80) 0 (0) 4 (40) 1 (100) 4 (80)
 Positive 3 (60) 1 (20) 0 (0) 1 (20) 2 (100) 6 (60) 0 (0) 1 (20)
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In the adult monotherapy cohort, the mean levels of  HbA1c 
declined during AG019 treatment and were significantly 
decreased as compared with baseline (p=0.036 and p=0.044 
at 3 and 6 months, Fig. 4). In the adolescent monotherapy 
cohort,  HbA1c was not significantly changed from baseline. 
Daily insulin use increased from baseline by 0.17 IU  kg−1 
 day−1 in AG019 monotherapy-treated adults and by 0.02 
IU  kg−1  day−1 in adolescents at 12 months. In AG019/tepli-
zumab-treated adults and adolescents, there was a decrease 
in  HbA1c from baseline to month 12. In adults receiving the 
combination therapy, the levels were significantly lower at 
months 2 (p=0.009) and 3 (p=0.038). At 12 months, the 
mean daily insulin use decreased as compared with base-
line (by −0.03 IU  kg−1  day−1) in AG019/teplizumab-treated 
adults and increased by 0.03 U  kg−1  day−1 in adolescents.

Effects of treatment on total and antigen‑specific  CD4+ and 
 CD8+ T cells We previously reported that teplizumab induced 
 CD8+ T cells that express the KLRG1, TIGIT and EOMES 
genes, and found that higher levels after treatment were asso-
ciated with clinical responses to the drug [13, 26]. Consist-
ent with past results, these  CD8+ T cells were increased 
in the AG019/teplizumab combination therapy group com-
pared with baseline at month 6 (p=0.013), but not in the 
participants treated with AG019 alone or placebo (Fig. 5).

Based on preclinical data in NOD mice, we analysed 
the frequencies of antigen-specific  CD8+ T cells and 
two populations of regulatory  CD4+ antigen-specific T 
cells. The frequency of PPI-specific  CD8+ T cells signifi-
cantly decreased from baseline by 22.5% (p=0.016) at 3 
months in AG019 monotherapy participants and by 21.6% 

(p=0.035) at 6 months in the combination group (Fig. 6). 
In the placebo group there was an average 12.5% increase 
at 3 months and a 17.1% reduction at 6 months. There 
was no significant change in the frequency of cytomeg-
alovirus/Epstein–Barr virus viral-specific  CD8+ T cells 
in either treatment group (Fig. 6), and no correlation was 
found between the change in PPI-specific  CD8+ T cell 
frequency and age.

There was a modest increase in the frequency of PPI-
specific IL-10+ regulatory type 1 T cells (Tr1s) in adults 
treated with monotherapy (0% at baseline, 2.7% at 3 months) 
and with combination therapy (2.3% at baseline, 4.1% at 
3 months, Fig. 7a), but not in placebo-treated participants. 
Responses to control (viral and bacterial) antigens were 
unchanged. The PPI-reactive Tr1s were below the limit of 
detection in adolescent participants. The frequency of PPI-
specific  CD4+ memory Tregs showed a similar increase 
in adult participants treated with monotherapy and with 
combination therapy (Fig. 7b), whereas this was not seen 
in adolescents.

Association of T cell changes with C‑peptide preserva‑
tion We designated post hoc clinical responders as 
participants who lost ≤9.7% of their baseline C-peptide 
at month 6 based on published criteria and examined 
a correlation with immunological results. Seven of 16 
(44%) participants (5/9 adults and 2/7 adolescents) in the 
AG019 monotherapy group were classified as responders 
at 6 months. In AG019/teplizumab combination therapy, 
there were 11/14 (79%) responders (7/10 adults and 4/4 
adolescents) at month 6 and 0/3 in the placebo group 
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Fig. 2  Concentrations of AG019 bacteria in faecal samples collected 
after the last day of AG019 dosing (day 56) from participants treated 
with (a) AG019 monotherapy or (b) AG019/teplizumab combination 
therapy. LLeq, L. lactis equivalents; grey area is below the limit of 
detection (LOD) (i.e. 9×103 LLeq/g). Bacterial concentrations are 
expressed as LLeq/g and were log-transformed. Bars indicate means 

± SEM. Faecal samples from 25 participants were analysed: nine 
AG019 monotherapy participants (five adults, four adolescents, all 
high-dose treated), 13 AG019/teplizumab combination therapy par-
ticipants (ten adults, three adolescents) and three placebo participants 
(all negative; data not shown). Participants excluded from the PP 
analysis set are indicated in open symbols
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(ESM Table 6, ESM Fig. 4). In AG019 monotherapy, 
the frequency of PPI-specific  CD8+ T cells was lower 
in the responders vs non-responders at 3 months (mean 
decrease from baseline of 33% in responders vs 15% in 
non-responders). In AG019/teplizumab combination 
therapy, antigen-specific T cells showed a 27% reduc-
tion in the frequency of PPI-specific  CD8+ T cells in the 
responders compared with an increase of 6% in the non-
responders at 6 months (Fig. 8).

Discussion

Combination therapies of immune modulation and antigen 
are appealing in organ-specific autoimmune diseases like 
type 1 diabetes. We demonstrated the safety and biological 
activity of an 8 week treatment of oral AG019 (L. lactis 
producing hPINS and hIL-10) in adults and adolescents 
with recent-onset type 1 diabetes. Also, we established the 
safety and biological activity when used as a combination 
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Fig. 3  C-peptide mean 2 h AUC over time. (a) Absolute values in partici-
pants treated with AG019 monotherapy. (b) Percentage change from base-
line in participants treated with AG019 monotherapy. (c) Absolute values 
in participants treated with AG019/teplizumab combination therapy and 
placebo. (d) Percentage change from baseline in participants treated with 
AG019/teplizumab combination therapy and placebo. Data are based on 

the PP analysis set and are means ± SEM. Pairwise comparison vs base-
line (post hoc t test): *p<0.05 (in adolescents), **p<0.01 (in adolescents), 
†p<0.05 (in adults). Grey shading indicates the AG019 treatment period; 
blue shading indicates the AG019+teplizumab treatment period
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treatment with teplizumab, a compound now approved 
for delay of type 1 diabetes in children and adults at risk 
of diabetes [13]. Dosing of AG019 was safe and effec-
tive since the bacteria were confirmed in the faeces of 
the repeat-dose participants in the high-dose monotherapy 
and combination therapy cohorts, without evidence for 
systemic exposure and with no TEAEs leading to AG019 
treatment discontinuation. This favourable safety profile 
of AG019 provides an opportunity for a chronic or long-
term treatment duration which, our data suggest, may be 
needed to sustain the effects of AG019. Because of its 

safety, AG019 could also be used at early stages in the 
development of type 1 diabetes, when the progression of 
disease is intermittent and slow. While this may sound 
like an attractive option for clinicians, specific measures 
to promote compliance, in particular in young individu-
als, will need to be put in place considering the duration 
of the therapy.

The rationale for the development of AG019 and for this 
clinical investigation was that hIL-10 locally delivered at 
the intestinal mucosa could induce IL-10-producing  CD4+ 
Tr1s [31–34], thereby creating a local environment favouring 
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Fig. 4  HbA1c (a, c) and insulin use (b, d) over time in participants 
treated with (a, b) AG019 monotherapy or (c, d) AG019/teplizumab 
combination therapy and placebo. Data are based on the PP analysis 
set. Horizontal line for  HbA1c represents the target for glycaemic con-

trol (53 mmol/mol). Pairwise comparison vs baseline (post hoc t test): 
*p<0.05, **p<0.01 in adults. Data are means ± SEM. Grey shad-
ing indicates the AG019 treatment period; blue shading indicates the 
AG019+teplizumab treatment period
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tolerance. The co-delivery of hPINS by AG019 could facili-
tate the expansion of the Treg repertoire towards the major 
pancreatic autoantigen. The primary study objective was to 
assess safety and tolerability; therefore, the study was not 
powered for metabolic or immunologic efficacy. Nonethe-
less, there was an encouraging effect on metabolic markers 
for beta cell function and glycaemic control (2 h C-peptide 
AUC after MMTT,  HbA1c and insulin use), particularly in 
adults treated with AG019 monotherapy up to 6 months 

and in adults and adolescents treated with AG019/tepli-
zumab combination therapy up to 12 months. The changes 
in C-peptide in the placebo group as compared with com-
bination therapy indicate these increases or lack of decline 
are suggestive of a true effect of combination therapy and 
are not due to the ‘honeymoon phase’, a phase after type 1 
diabetes diagnosis in which the pancreas is still able to pro-
duce insulin. Our findings include a non-significant increase 
in PPI-specific (IL-10-producing) Tr1s and Tregs in those 
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EBV-specific  CD8+ T cells over time in participants treated with 
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indicates the AG019 treatment period; blue shading indicates the 
AG019+teplizumab treatment period. CMV/EBV, cytomegalovirus/
Epstein–Barr virus
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treated with monotherapy and combination therapy. Con-
comitantly, there was a significant reduction in PPI-specific, 
but not viral-specific,  CD8+ T cells at 3 months in AG019 
monotherapy and at 6 months in AG019/teplizumab combi-
nation therapy, indicating the preservation of viral responses 
and suggesting the presence of antigen-specific immune 
modulation. These changes in immune markers were found 

in the peripheral blood and, because of the intestinal deliv-
ery of AG019, the effects on immune cells within the GI 
tract and potentially pancreas or draining lymph nodes may 
be greater [11, 35]. Altogether, the immunological data sug-
gest that AG019 induces antigen-specific Tregs, which mim-
ics what we previously demonstrated in newly diagnosed 
NOD mice [9–12]. We speculate that the combination with 
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Fig. 8  PPI-specific  CD8+ T cells over time in clinical responders 
and non-responders at 6 months in (a) AG019 monotherapy and (b) 
AG019/teplizumab combination therapy. Data are based on a subset 
of the PP analysis set and are presented as means ± SEM. AG019 
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responders (n=4, grey); AG019/teplizumab combination therapy 
responders (n=11, red); AG019/teplizumab combination therapy non-
responders (n=2, grey). Grey shading indicates the AG019 treatment 
period; blue shading indicates the AG019+teplizumab treatment 
period
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teplizumab (temporarily) pauses the autoimmune destruction 
of the remaining functional beta cell mass, allowing AG019 
to install an islet-specific Treg repertoire which is known to 
be more suitable for controlling autoimmunity than poly-
clonal Tregs [35].

The complementary mode of action of teplizumab to 
the AG019-induced antigen-specific tolerogenic milieu 
can occur on multiple levels. Anti-CD3 increases Tr1s 
locally in the GI tract [36] and generates a ‘gut-homing’ 
 CD4+CD25hiCCR6+FoxP3+ Treg population [23], thereby 
promoting the interaction between Tr1s/Tregs and the AG019-
delivered IL-10/hPINS at the intestinal mucosa and creating 
the opportunity for antigen-specific immune modulation. 
Also, anti-CD3 therapy promotes tolerance by selectively 
eliminating pathogenic T cells while preserving Tregs [20], 
resulting in an enrichment of the regulatory compartment. The 
most robust and clinically relevant reported effect of tepli-
zumab seems to be the expansion of a (partially) exhausted 
phenotype among total  CD8+ T cells, an effect also observed 
in the AG019/teplizumab combination treatment group of 
the current study. This exhaustion profile, characterised by 
the expression of inhibitory receptors (killer cell lectin-like 
receptor G1 [KLRG1], T cell immunoreceptor with Ig and 
ITIM domains [TIGIT] and eomesodermin [EOMES]), lim-
ited cytokine production and reduced proliferative capacity, 
results in an effector T cell population with an altered func-
tional response, and is correlated with a better metabolic out-
come [13, 26] and slower disease progression [28, 37].

In addition to the biological activity of AG019 monother-
apy, this is the first study examining combination therapy 
with teplizumab in humans. Combination therapies, either 
simultaneously or sequentially combining immune modula-
tion with beta cell protective interventions, have been pro-
posed as strategies to help sustain the stabilising effect of 
teplizumab on functional beta cell mass [38]. In NOD mice, 
combining T cell-targeting immune modulation with antigen-
based interventions has been shown to provide long-term pro-
tection, persisting after stopping all therapy. Here we demon-
strate in humans not only that this combination, with L. lactis 
secreting proinsulin and hIL-10, is safe, but also that the first 
indications of metabolic and immune effects were present. 
Importantly, we showed that the effects of AG019 are specific 
for the relevant antigen, and, therefore, the safety for chronic 
use of this biologic is supported. In this regard, AG019 could 
also be combined with other immune modulators, acting as 
inducers, creating a therapeutic window for the installation 
of the antigen-specific immune response [39]. Because of its 
safety, AG019 could even be used at early stages in the devel-
opment of type 1 diabetes when the progression of disease is 
intermittent and slow.

This study has a few limitations that restrict conclu-
sions. First, sample sizes are small in all of the groups, 
and we did not have a teplizumab-only group to compare 

the findings with for antigen-specific T cells or metabolic 
effects. For immune measures, while assay technical vari-
ation has been validated for islet antigen-specific  CD8+ 
T cells (CV of ~20%; 28), natural biological variation in 
islet-specific T cell populations is not well established in 
the literature, and the placebo group was too small (n=3) 
for meaningful comparisons. Samples were limited, so 
functional assays were not performed to confirm changes 
in function of antigen-specific cells. Potential depletion 
early in the monotherapy group for PPI-specific  CD8+ T 
cells, as determined by a reduction in absolute numbers, 
was suggested but needs to be confirmed in future studies 
along with additional functional studies. We also had a 
limited duration of follow-up, and it would be important 
to follow the antigen-specific Tr1s and Tregs to deter-
mine whether they decline or persist when the treatment 
is withdrawn.

In summary, AG019 provides a new technology for oral 
delivery of antigen-specific immune modulators that is 
safe and induces biological activity. The beneficial safety 
profile and the convenient route of administration open 
paths for prolonged AG019 treatment in future studies, 
which will further address the potential beneficial thera-
peutic effects for the treatment of type 1 diabetes.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00125- 023- 06014-2.
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