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Abstract
Aims/hypothesis To determine the extent to which diabetic retinopathy severity stage may be classified using machine 
learning (ML) and commonly used clinical measures of visual function together with age and sex.
Methods We measured the visual function of 1901 eyes from 1032 participants in the Northern Ireland Sensory Ageing 
Study, deriving 12 variables from nine visual function tests. Missing values were imputed using chained equations. Par-
ticipants were divided into four groups using clinical measures and grading of ophthalmic images: no diabetes mellitus (no 
DM), diabetes but no diabetic retinopathy (DM no DR), diabetic retinopathy without diabetic macular oedema (DR no DMO) 
and diabetic retinopathy with DMO (DR with DMO). Ensemble ML models were fitted to classify group membership for 
three tasks, distinguishing (A) the DM no DR group from the no DM group; (B) the DR no DMO group from the DM no 
DR group; and (C) the DR with DMO group from the DR no DMO group. More conventional multiple logistic regression 
models were also fitted for comparison. An interpretable ML technique was used to rank the contribution of visual function 
variables to predictions and to disentangle associations between diabetic eye disease and visual function from artefacts of 
the data collection process.
Results The performance of the ensemble ML models was good across all three classification tasks, with accuracies of 0.92, 
1.00 and 0.84, respectively, for tasks A–C, substantially exceeding the accuracies for logistic regression (0.84, 0.61 and 0.80, 
respectively). Reading index was highly ranked for tasks A and B, whereas near visual acuity and Moorfields chart acuity 
were important for task C. Microperimetry variables ranked highly for all three tasks, but this was partly due to a data artefact 
(a large proportion of missing values).
Conclusions/interpretation Ensemble ML models predicted status of diabetic eye disease with high accuracy using just age, 
sex and measures of visual function. Interpretable ML methods enabled us to identify profiles of visual function associated 
with different stages of diabetic eye disease, and to disentangle associations from artefacts of the data collection process. 
Together, these two techniques have great potential for developing prediction models using untidy real-world clinical data.
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Abbreviations
DM no DR  Diabetes without diabetic retinopathy 

(group)
DR no DMO  Diabetic retinopathy without diabetic 

macular oedema (group)
DR with DMO  Diabetic retinopathy with diabetic macu-

lar oedema (group)
DVA  Distance visual acuity
FDT  Frequency doubling technology
ML  Machine learning
NICOLA  Northern Ireland Cohort for the Longitu-

dinal Study of Ageing
No DM  Control group without diabetes
NVA  Near visual acuity
ROC  Receiver operating characteristics
SD-OCT  Spectral domain-optical coherence 

tomograph
SHAP  SHapley Additive exPlanation
SKILL  Smith-Kettlewell Institute low-luminance

Introduction
Diabetes mellitus is a major cause of vision loss through 
development of diabetic retinopathy and diabetic macular 
oedema (DMO) [1]. Anatomical signs of diabetic retin-
opathy may take years to develop, but early detection and 

treatment are crucial to prevent vision loss [2]. While dia-
betic retinopathy is often described primarily in terms of 
vascular dysfunction, it has been recognised that the dis-
turbed metabolic environment has a profound impact on 
neural cells [3]. Many studies now suggest that neural dys-
function precedes the visible vascular signs typically used to 
diagnose the onset of diabetic retinopathy [4, 5].

Psychophysical tests have been used in observational stud-
ies and clinical trials to track deteriorating function with dis-
ease progression. However, the structural and spatial hetero-
geneity of diabetic retinopathy lesions makes identification 
of direct structure–function relationships challenging when 
compared with conditions such as glaucoma, in which math-
ematical models have been found to be useful [6]. Hence, 
in diabetic retinopathy, less progress has been made in the 
adoption of robust functional outcomes beyond best cor-
rected distance visual acuity (DVA). However, measurements 
of DVA can under-represent the visual dysfunction present 
in diabetes [7], with observational studies suggesting that 
contrast sensitivity [8], microperimetry [9], dark adaptation 
[10], matrix perimetry [11] and colour vision [12] are more 
sensitive outcome measures. However, studies have tended 
to be small, particularly with respect to the control popula-
tion used, which is problematic given the inherent noise in 
psychophysical assessments. Furthermore, they are of insuf-
ficient size to account for age effects, and compare few tests, 
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assessing them singly. The heterogeneity of diabetic retinopa-
thy may mean that combinations of tests are more sensitive.

The aim of this study was to determine whether interpret-
able machine learning (ML) applied across a broad range of 
visual function measures could distinguish people without 
diabetes mellitus (no DM group), those who had diabetes 
mellitus but without overt diabetic retinopathy (DM no 
DR group), those who had DR but no DMO (DR no DMO 
group) and those who had diabetic retinopathy with DMO 
(DR with DMO group).

Three classification tasks were performed, reflecting 
clinical situations in which determining diabetic retinopathy 
status rapidly using non-invasive methods would be useful:

(A) distinguishing the retinae of those in the DM no DR 
group from retinae of normal control individuals (no 
DM group), mimicking pre-clinical monitoring to 
determine whether early-stage diabetes changes are 
detectable in the general population by measuring vis-
ual function, which is important because a large pro-
portion of diabetes cases are undiagnosed (41% in our 
study population [13]).

(B) distinguishing those with diabetic retinopathy but no 
DMO (DR no DMO group) from those with diabe-
tes mellitus and no diabetic retinopathy (DM no DR 
group) to evaluate whether clinically relevant diabetic 
retinopathy features (associated with worse long-term 
outcomes) are detectable within a diabetes population 
by measuring visual function.

(C) distinguishing those with DMO (DR with DMO group) 
from those with diabetic retinopathy without DMO 
(DR no DMO group), reflecting clinical monitoring of 
patients with diabetic retinopathy to determine whether 
sight-threatening DMO is detectable by measuring vis-
ual function.

Methods

Data collection

Most participants (n=881) were part of a prospective 
population-based epidemiological study of people over 50 
years old (Northern Ireland Cohort for the Longitudinal 
Study of Ageing – NICOLA) [13]. The overall NICOLA 
study is representative of the Northern Ireland population, 
but of those that attended the clinical health assessment 
and were eligible for this study, a greater proportion were 
in younger age categories, male, retired, had higher levels 
of education and self-reported health [14]. Participation 
was higher among those within urban and less-deprived 
areas. Participants from the following categories were 
recalled for an additional study visit: those with diabetes 

mellitus (either self-reported or  HbA1c ≥ 48 mmol/mol 
(6.5%)), those with age-related macular degeneration, 
and those with no retinal diseases and no diabetes mel-
litus. Additional participants with confirmed diagnoses 
of diabetes were recruited from diabetes clinics (n=150), 
together with healthy volunteers (n=91) with no history of 
eye disease aged under 50. These controls were a conveni-
ence sample with a similar age distribution to the younger 
clinical participants, and comprised university employ-
ees, their friends or family, or participants recruited via 
advertising. These groups constitute the Northern Ireland 
Sensory Ageing (NISA) study (https:// clini caltr ials. gov/ 
ct2/ show/ NCT02 788695), comprising 2244 eyes measured 
across 1122 participants recruited between 2014 and 2018. 
Participants gave informed consent before taking part and 
the study was approved by the School of Medicine, Den-
tistry and Biomedical Sciences Ethics Committee, Queen’s 
University Belfast, UK (Ref: 12/23, Ref 16.37v2).

We concentrated on diabetic eye disease, excluding 343 
eyes with other conditions affecting visual function (includ-
ing 242 with intermediate/late-stage age-related macular 
degeneration). Thus, the analysis cohort comprised 1901 
eyes from 1032 individuals, 61% of which were from 
women. The median age of the cohort was 64 years. Half 
of the eyes from diabetes patients were from NICOLA, and 
half were from diabetes clinics (see electronic supplemen-
tary material [ESM] Table 1). Participants underwent retinal 
imaging including a fundus colour picture (obtained using 
a CX-1 digital fundus camera; Canon, USA), colour ultra-
wide-field imaging images centred on the fovea (obtained 
using an Optomap Panoramic 200Tx scanning laser oph-
thalmoscope; Optos, UK), a macular volume scan (obtained 
using a Spectralis spectral domain-optical coherence tomo-
graph [SD-OCT]; Heidelberg Engineering, Germany). The 
volume scan comprised 61 horizontal B-scans (automatic 
real time [ART] 9) covering a 30×25 degrees rectangle. 
Imaging and perimetry were performed after pharmacologi-
cal dilation using 1% tropicamide.

Nine visual function tests were performed (after full 
refraction) by an experienced optometrist. For perimetry-
based tests, the eye with better best corrected DVA was 
selected for the study, choosing at random if both were eligi-
ble [15]. Tests were chosen to cover the breadth of functional 
deficits previously reported in diabetes, with an emphasis 
on methodologies that could be easily applied in a clinical 
setting if found to be predictive.

Distance visual acuity Monocular DVA was evaluated using 
Early Treatment for Diabetic Retinopathy Study (EDTRS) 
charts in a light box (Precision Vision, USA) at 4 m, and the 
total number of letters read was recorded. Best corrected 
DVA was determined at 4 m distance with all room lights 
switched off.

https://clinicaltrials.gov/ct2/show/NCT02788695
https://clinicaltrials.gov/ct2/show/NCT02788695
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Near visual acuity Near visual acuity (NVA) was measured 
monocularly using Bailey–Lovie near word reading charts 
at 25 cm with the appropriate reading addition worn over the 
protocol refraction at 4 m [16] with room lights on. A log 
minimum angle of resolution (logMAR) score for the small-
est line with three or more consecutive words read correctly 
was recorded.

Reading Reading speed was assessed after the threshold 
NVA was established. It was tested monocularly using two 
sets of modified Bailey–Lovie reading speed charts pre-
sented as transparencies with black text and corresponding 
reading speed score sheets [17]. The chart was selected to 
exhibit text of a print size that was two logarithmic steps 
larger than the participant’s threshold NVA in the tested eye. 
The reading index obtained is the reading speed (words per 
min) divided by the size of print read, thus providing an 
adjustment for the range of print sizes used [18].

Distance low‑luminance visual acuity To measure distance 
low-luminance visual acuity at 4 m, a 2.0 log neutral-density 
trial lens was inserted over the final distance refraction result 
[19, 20]. The low-luminance deficit at distance was the dif-
ference in number of letters read between high- and low-
luminance best corrected DVA.

Near low‑luminance visual acuity To measure near low-
luminance visual acuity at 25 cm, the Smith-Kettlewell Insti-
tute low-luminance (SKILL) card was used, which measures 
spatial vision under reduced contrast and luminance [21]. 
The SKILL card consists of two near acuity charts mounted 
back-to-back. One has black letters on a dark grey back-
ground, simulating reduced contrast and luminance. The 
other is a high-contrast, black-on-white letter chart. The near 
low-luminance deficit at near is the acuity loss (number of 
letters read) between the light and dark sides. The number of 
letters read from each card (held approximately 40 cm from 
the patient’s eye wearing the appropriate reading addition) 
was recorded, with both sides of the chart presented to the 
participant under normal room lighting.

Contrast sensitivity The contrast sensitivity was measured 
monocularly using Pelli–Robson charts (Clement Clarke 
International, UK) viewed at 1 m [22]. A +1.00 dioptre addi-
tion trial lens was added to the participant’s distance refrac-
tive correction. For a triplet of letters to be scored as ‘seen’, 
two out of three letters must be correctly identified. Care 
was taken to ensure uniform illumination of the chart, with 
luminance from 645–1292 Lux, and to ensure that the chart 
was concealed from viewing until the test was performed.

Moorfields acuity The Moorfields acuity chart is a distance 
letter chart comprising vanishing optotypes that have pseudo 

high-pass design [23]. The mean luminance of the optotypes 
is the same as the background, so the letters appear to ‘van-
ish’ soon after the resolution threshold is reached. Such 
charts are thought to be more robust to optical defocus than 
traditional letter charts [24]. Visual acuity was measured 
with the chart under full room illumination (353.8 Lux). 
For examination of the right eye, we used Moorfields acuity 
chart 1, while for the left eye, we used Moorfields acuity 
chart 2.

Frequency doubling technology perimetry The central vis-
ual field was assessed on a frequency doubling technology 
(FDT) Matrix perimeter (Carl Zeiss Meditec, USA) using 
the 24–2 threshold test. Participants completed the supra-
threshold test first to familiarise themselves with the task 
before undertaking the full threshold test.

Microperimetry Macular integrity assessment was per-
formed using an MAIA macular integrity assessment system 
(CenterVue, Italy) with a central red circular fixation target 
and Goldman III stimuli against a background of 1.27 cd/
m2 using a 4–2 threshold strategy. The maximum stimulus 
luminance was 318 cd/m2, creating a dynamic range of 36 
dB. A 45-point customised stimulus grid covering the cen-
tral 18 degrees was used [25], designed for relatively regular 
sampling throughout the region, but with slightly increased 
density towards the fovea.

Visual function tests were performed in the same 
sequence for all participants, in two batches with a refresh-
ment break (30 min including hot drink and biscuits) in 
between to reduce risk of participant fatigue (Fig. 1). Some 
tests generated multiple variables (e.g. mean deviation and 
pattern standard deviation from FDT perimetry), giving a 
total of 12 visual function variables in the analysis dataset, 
in addition to age and sex. Fundus colour pictures were 
double graded (by authors RD and UC) to identify signs of 
age-related macular degeneration (Beckman classification) 
and diabetic retinopathy. Disc and macula colour images 
and images obtained by ultra-wide-field imaging were 
assessed for features of diabetic retinopathy in the central 
and peripheral retina, and then staged using the national 
screening for diabetic retinopathy system for England and 
Wales into four levels: none (R0), background (R1), pre-
proliferative (R2) and proliferative (R3) [26]. Participants 
who were not recruited from the diabetic retinopathy clinic 
were identified as having diabetes if they self-reported a 
diabetes diagnosis. Diabetes duration was recorded when 
provided. Participants over 50 years of age and all patients 
with diabetes were invited for blood sampling to measure 
plasma  HbA1c. Participants with no record of diabetes were 
classified as having diabetes if their  HbA1c was ≥ 48 mmol/
mol (6.5%).
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Data preparation

Some visual function variables had a high proportion of 
missing values (up to 69% for FDT perimetry measures). 
Only 16.8% of participants had complete information for 
all variables so imputation was essential to make full use 
of the dataset. Missing values were imputed using chained 
equations [27], by imputing missing values for a variable 
and then using these to impute the next set of missing values 
until dataset completion. This approach is frequently used to 
produce multiple imputations (versions) of the input data-
set, which are then analysed separately using statistical esti-
mates that are combined using Rubin’s rules. However, this 
is computationally expensive, and, for this analysis, where 
the emphasis is on classification rather than estimation, it 
is unclear how classifications from each version should be 
combined. Therefore, multiple imputations (six imputed 
versions for 20 iterations each) were produced for the sole 
purpose of assessing whether the imputation algorithm had 
converged on an acceptable solution. A single imputed ver-
sion was input to the ML pipeline. Numeric variables were 
normalised prior to model fitting.

Classification using visual function

One approach to classification is to define ‘normal limits’ 
(e.g. 2.5% and 97.5% percentiles in a healthy population) 
and classify measurements outside these limits as abnormal 
(an approach that is used in perimetry). Previous studies 
have indicated subtle differences in mean values for some 
visual function measures when comparing diabetic retin-
opathy patients with other groups [10, 11]. However, visual 
function measures have high inter-individual variability, so 
a classifier constructed using closely overlapping frequency 
distributions of diabetic retinopathy/DMO and ‘normal’ eyes 
is likely to perform poorly. Combining multiple variables 
assessing various aspects of visual function is more power-
ful, but there is no consensus as to how variables should 
be combined for any of the three classification tasks. In 
particular, the ideal functional forms of the relationships 
between visual function variables and diabetes mellitus/dia-
betic retinopathy/DMO status are unknown. For example, 
does the probability of an eye having DMO increase linearly 
with a decrease in NVA, or is the relationship curvilinear 
or stepped, perhaps complicated further by interaction with 
another variable?

We selected a flexible ML approach to capture these com-
plexities, with classifications generated by an ensemble of 
statistical models (learners) fitted to the same data and com-
bined to produce the best possible classification for each eye 
in each classification task. The library of learners comprised 
simple intercept-only models, regression-based models for 
correlated variables (ridge regression), variable selection 

(least absolute shrinkage and selection operator [LASSO]) 
and curvilinear relationships (polynomial splines). In addi-
tion, the approach included single-layer neural networks and 
tree-based methods (XGBoost, random forest and Bayes-
ian additive regression trees) that are capable of modelling 
threshold-type associations and interactions among multiple 
variables. For each task, each learner was fitted to 90% of 
the dataset and used to infer classifications for the remaining 
10% (validation set). To avoid overfitting, this was repeated 
ten times, combining validation sets to give a complete set of 
classifications (i.e. 10-fold cross-validation [28]). We used 
individuals as the units of assignment for cross-validation 
to prevent data leakage if one eye was used to train and the 
other eye to validate. A final classification for each eye was 
produced from a linear combination of the learner predic-
tions, fitted using a second stage of ML (a meta-learner). The 
weights in the linear combination estimated for each learner 
indicated the relative contribution to the final prediction. The 
overall algorithm (SuperLearner) achieves the best possible 
classification provided that one of the learners in the library 
approximates the true data-generating mechanism [28, 29]. 
For comparison with a more conventional approach, we also 
fitted a simpler, main-effects logistic regression model for 
each task.

Input variables for each task comprised the 12 visual 
function variables together with age and sex. The out-
put of both the ensemble and logistic models for each 
eye was the predicted probability of membership of the 
comparison class for that task (i.e. PDM no DR, PDR no DMO 
and PDR with DMO for tasks A–C, respectively). Eyes with 
probability >0.5 were labelled into the comparison class; 
others were labelled into the reference class (no DM, DM 
no DR and DR no DMO, respectively). Model accuracy 
was assessed as the proportion of eyes correctly clas-
sified. This was compared with the proportion of eyes 
that would have been labelled correctly if all eyes had 
been labelled as belonging to the modal class (baseline 
accuracy). AUC, the area under the receiver operating 
characteristics (ROC) curve, was calculated as an alterna-
tive measure of model performance, which is appropri-
ate for the mild to moderate levels of class imbalance in 
this dataset (task A, 17% minority class; task B, minority 
class 44%; class C, minority class 29%).

Interpretable ML

The ensemble algorithm predicted the probability for each 
eye, but these probability predictions cannot be directly 
decomposed as there are too many estimated variables 
to examine manually and some of the learners are fitted 
stochastically (e.g. random forests). We used an inter-
pretable ML technique, generating SHapley Additive 
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exPlanation (SHAP) values, to evaluate the contribution 
of each input variable towards each model prediction [30]. 
The SHAP technique uses concepts from game theory to 
define a ‘Shapley value’ for a feature, which provides a 
measurement of its influence on the underlying model’s 
prediction. Broadly, this value is calculated for a feature 
by averaging its marginal contribution to every possible 
prediction for the instance under consideration. The strat-
egy is straightforward, whereby the technique calculates 
the marginal contribution of the relevant feature for all 
possible combinations of inputs in the feature space of the 
instance. SHAP values may be used to examine the statis-
tical (but not necessarily causal) reasons behind a model 
prediction, including assessing the importance of differ-
ent variables and highlighting where predictions depend 
on statistical artefacts such as missing data. SHAP values 
are calculated at the level of the prediction (i.e. eye), and 
so both global and local measures of variable importance 
may be calculated. Variables associated with greater 
global variation in SHAP values have greater contribution 
to probability predictions across the entire dataset. We 
inspected the profiles of SHAP values for individual eyes 
to better understand the patterns of model predictions. 
We also performed clustering by SHAP values to identify 
clusters of eyes in which predictions were made for simi-
lar reasons (see ESM section on interpretable machine 
learning and ESM Figs 1 and 2). Ensemble models were 
fitted using the sl3 package, and SHAP values were cal-
culated using fastshap in R version 4.2.1 [31–33].

Results

Classification using visual function

Distribution of visual function measures by diabetes and 
retinopathy status is shown in Table 1. The performance 
of the ensemble ML models was good, and substantially 
exceeded that of logistic regression for all three classifica-
tion tasks (Table 2). Ensemble models exceeded baseline 
for all tasks, achieving accuracies of 0.92, 1.00 and 0.84 
for tasks A–C, respectively, whereas logistic regression 
exceeded baseline (i.e. confidence intervals did not include 
baseline) only when distinguishing the DR with DMO 
group from the DR no DMO group (task C). In terms of 
the AUC, logistic regression showed moderate perfor-
mance for task C but poor performance for the other tasks. 
Ensemble ML models achieved AUC of 1.00 for tasks A 
and B and 0.93 for task C. The majority of misclassifica-
tions were made in the direction of lower disease severity 
(ESM Table 2).

The weighting of each component learner towards the 
ensemble ML predictions varied by classification task 

(ESM Table 3). Intercept-only models and neural networks 
were largely disregarded. Random forests contributed most 
strongly to tasks A and B, and LASSO and Bayesian addi-
tive regression trees were highly weighted in task C.

Interpretable ML

Figure 2 illustrates how SHAP values were used to decom-
pose the ensemble model prediction for a single eye for 
task C. The plot is read from the bottom, with the arrow 
at each row showing the contribution of that variable (the 
SHAP value) in moving the predicted probability of being 
DR with DMO from that expected for the entire dataset 
(dotted vertical line) to the final prediction for this eye 
(dashed vertical line). The high predicted probability of 
DR with DMO was strongly influenced by lower than aver-
age values for the microperimetry central 5-point mean 
sensitivity, NVA, Moorfields chart acuity at 4 m, age and 
best corrected DVA at 4 m.

The variables with the greatest influence on predictions 
(ranked by variation in SHAP values) differed by task 
(Table 3). Microperimetry average sensitivity was the most 

Fig. 1  Study visit sequence



2256 Diabetologia (2023) 66:2250–2260

1 3

Table 1  Distribution of cohort characteristics and visual function measures by diabetes and retinopathy status

Values are median (IQR), n (%) or mean±SD
a Low values are better for these variables
LLVA, low-luminance visual acuity; MAR, minimum angle of resolution

Variable No DM DM no DR DR no DMO DR with DMO

Eyes 1317 278 216 90
Age (years) 63 (56–69) 67 (60–73) 66 (59–72) 62 (58–67)
Sex
 Female 731 (55.5) 189 (68.0) 167 (77.3) 68 (75.6)
 Male 586 (44.5) 89 (32.0) 49 (22.7) 22 (24.4)
Best corrected DVA at 4 m (no. of letters) 85.7±6.71 82.6±11.6 83.5±7.35 73.9±12.4
LLVA at 4 m (no. of letters) 72.9±7.63 69.8±11.8 70.2±8.12 59.1±16.4
Moorfields chart acuity at 4 m (LogMAR) 35.7±6.81 33.1±8.34 34±7.12 22.8±11.3
Pelli–Robson contrast sensitivity (log contrast sensitivity) 1.56±0.174 1.51±0.206 1.48±0.142 1.35±0.231
NVAa (M units) 0.16±0.128 0.21±0.192 0.20±0.14 0.41±0.273
Smith-Kettlewell low-luminance  NVAa (no. of letters) 32.3±7.63 33.4±8.67 35.2±8.77 39.0±12.2
Reading index 45.1±9.53 40.0±10.2 37.6±10.9 32.8±13.7
Matrix perimetry mean deviation (dB) −1.90±3.18 −3.87±4.61 −4.00±4.18 −4.61±3.96
Matrix perimetry pattern standard  deviationa (dB) 3.24±0.957 4.04±1.93 4.19±1.5 4.52±1.57
Microperimetry average sensitivity (dB) 26.0±2.52 25.9±2.25 25.3±2.72 22.8±3.16
Microperimetry fixation area 95%a  (deg2) 4.64±6.83 4.98±7.81 7.62±11 8.01±8.82
Microperimetry central 5-point mean sensitivity (dB) 26.8±2.71 26.3±2.53 25.6±3.27 20.8±5.44

Table 2  Performance of classification models of diabetes and retinopathy status

Values are estimates and 95% confidence intervals
Accuracy, proportion of cases classified correctly; GLM, generalised linear model (logistic regression)

Task Accuracy 
(baseline)

GLM accuracy Ensemble accuracy GLM AUC Ensemble AUC 

A: DM no DR vs no DM 0.83 0.84 (0.82, 0.85) 0.92 (0.91, 0.94) 0.68 (0.65, 0.72) 1.00 (1.00, 1.00)
B: DR no DMO vs DM no DR 0.56 0.61 (0.56, 0.65) 1.00 (0.99, 1.00) 0.64 (0.59, 0.69) 1.00 (1.00, 1.00)
C: DR with DMO vs DR no DMO 0.71 0.80 (0.75, 0.85) 0.84 (0.79, 0.88) 0.86 (0.82, 0.91) 0.93 (0.90, 0.96)

Fig. 2  Decision plot show-
ing the influence of variables 
on prediction for a single eye. 
Standardised values for each 
variable are presented after the 
variable name. The dotted line 
indicates the overall probabil-
ity of being DR with DMO in 
the dataset. The dashed line 
indicates the predicted prob-
ability of being DR with DMO 
for this eye
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important for distinguishing the DM no DR group from the 
no DM group (task A), matrix perimetry pattern standard 
deviation was the most important for distinguishing the 
DR no DMO group from the DM no DR group (task B) 
and microperimetry central 5-point mean sensitivity was 
the most important for distinguishing the DR with DMO 
group from the DR no DMO group (task C). These vari-
ables contained a high proportion of imputed values, indi-
cating that the ensemble models partially used patterns of 
imputation to make predictions. Reading index was ranked 
second for tasks A and B but ninth for task C. NVA was 
ranked third for task C but was unimportant for the other 
two tasks. Age ranked fourth or above for all tasks.

Discussion

Classification using visual function

Ensemble ML models incorporating age, sex and visual 
function identified the status of diabetic eye disease with 
high accuracy for three classification tasks. The prominence 
of tree-based learners in the models indicates that threshold-
type associations and interactions among variables were key 
to accurate prediction. This may explain why ensemble mod-
els substantially outperformed the simpler multiple regres-
sion models, which lacked the flexibility to model these 
features. Relying on more conventional regression-based 
approaches, we would have concluded that visual function 
measures provide relatively little information with which 
to distinguish among diabetes mellitus/diabetic retinopathy 

groups. Approaches based on whether eyes exceed ‘normal 
ranges’ of variation for single variables are even less likely 
to have succeeded given the considerable overlap among 
groups for each of the visual function variables.

Ranking of visual function measures based on SHAP 
values varied by classification task, indicating that different 
aspects of visual function are impaired at different stages of 
diabetic eye disease. Reading index was important for dis-
tinguishing between eyes from the no DM, DM no DR and 
DR no DMO groups. In contrast, NVA and Moorfields chart 
acuity were important for distinguishing the DR with DMO 
group from the DR no DMO group. The reading index tests 
the ability to scan quickly along a line of words, and is there-
fore sensitive to pathology in both the fovea and parafovea, 
whereas distinguishing between DR and DMO is achieved 
best by tests that primarily evaluate foveal function. Micro-
perimetry ranked highly for all tasks, but we hesitate to put 
too much weight on this finding given the extent of missing 
data and the use of imputation. Nonetheless our data support 
the findings of smaller studies that have reported significant 
changes in microperimetry variables in similar comparisons 
[34–37].

Interpretable ML

Interpretable ML enabled us to disentangle associations 
between visual function and diabetic eye disease and arte-
facts of the data collection process, at least partially. SHAP 
values for each eye produced an intuitive visualisation (deci-
sion plot) of the variables that most strongly influenced the 
probability prediction. Clustering eyes by SHAP value 

Table 3  Variable importance by SHAP value standard deviation

Data in square brackets represent importance rank and data in parentheses represent percentage of records imputed
LLVA, low-luminance visual acuity

Variable DM no DR vs no DM DR no DMO vs DM no DR DR with DMO 
vs DR no DMO

Microperimetry average sensitivity 0.076 [1] (54.5) 0.023 [13] (55.9) 0.024 [6] (52.0)
Reading index 0.067 [2] (2.3) 0.041 [2] (10.9) 0.015 [9] (10.1)
Microperimetry central 5-point mean sensitivity 0.057 [3] (52.0) 0.026 [8] (53.8) 0.110 [1] (50.3)
Age 0.046 [4] (0.0) 0.038 [4] (0.0) 0.082 [2] (0.0)
Moorfields chart acuity at 4 m 0.037 [5] (24.1) 0.024 [11] (29.4) 0.065 [4] (30.1)
Sex 0.035 [6] (0.0) 0.024 [10] (0.0) 0.000 [14] (0.0)
Matrix perimetry pattern standard deviation 0.032 [7] (72.4) 0.043 [1] (58.1) 0.007 [11] (53.3)
Matrix perimetry mean deviation 0.025 [8] (72.4) 0.025 [9] (58.1) 0.049 [5] (53.3)
Pelli–Robson contrast sensitivity 0.024 [9] (0.4) 0.039 [3] (0.8) 0.001 [13] (0.7)
LLVA at 4 m 0.017 [10] (0.1) 0.021 [14] (0.0) 0.005 [12] (0.0)
Best corrected DVA at 4 m 0.017 [11] (0.0) 0.032 [6] (0.0) 0.023 [7] (0.0)
Microperimetry fixation area 95% 0.016 [12] (52.0) 0.031 [7] (53.8) 0.008 [10] (50.3)
Smith-Kettlewell low-luminance NVA 0.016 [13] (0.2) 0.034 [5] (0.2) 0.021 [8] (0.0)
NVA 0.008 [14] (0.2) 0.023 [12] (0.4) 0.070 [3] (0.0)
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enabled us to detect shared patterns of association between 
visual function variables and diabetic eye disease, highlight-
ing that the same probability prediction of group member-
ship may be made for different reasons, with different visual 
function variables coming to the fore (see ESM section on 
interpretable machine learning).

Given the large number of visual function variables and 
the high proportion of incomplete cases, imputation was 
necessary to extract the full value from the dataset. Although 
we used a well-established imputation procedure, ensem-
ble prediction models detected instances when one of the 
diabetes groups had a larger proportion of missing values 
for a given variable than the other groups. The proportion 
of missing values is thus an important consideration when 
assessing variable importance, especially at the global level, 
either using variation in SHAP values or other measures of 
variable importance (e.g. random forest importance). We 
stress that variable importance in this study and explanations 
derived from SHAP values are purely phenomenological and 
do not imply causal links.

Ensemble models detected stratification in the dataset: 
age ranked highly for all three tasks, reflecting the modest 
differences in age profile of the four groups, and sex was 
of moderate importance for task A, for which the sex ratio 
varied between groups. This reinforces the findings of other 
studies showing that, to optimise classification accuracy, ML 
models may focus on statistical artefacts in the data [38, 39].

Strengths and limitations

A major strength of the study is the number and diversity 
of visual function variables measured on the same eyes, 
providing a rich dataset from which to make predictions, 
and complex enough for ensemble ML to offer substantial 
improvements over simpler statistical modelling methods. 
The number of eyes included is also considerably larger 
than most previous studies of visual function in diabetic eye 
disease [8, 10, 11, 35–37]. Disease status was determined 
using ophthalmic image grading for diabetic retinopathy 
features according to a detailed protocol, providing high-
quality labels on which to train models. Diabetic retinopa-
thy status was established using multimodal imaging. The 
use of ultra-widefield capture on colour images allowed 
scrutiny of the far retinal periphery where retinopathy may 
be seen in a proportion of eyes that lack features of diabetic 
retinopathy elsewhere. The presence of DMO was deter-
mined on SD-OCT, which has been shown to be the gold 
standard for detection of macular features of diabetic retin-
opathy. In addition, careful identification of the group of 
patients with diabetes but without retinal manifestations of 
diabetic retinopathy provided a rare opportunity to charac-
terise visual function changes in early diabetic eye disease. 

The flexible ensemble ML models made efficient use of 
the complex structuring of information in the dataset, and 
combined with the interpretable ML approach, provide a 
comprehensive framework for modelling using untidy real-
world data. Similar approaches have been applied for CVD 
prediction in diabetes patients [40].

The interpretable ML approach may be applied to any 
prediction problem in which a trained model is available, 
and may provide vital checks of performance and integrity 
when modelling real-world clinical data (e.g. electronic 
medical records), where informative patterns of missingness 
and artefacts are present. Interpretability (or explainability) 
is an important step towards providing trustworthy predic-
tion models [41]. We recognise that richer explanations and 
frameworks for interpretability and trustworthiness have 
been emerging [42, 43] and the related concept of action-
ability has strong appeal [44]. This also serves to remind 
us that our study and its design have focused essentially on 
classification tasks, and, given our cross-sectional data, we 
were not predicting the incidence or progression of disease, 
for which other SHAP values might imply different action-
ability, e.g. whether certain visual function tests have more 
weight or import for predicting retinal disease progression 
in certain socioeconomic groups and thus merit actions such 
as altered monitoring or surveillance frequency. By the same 
token, we must be mindful that data fidelity and representa-
tiveness for particular source populations will affect model 
performance.

Our sample contained few eyes with more advanced dia-
betic retinopathy (13/216 eyes at grades R2 or R3) so we 
did not attempt to analyse model performance by diabetic 
retinopathy subgroup and have limited information on the 
visual function profile of those with more advanced diabetic 
retinopathy.

Our study shares limitations common to ML studies, 
namely risk of overfitting, in which predictive performance 
is inflated because the model memorises aspects of the train-
ing data. We attempted to avoid this by using the Super-
Learner algorithm [28, 29], which incorporates a cross-val-
idation stage to avoid overfitting, accounting for interocular 
correlations within individuals by ensuring that pairs of eyes 
were not split between training and validation sets. However, 
in the absence of an external dataset with which to validate 
our models, it is difficult to assess the extent of any overfit-
ting and the likely performance of our model in a different 
population or clinical setting.

Further work

In addition to external validation, a next step towards model 
application would be to evaluate performance when the 
number of available visual function measures is constrained. 
In clinical or trials settings with limited time or funding to 
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assess visual function, it is important to know which com-
binations of two or three visual function tests perform best 
for each task, so that tests may be selected appropriately. 
In many clinical and screening contexts, both imaging and 
functional tests are available, so designing models to fuse 
information across modalities is another important step.

Conclusion

We demonstrated that ML models are capable of classi-
fying the status of diabetic eye disease with moderate to 
high accuracy using just age, sex and measures of visual 
function. Use of interpretable ML methods enabled us to 
identify profiles of visual function associated with diabetic 
eye disease and to disentangle associations from artefacts 
of the data collection process. Together, these two tech-
niques have great potential for developing prediction mod-
els using real-world clinical data.
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