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Abstract
Aims/hypothesis This study aimed to assess the causal relationship between visceral obesity and type 2 diabetes and sub-
sequently to screen visceral adipose tissue (VAT)-specific targets for type 2 diabetes.
Methods We examined the causal relationship between VAT and type 2 diabetes using bidirectional Mendelian randomisation 
(MR) followed by multivariable MR. We conducted a transcriptome-wide association study (TWAS) leveraging prediction 
models and a large-scale type 2 diabetes genome-wide association study (74,124 cases and 824,006 controls) to identify 
candidate genes in VAT and used summary-data-based MR (SMR) and co-localisation analysis to map causal genes. We 
performed enrichment and single-cell RNA-seq analyses to determine the cell-specific localisation of the TWAS-identified 
genes. We also conducted knockdown experiments in 3T3-L1 pre-adipocytes.
Results MR analyses showed a causal relationship between genetically increased VAT mass and type 2 diabetes (inverse-
variance weighted OR 2.48 [95% CI 2.21, 2.79]). Ten VAT-specific candidate genes were associated with type 2 diabetes 
after Bonferroni correction, including five causal genes supported by SMR and co-localisation: PABPC4 (1p34.3); CCNE2 
(8q22.1); HAUS6 (9p22.1); CWF19L1 (10q24.31); and CCDC92 (12q24.31). Combined with enrichment analyses, clarifying 
cell-type specificity with single-cell RNA-seq data indicated that most TWAS-identified candidate genes appear more likely 
to be associated with adipocytes in VAT. Knockdown experiments suggested that Pabpc4 likely contributes to regulating 
differentiation and energy metabolism in 3T3-L1 adipocytes.
Conclusions/interpretation Our findings provide new insights into the genetic basis and biological processes of the associa-
tion between VAT accumulation and type 2 diabetes and warrant investigation through further functional studies to validate 
these VAT-specific candidate genes.

Keywords Candidate genes · Causal inference · Mendelian randomisation · Transcriptome-wide association study · Type 2 
diabetes · Visceral adipose tissue
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IV  Instrumental variable
IVW  Inverse-variance weighted
JTI  Joint-tissue imputation
LD  Linkage disequilibrium
MAGIC  Meta-Analyses of Glucose and Insulin-

related traits Consortium
MCP-1  Monocyte chemoattractant protein-1
MR  Mendelian randomisation
MR-PRESSO  MR-pleiotropy residual sum and outlier
MR-RAPS  MR-robust adjusted profile score
PABPC4  Poly(A) binding protein cytoplasmic 4
PPH  Posterior probability of a hypothesis
qPCR  Quantitative real-time PCR
SAT  Subcutaneous adipose tissue
SMR  Summary-data-based MR
SVF  Stromal vascular fraction
TWAS  Transcriptome-wide association study
UTMOST  Unified test for molecular signatures
VAT  Visceral adipose tissue

Introduction

Central adiposity, also known as abdominal adiposity, rep-
resents an accumulation of excessive visceral fat. It is usu-
ally captured by anthropometric measures such as waist 

circumference or WHR and has been related to type 2 diabe-
tes independent of BMI. Imaging-based studies have shown 
that individuals with type 2 diabetes tend to have more 
visceral fat than BMI-matched individuals without type 2 
diabetes [1, 2]. However, these studies were largely limited 
by small sample sizes and were prone to be influenced by 
potential environmental and behavioural confounding fac-
tors and reverse causation, restricting their ability for causal 
inference.

It is well known that visceral adipose tissue (VAT) is 
more harmful than adipose tissue from other locations [3], 
such as subcutaneous adipose tissue (SAT) and adipose tis-
sue from the extremities. Several studies have focused on 
the underlying molecular mechanisms and links between 
visceral fat accumulation and type 2 diabetes, including 
dysfunctional VAT characterised by adipocyte hypertrophy, 
the dysregulation of adipocytokines, changes in extracellular 
matrix (ECM) composition and function, and increased infil-
tration of inflammatory immune cells [4, 5], each of which 
may present potential novel therapeutic avenues. Therefore, 
VAT is a key target organ in which novel molecules and 
pathways linked to type 2 diabetes pathogenesis could be 
identified. However, the precise mechanisms require further 
elucidation.

In the past 10 years, genome-wide association studies 
(GWAS) have become a powerful tool, not only for revealing 
the genetic basis and providing the starting point for further 
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studies of potential mechanisms but also for the development 
of Mendelian randomisation (MR) to make causal inferences 
in complex diseases. Nevertheless, although more than 200 
loci related to type 2 diabetes risk have been identified from 
the largest GWAS to date [6], it is likely that many loci con-
tributing to type 2 diabetes pathogenesis were missed due 
to the stringent statistical threshold that is typically used. 
In addition, the biological interpretation of genetic associa-
tion results remains a major challenge because most GWAS-
identified variants are located in non-coding or intergenic 
regions, indicating the presence of regulatory mechanisms of 
gene expression [7, 8]. What is more, these genetic associa-
tions carry no information on tissue specificity. Recently, a 
transcriptome-wide association study (TWAS) was reported 
to be useful for systematically detecting disease susceptibil-
ity genes across various tissues by imputing predicted gene 
expression into GWAS datasets [9]. TWAS-identified genes 
are essential to explore disease aetiology, facilitate inter-
pretation of the biological process of GWAS findings and 
prioritise follow-up functional studies.

In this study, we performed two-sample MR analyses 
to evaluate the causal effects of genetically increased VAT 
mass on type 2 diabetes risk. We then utilised the pretrained 
genetic prediction models established by the three most 
advanced strategies. We reported results from a large type 
2 diabetes TWAS conducted among nearly 900,000 par-
ticipants of European ancestry to comprehensively identify 
VAT-specific candidate genes that contribute to type 2 dia-
betes risk. To validate these in silico findings, we further 
performed in vitro functional experiments for one gene, 
PABPC4, encoding poly(A) binding protein cytoplasmic 4 
(PABPC4).

Methods

Study design

The study flow chart is depicted in Fig. 1. Overall, we uti-
lised a series of MR (inverse-variance weighted [IVW], 
weighted median, MR-Egger regression, MR-pleiotropy 
residual sum and outlier [MR-PRESSO], MR-robust adjusted 
profile score [MR-RAPS], causal analysis using summary 
effect estimates [CAUSE] and generalised summary-data-
based MR [GSMR]) and TWAS, combined with single-cell 
RNA-seq and enrichment analyses to identify and localise 
casual genes. Finally, we conducted in vitro experiments to 
validate the TWAS findings. See ESM Methods for details.

Univariable and multivariable MR analysis

Selection of exposures The UK Biobank enrolled more than 
500,000 participants aged 40–69 years old from the UK 

between 2006 and 2010. The summary data for predicted 
VAT mass were acquired from a recent large-scale GWAS 
(GWAS Catalog ID: GCST008744). We then extracted four 
variables from the GWAS summary data, including BMI, 
waist circumference and WHR, from the Genetic Investiga-
tion of ANthropometric Traits consortium (GIANT; https:// 
porta ls. broad insti tute. org/ colla borat ion/ giant/ index. php/ 
GIANT_ conso rtium_ data_ files, accessed 19 February 2022) 
and smoking status from the UK Biobank (downloaded from 
MR-Base database, https:// www. mrbase. org/, accessed on 19 
February 2022) to serve as confounding factors to be adjusted 
in multivariable MR analysis. See ESM Methods for details.

Selection of outcomes We collected the summary data for 
type 2 diabetes from the DIAbetes Genetics Replication And 
Meta-analysis (DIAGRAM; http:// diagr am- conso rtium. org/ 
downl oads. html, accessed 25 February 2022) consortium 
and 70KforT2D GWAS project (https:// kp4cd. org/ node/ 151, 
accessed 25 February 2022). The glucose-related traits, such 
as  HbA1c, fasting glucose (FG), 2h glucose (2hGlu) and fast-
ing insulin, were obtained from the Meta-Analyses of Glu-
cose and Insulin-related traits Consortium (MAGIC; https:// 
magic inves tigat ors. org/, accessed 27 February 2022). See 
ESM Methods for details.

Transcriptome‑wide association analysis

We used the recently released data for VAT and SAT from 
the Genotype-Tissue Expression (GTEx; https:// gtexp 
ortal. org/ home/, accessed 5 March 2022) project (V8), 
and utilised the pretrained prediction models from Zenodo 
(https:// doi. org/ 10. 5281/ zenodo. 38422 89, accessed 7 
March 2022) for further TWAS analysis. See ESM Meth-
ods for details.

In vitro experimental assays for functional 
validation

We conducted knockdown experiments on mouse 3T3-L1 
adipocytes for the genes with the highest priority. Briefly, 
we used western blot (peroxisome proliferator-activated 
receptor γ [PPARG], protein kinase AMP-activated cata-
lytic subunit α 1 and 2 [PRKAA1/2], IRS1 and GLUT1), 
quantitative real-time PCR (qPCR) (Adipoq, Plin1, Cidec, 
Lipe, Lep and Pnpla2), ELISA (IL-6, TNF-α and mono-
cyte chemoattractant protein-1 [MCP-1] in medium), glu-
cose consumption assays and Oil Red O staining to assess 
the effects of Pabpc4 knockdown on the energy and lipid 
metabolism, secretory functions, glucose utilisation and 
insulin signalling, respectively, in adipocytes. See ESM 
Methods for details.

https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://www.mrbase.org/
http://diagram-consortium.org/downloads.html
http://diagram-consortium.org/downloads.html
https://kp4cd.org/node/151
https://magicinvestigators.org/
https://magicinvestigators.org/
https://gtexportal.org/home/
https://gtexportal.org/home/
https://doi.org/10.5281/zenodo.3842289
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Fig. 1  Study design. FI, fasting 
insulin; T2D, type 2 diabetes; 
WC, waist circumference
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Statistical analysis

LD score regression analysis We applied linkage disequilib-
rium (LD) score regression between VAT and type 2 diabe-
tes with GWAS summary statistics using LDSC software 
version 1.0.1 (https:// github. com/ bulik/ ldsc/, accessed on 1 
February 2022). See ESM Methods for details.

Univariable and multivariable MR analysis We performed 
univariable and bidirectional two-sample MR with seven 
MR methods, and we took the IVW results as the primary 
associations while also considering the consistency of the 
results across other MR methods. See ESM Methods for 
details.

Transcriptome‑wide association analysis We used three dif-
ferent approaches to perform a summary-based TWAS using 
MetaXcan TWAS pipeline (https:// github. com/ hakyi mlab/ 
MetaX can, accessed 7 March 2022). See ESM Methods for 
details.

Summary‑data‑based MR and co‑localisation We per-
formed summary-data-based MR (SMR), heterogeneity 
in dependent instrument (HEIDI) test, and co-localisation 
analysis to further screen ‘causal genes’ [p (SMR) passing 
Bonferroni correction, HEIDI p>0.05 and posterior prob-
ability of a hypothesis (PPH)4 >0.70]. See ESM Methods 
for details.

Bulk RNA‑seq and enrichment analysis We analysed pub-
licly available bulk RNA-seq data from VAT samples of 
individuals with type 2 diabetes to validate the expres-
sion of TWAS-identified genes. We performed functional 
enrichment analysis to annotate these genes in a biological 
context using Data-driven Expression Prioritized Integra-
tion for Complex Traits tool [10] (DEPICT, https:// github. 
com/ persl ab/ depict, accessed 10 March 2022) and FUMA 
tool [11] version 1.4.1 (https:// github. com/ Kyoko- wtnb/ 
FUMA- webapp/). See ESM Methods for details.

Single‑cell analysis for the stromal vascular fraction and adi‑
pocyte differential gene analysis in VAT We examined the 
cell-type-specific expression of the ten candidate genes by 
using human VAT single-cell RNA-seq data (GEO database 
accession no. GSE136230). See ESM Methods for details.

Analysis software MR analyses were performed in R (ver-
sion 4.1.0) [12] with the R packages ‘TwoSampleMR’ (ver-
sion 0.5.5, https:// mrcieu. github. io/ TwoSa mpleMR/) [13], 
‘MRPRESSO’ (version 1.0, https:// github. com/ rondo lab/ 
MR- PRESSO) [14], ‘CAUSE’ (version 1.2.0, https:// github. 
com/ jean9 97/ cause) [15], ‘gsmr’ (version 1.0.9, https:// yangl 
ab. westl ake. edu. cn/ softw are/ gsmr/) [16] and ‘MVMR’ (ver-
sion 0.3, https:// github. com/ WSpil ler/ MVMR) [17]. TWAS 
analyses were performed in Python (version 3.9.1) with a 
Python script in the MetaXcan pipeline. SMR and HEIDI 
test were performed by the SMR software tool (version 
1.3.1; https:// yangl ab. westl ake. edu. cn/ softw are/ smr/# Downl 
oad).

Results

Univariable and multivariable MR analyses

Participant characteristics and genetic correlations are 
shown in ESM Results and ESM Tables 1, 2. In total, 221 
SNPs were selected as instrumental variables (IVs) for 
predicted VAT mass based on the IV assumptions in MR 
analysis (ESM Tables 1, 3 and ESM Fig. 1). Univariable 
MR showed a causal relationship between the predicted 
VAT mass and type 2 diabetes risk and  HbA1c levels across 
six MR approaches (VAT and type 2 diabetes with an IVW 
OR 2.48 [95% CI 2.21, 2.79], and see other results in ESM 
Results, ESM Table 4 and ESM Figs 2–8). To reduce the 
possibility of reverse causation, a bidirectional MR was 
conducted using the GSMR in combination with other MR 
methods (Table 1, Fig. 2a,b and ESM Table 5). The for-
ward GSMR suggested an adverse effect of the predicted 

Table 1  Bidirectional GSMR 
analysis for predicted VAT on 
the risk of type 2 diabetes

a rs10423928, rs111363146, rs2744973, rs329124, rs429358, rs7649970 and rs8074454 were identified as 
outliers
b rs10189235, rs10768984, rs11642015, rs17036160, rs429358, rs4565329, rs62007299 and rs703976 were 
identified as outliers
c rs10896012, rs2102278, rs329124, rs72663503, rs7649970 and rs8074454 were identified as outliers
d rs3768321 and rs71304101 were identified as outliers

Outcome
Type 2 diabetes

Forward Reverse Pleiotropic outliers
(no. of SNPs)

OR (95% CI) p value OR (95% CI) p value Forward Reverse

Discovery cohort 2.70 (2.46, 2.96) 3.12×10−99 0.99 (0.98, 1.00) 6.09×10−3 7a 8b

Replication cohort 1.65 (1.46, 1.87) 1.05×10−15 0.99 (0.98, 1.00) 1.34×10−2 6c 2d

https://github.com/bulik/ldsc/
https://github.com/hakyimlab/MetaXcan
https://github.com/hakyimlab/MetaXcan
https://github.com/perslab/depict
https://github.com/perslab/depict
https://github.com/Kyoko-wtnb/FUMA-webapp/
https://github.com/Kyoko-wtnb/FUMA-webapp/
https://mrcieu.github.io/TwoSampleMR/
https://github.com/rondolab/MR-PRESSO
https://github.com/rondolab/MR-PRESSO
https://github.com/jean997/cause
https://github.com/jean997/cause
https://yanglab.westlake.edu.cn/software/gsmr/
https://yanglab.westlake.edu.cn/software/gsmr/
https://github.com/WSpiller/MVMR
https://yanglab.westlake.edu.cn/software/smr/#Download
https://yanglab.westlake.edu.cn/software/smr/#Download
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increased VAT on the type 2 diabetes risk (OR 2.70 [95% 
CI 2.46, 2.96], p=3.12×10−99 for discovery analysis; OR 
1.65 [95% CI 1.46, 1.87], p=1.05×10−15 for replication 
analysis). The reverse GSMR showed a significant associa-
tion between genetically determined type 2 diabetes and a 
higher VAT mass; however, the ORs were very close to the 
null value (0.99 [95% CI 0.98, 1.00]). Notably, the causal 
relationships from other reverse MR (using two-sample MR 
analysis) were no longer significant (ESM Table 5). There 
was little evidence to support an association between geneti-
cally increased glucose-related traits and VAT mass (ESM 
Table 4). Sensitivity analysis showed evidence of heteroge-
neity but without horizontal pleiotropy between VAT and 
type 2 diabetes (see ESM Results ‘Sensitivity analysis’ and 
ESM Table 6).

Taking into account the results of the univariable MR 
analysis, multivariable MR was performed to further deter-
mine the independent effects of VAT adjusted for potential 

confounders. We found that the strong positive associa-
tions between VAT and type 2 diabetes persisted using the 
two multivariable MR methods (except for the association 
adjusted for BMI, which was attenuated). The multivariable-
adjusted ORs (95% CIs) were 2.60 (1.91, 3.54) adjusted for 
BMI, 2.08 (1.59, 2.72) adjusted for waist circumference, 
2.49 (2.09, 2.97) adjusted for WHR and 2.70 (2.32, 3.14) 
adjusted for smoking status (Fig. 2c). Although the relation-
ship between the predicted VAT and type 2 diabetes was 
attenuated after adjustment for waist circumference in rep-
lication analysis, it still showed the same effect direction and 
overlapped CIs as the univariable results (Fig. 2c).

Transcriptome‑wide association analysis

Using joint-tissue imputation (JTI), PrediXcan and modi-
fied unified test for molecular signatures (UTMOST), 
three separate prediction models were built and detailed 
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Fig. 3  Cellular localisation of 
TWAS-identified genes. (a) 
Relative expression (count) 
of TWAS-identified genes in 
bulk RNA-seq data GSE71416 
(this dataset did not include 
long non-coding RNA: NEAT1 
and DNAH10OS). The boxes 
represent the interquartile 
range (IQR) containing the 
middle 50% of the data, from 
Q1 to Q3. The horizontal line 
indicates the median value 
of the gene expression data. 
The whiskers extend from the 
box to the smallest and largest 
observations within 1.5 × IQR, 
representing the spread of the 
data. (b–g) DEPICT enrich-
ment analysis and single-cell 
RNA-seq analysis for cell-type 
specificity: tissue and cell-type 
enrichment analyses includ-
ing physiological systems (b), 
cells (c) and tissues (d); the 
orange columns indicate where 
p values were corrected by the 
false discovery rate correction 
(FDR<0.05); (e) identified cell 
populations in the VAT; (f) top 
differentially expressed genes; 
and (g) dot plot of differential 
expression for TWAS-identified 
genes between type 2 diabetes 
and controls (DNLZ and DNA-
H10OS were filtered due to their 
low expression levels). FDR, 
false discover rate; NK, natural 
killer; tSNE, t-distributed sto-
chastic neighbor embedding
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information on the prediction performance for each gene 
is shown in ESM Tables 7–12. The JTI framework, Pre-
diXcan and UTMOST prioritised 132 genes (Bonferroni-
corrected p<4.04×10−6), 88 genes (p<6.14×10−6) and 
116 genes (p<5.34×10−6), respectively. The Manhattan 
plots using the three TWAS methods are shown in ESM 
Fig. 9. As a next step, in our gene-prioritisation strategy, 
the SMR prioritised 42 candidate genes. Finally, 25 genes 
were identified by all methods.

To compare the expression of genes contributing to type 
2 diabetes risk with VAT, the same analyses were repeated 
to identify candidate genes expressed in SAT using GTEx 
data. Finally, 32 genes were identified by all methods. 
There were ten VAT-related genes (five novel type 2 dia-
betes-associated genes) showing no significant gene-level 
TWAS associations in SAT-related analysis and thus they 
represent independent hits (Table 2). At the 1p34.3 locus, 
genetically elevated expression of PABPC4 was associ-
ated with decreased type 2 diabetes risk. Besides, geneti-
cally elevated expression of CCNE2 on 8q22.1, HAUS6 
on 9p22.1, CWF19L1 on 10q24.31, CCDC92 on 12q24.31 
and DNAH10OS on 12q24.31 showed protective effects on 
type 2 diabetes risk. All these associations were further 
filtered by co-localisation between the gene expression and 
type 2 diabetes associations (PPH4 >0.70) and the SMR 
HEIDI test (p>0.05). Four other genes identified in the 
TWAS failed to be confirmed by co-localisation analysis 
or the SMR HEIDI test. The detailed TWAS and SMR 
results are shown in ESM Tables 7–14.

Bulk RNA‑seq and enrichment analysis

According to the analysis of bulk RNA-seq data, three 
significantly differentially expressed TWAS-identified 
genes were observed when comparing individuals with 
type 2 diabetes and non-diabetic individuals with mor-
bid obesity: PABPC4 (p=0.004); HAUS6 (p=0.011); and 
DNLZ (p=0.013). Moreover, HLA-DRB1 (p=0.086) and 
CWF19L1 (p=0.100) reached the margin of significance 
(Fig. 3a).

Adipose tissue and adipocytes showed the strongest 
enrichment using the DEPICT tool (Fig. 3b–d and ESM 
Table 15). A pathway analysis for JTI-identified genes using 
FUMA detected several significantly associated Gene Ontol-
ogy gene sets. The top five sets were MHC protein complex 
assembly (p=6.26×10−7), activating transcription factor 6 
(ATF6)-mediated unfolded protein response (p=3.72×10−6), 
negative regulation of insulin secretion (p=6.64×10−6), 
negative regulation of signalling (p=7.26×10−6) and cell 
cycle process (p=7.32×10−6). The results for all enriched 
pathways with a false discovery rate of <0.05 are presented 
in ESM Table 16.

Single‑cell analysis for the stromal vascular fraction 
and adipocytes differential gene analysis in VAT

Enrichment analysis suggested that adipocytes might be 
associated with type 2 diabetes risk. It is important to note 
that adipose tissue is a complex and highly active organ 
that is composed of two main cell populations (adipocytes 
and the stromal vascular fraction [SVF; immune cells, pre-
adipocytes, endothelial cells, etc.]). Therefore, single-cell 
RNA-seq data of SVF in VAT were re-analysed. After fil-
tering, 12,897 SVF cells (4888 cells from individuals with 
type 2 diabetes and 8009 cells from individuals without 
diabetes) were obtained. Annotation of the clusters using 
recommended marker genes resulted in the following ten 
cell types: tissue stem cells; smooth muscle cells; fibroblasts; 
macrophages; natural killer (NK) cells; T cells; endothe-
lial cells; monocytes; B cells; and chondrocytes (Fig. 3e), 
showing different expression patterns (Fig. 3f). The cell 
distribution in individuals with type 2 diabetes was clearly 
distinct from that in individuals without diabetes (Fig. 3e). 
Notably, most TWAS-identified genes did not show dif-
ferential expression between the two groups, except for a 
higher expression of NEAT1 in fibroblasts, macrophages and 
endothelial cells in individuals with type 2 diabetes and a 
higher expression of HLA-DRB1 and ZNF34 in fibroblasts 
and T cells in individuals without diabetes (Fig. 3g). In 
addition, PABPC4 and ZNF34 differed in their expression 
patterns in adipocytes (Fig. 3g). In general, among these 
findings, PABPC4 exhibited a good agreement at different 
omics levels, including genetics, bulk RNA-seq (Fig. 3a; two 
additional GEO datasets are shown in ESM Fig. 10) and 
single-cell RNA-seq analysis.

In vitro experimental assays for functional 
validation

Based on the above analysis of the results, the expression 
of PABPC4 in adipocytes was speculated to be related to 
type 2 diabetes risk. This finding was strengthened further 
by a series of knockdown experiments in mouse 3T3-L1 
adipocytes. The experimental materials, reagents and primer 
sequences are shown in ESM Tables 17–18. Pabpc4 knock-
down was confirmed by conducting both western blot and 
qPCR analysis, both showing a significant decrease com-
pared with the control group transfected with empty vec-
tor. Knockdown of Pabpc4 inhibited the expression of 
PPARG (tested before the induction of the differentiation), 
PRKAA1/2 and IRS1 under basal conditions, representing 
the regulation of cell differentiation, energy metabolism and 
insulin signalling, respectively. Only GLUT1 was upregu-
lated especially in the insulin-stimulated group (Fig. 4a). 
Further, similar changes in protein expression were noted 
in response to Pabpc4 knockdown under insulin conditions 
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(Fig. 4a,b). Glucose consumption experiments showed that 
knockdown of Pabpc4 inhibited the glucose utilisation of 
3T3-L1 adipocytes (Fig. 4c). Given the effect of Pabpc4 
knockdown on glucose uptake, insulin signalling experi-
ments with p-Akt assessment were conducted, showing a 
significant downregulation in Akt signalling (ESM Fig. 11). 
Oil Red O staining indicated that Pabpc4 might be associ-
ated with the lipid storage capacity of adipocytes (Fig. 4d). 
Measurement of lipid metabolism-related genes showed 
that Adipoq and Lipe were downregulated while Cidec was 
upregulated (Fig. 4e). The supernatant fractions of adipo-
cyte cell cultures were assayed for IL-6, TNF-α and MCP-1, 
showing a consistent downregulation under insulin condi-
tions (Fig. 4f).

Discussion

In this study, we provided evidence that VAT mass was 
genetically correlated with type 2 diabetes and  HbA1c using 
whole-genome LDSC. Two-sample and bidirectional MR 
analyses suggested that genetically determined VAT mass 
was causally related to an increased risk of type 2 diabetes 
and a higher level of  HbA1c but not vice versa. Furthermore, 
utilising the reference data for VAT and SAT from the GTEx 
project, TWAS analyses identified ten VAT-specific genes 
related to type 2 diabetes risk. Of these, five putative target 
genes, including PABPC4 on 1p34.3, CCNE2 on 8q22.1, 
HAUS6 on 9p22.1, CWF19L1 on 10q24.31 and CCDC92 
on 12q24.31, were labelled ‘causal genes’ according to the 
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Fig. 4  Pabpc4 knockdown experiments in mouse 3T3-L1 adipocytes. 
(a) Western blot for energy metabolism-related proteins. (b) Protein 
expression fold change. (c) Glucose consumption at 12 h and 24 h. 
(d) Oil Red O staining. (e) Expression of lipid metabolism-related 
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pocytes, showing concentrations in the supernatant fractions of adi-
pocyte cultures. Scale bar, 50 μm. *p<0.05, **p<0.01, ***p<0.001
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SMR and co-localisation analyses. Knockdown experiments 
in 3T3-L1 adipocytes indicated that Pabpc4 may have a role 
in regulating the differentiation and energy metabolism.

The genetic relationship between obesity-related traits 
(e.g. BMI, waist circumference and WHR) and type 2 dia-
betes has already been established [18, 19] but this relation-
ship has not been established for VAT. A population-based 
twin study found a significantly higher genetic correlation 
between insulin resistance and central fat (r = 0.41) than that 
for total fat (0.24) [20]. These findings illustrated that central 
fat is not only a predictor of insulin resistance but also shares 
genetic influence with insulin resistance, which is a major 
factor in obesity-linked type 2 diabetes. We found significant 
genetic correlations of VAT with type 2 diabetes and  HbA1c, 
but not FG, 2hGlu or fasting insulin, suggesting that VAT 
accumulation might be associated with persistent dysglycae-
mia. Furthermore, most observational studies have specifi-
cally investigated the association between imaging-measured 
VAT and type 2 diabetes risk with a limited sample size. A 
recent study, using dual-energy x-ray absorptiometry (DXA) 
to accurately measure VAT in more than 4000 participants, 
reported a strong association between VAT mass and type 
2 diabetes risk (OR [95% CI] 8.55 [4.48, 16.3] for female 
participants and 2.01 [1.56, 2.58] for male participants). 
VAT was a stronger risk factor in the female participants 
while the higher overall prevalence of type 2 diabetes in the 
male participants could be ascribed to their larger average 
depot of VAT [21]. These associations were verified by MR 
analyses, suggesting a causal role of the predicted VAT on 
type 2 diabetes [21].

Nevertheless, the sample size of that study was rela-
tively small (9517 type 2 diabetes cases), and the MR 
estimations were not adjusted for potential confounders 
such as BMI. In comparison, our MR analyses lever-
aged a larger sample size (26,676 type 2 diabetes cases 
in discovery analysis and 12,931 cases in replication 
analysis) to make causal inference and obtained an inde-
pendent effect of VAT that was independent from BMI, 
waist circumference, WHR and smoking status. These 
analyses indicated that targeting body fat distribution, 
especially VAT, might be a promising strategy for type 
2 diabetes. However, the specific mechanisms involved 
in the pathogenesis of type 2 diabetes associated with 
VAT remain to be elucidated. Thus, the candidate genes 
identified by TWAS could provide a new direction for 
unravelling the shared aetiologies between VAT and type 
2 diabetes since genetic regulatory variation is the major 
determinant of target gene expression and subsequently 
alters the levels of proteins [22, 23].

Usually, there are two possibilities for the relationship 
between gene expression alterations and disease status: one 
is that the altered gene expression leads to disease condi-
tions (potential targets); and the other is that the disease 

itself results in aberrant gene expression (biomarkers). 
Using TWAS analyses, several candidate genes identified 
in both VAT and SAT have been studied more extensively. 
For example, IRS1 is a substrate of insulin receptor tyrosine 
kinase, which plays an important role in insulin-stimulated 
signal transduction pathway. Kilpeläinen et al identified a 
locus near IRS1 that was associated with increased body fat 
but it was a robustly protective locus for cardiometabolic 
risk including type 2 diabetes and coronary artery disease 
[24]. Juxtaposed with another zinc finger protein 1 (JAZF1) 
is a transcriptional coregulator associated with pathophysi-
ological processes in type 2 diabetes, as confirmed by animal 
studies. Overexpression of JAZF1 inhibits glucose produc-
tion by the liver [25]. It also acts as an important regulator 
of endoplasmic reticulum stress, preventing p53-mediated 
metabolic stress in beta cells [26]. WFS1 mutation leads to 
the Wolfram syndrome, of which the most common clinical 
phenotypes are early onset diabetes and neurological symp-
toms. Wfs1-knockout rats show a strikingly different diabetic 
phenotype compared with previous animal models [27].

However, the aforementioned genes cannot reflect the 
unique contribution made by VAT to type 2 diabetes. We 
identified ten VAT-specific genes that were related to type 2 
diabetes. These included eight protein-coding genes, three 
of which were verified in a bulk RNA-seq dataset. For sev-
eral of our identified genes, there is already evidence from 
published studies supporting their potential role in the patho-
genesis of type 2 diabetes. For instance, PABPC4 is localised 
primarily to the cytoplasm and is necessary for regulating 
the stability of labile mRNA. Furthermore, it has been iden-
tified as a putative functional gene for type 2 diabetes from 
the SMR analysis in the Consortium for the Architecture 
of Gene Expression (CAGE, N=2765 in peripheral blood) 
[28]. It was also reported that PABPC4 is necessary for the 
regulation of fat and glucose levels, especially when high-fat 
diets are consumed. Thus, it may form part of the important 
link between obesity and type 2 diabetes [29]. Consistently, 
our in vitro functional assays verified that the knockdown of 
Pabpc4 decreases glucose utilisation in 3T3-L1 adipocytes, 
and this process is less likely to be mediated by glucose 
transporters (GLUT1 was upregulated). Interestingly, it has 
been reported that glucose entrance through GLUT1 with 
activation of the hexosamine pathway may decrease the 
insulin-mediated glucose transport through GLUT4, lead-
ing to insulin resistance [30]. In contrast, AMP-activated 
protein kinase (AMPK), a key cellular sensor of energy 
balance that regulates energy metabolism [31], may be a 
molecular signalling pathway downstream of PABPC4. We 
observed that the expression levels of PRKAA1/2 and p-Akt 
were downregulated in the shRNA groups. Therefore, we 
speculate that the effect of Pabpc4 knockdown on glucose 
consumption may be achieved through the AMPK and Akt 
signalling pathway.
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Moreover, the decreased Pparg expression suggested that 
Pabpc4 may be involved in pre-adipocyte differentiation, 
which has been shown to be related to adipocyte insulin 
resistance [32]. Examination of lipid metabolism-related 
genes provided some clues to explain how Pabpc4 knock-
down affects adipocyte lipid storage capacity. For example, 
Adipoq gene promotes glucose uptake and fatty acid oxida-
tion in adipocytes and regulates adipocyte energy metabo-
lism and insulin sensitivity [33]. Lipe, encoding kinase-
sensitive lipase (HSL), is a key enzyme in triacylglycerol 
catabolism in adipocytes [34]. Cidec has been proven to be 
involved in the formation and maintenance of lipid droplets 
in adipocytes. Knockdown of Cidec in well-differentiated 
adipocytes enhances lipolysis, increases the number of mito-
chondria and increases the expression of genes associated 
with brown adipocyte identity [35].

Other TWAS-identified causal genes, such as CWF19L1, 
are likely to be involved in cell cycle regulation and are well 
conserved in several species. However, there have been no 
experimental studies that link the expression of CWF19L1 
with type 2 diabetes. Previous research has shown that com-
mon variants of the ERLIN1–CHUK-CWF19L1 gene clus-
ter act in fatty liver and metabolic diseases [36]. CCDC92 
encodes a coiled-coil domain protein that can interact with 
proteins at the centriole–ciliary interface. In a bivariate 
GWAS, a novel signal at rs825476 near CCDC92, which is 
also an expression quantitative trait locus (eQTL) for this 
gene, was identified as a shared locus between type 2 dia-
betes and CHD [37]. The effects of two other causal genes, 
CCNE2 and HAUS6, on type 2 diabetes have not been vali-
dated in functional studies and will need to be investigated 
in future research.

Strength and limitations

To the best of our knowledge, this study is the first to sys-
tematically identify VAT-specific candidate genes that are 
associated with type 2 diabetes risk using TWAS analyses. 
TWAS-identified genes are more appropriately interpreted 
as prioritised genes at relative loci, meaning that these genes 
do not imply causality. Thus, we used different approaches, 
such as TWAS, SMR and co-localisation, to confirm and 
complement each other, making the results more reliable. 
Moreover, we re-analysed and combined the single-cell 
RNA-seq data to determine the cell-type specificity for these 
candidate genes.

Notably, it should be emphasised that there are also 
three major limitations in our study. First, the relatively 
small sample size for GTEx reference data of VAT limits 
the precision and power to detect associations less of mod-
erate strength. VAT is a heterogeneous tissue containing 

many cell types (organ-specific and migratory) with rela-
tive proportions that can vary according to the harvest-
ing location and environmental factors. Second, TWAS 
only focuses on genes with significant cis-heritability 
(cis-eQTLs, within a certain distance from gene body). 
However, the expression of some genes can be regulated 
by trans-regulatory elements in the human genome; thus, 
the importance of trans-eQTLs in transcriptional regula-
tion should not be overlooked. Third, the reference data 
we used in TWAS were mainly of European ancestry due 
to the lack of large-scale eQTL data from other ancestry 
groups, diseases, medical conditions, sex, etc., limiting 
the generalisability of the findings to other ethnic groups.

Conclusions

In summary, our findings provide substantial new infor-
mation to improve our understanding of the genetics and 
aetiology of type 2 diabetes and lay a foundation for fur-
ther functional studies of these identified target genes to 
thoroughly explore the in-depth mechanisms.
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