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Abstract
In the last few decades, glucagon-like peptide-1 receptor (GLP-1R) agonists have changed current guidelines and improved 
outcomes for individuals with type 2 diabetes. However, the dual glucose-dependent insulinotropic polypeptide receptor 
(GIPR)/GLP-1R agonist, tirzepatide, has demonstrated superior efficacy regarding improvements in HbA1c and body weight 
in people with type 2 diabetes. This has led to increasing scientific interest in incretin hormones and incretin interactions, 
and several compounds based on dual- and multi-agonists are now being investigated for the treatment of metabolic dis-
eases. Herein, we highlight the key scientific advances in utilising incretins for the treatment of obesity and, potentially, 
non-alcoholic fatty liver disease (NAFLD). The development of multi-agonists with multi-organ targets may alter the natural 
history of these diseases.
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Abbreviations
GCGR​	� Glucagon receptor
GIP	� Glucose-dependent insulinotropic polypeptide
GIPR	� Glucose-dependent insulinotropic polypeptide 

receptor
GLP-1	� Glucagon-like peptide-1
GLP-1R	� Glucagon-like peptide-1 receptor
NAFLD	� Non-alcoholic fatty liver disease
NASH	� Non-alcoholic steatohepatitis
STEP	� Semaglutide Treatment Effect in People with 

Obesity

Introduction

Obesity is one of the biggest health challenges, affecting 
millions of individuals worldwide. It is associated with 
decreased quality of life and disabling complications, short-
ening lives, and costing billions in healthcare costs and loss 
of workability [1, 2]. Since 2006, glucagon-like peptide-1 
receptor (GLP-1R) agonists have caused a dramatic change 
in the treatment of type 2 diabetes, with clinically relevant 
and sustained effects on glycaemic control and body weight 
combined with cardioprotective mechanisms [3, 4]. The 
body-weight lowering effect of GLP-1R agonists has sub-
sequently been utilised for the treatment of obesity. Until 
recently, no therapeutic potential was associated with the 
other incretin hormone, glucose-dependent insulinotropic 
polypeptide (GIP), as preclinical studies have suggested 
potential obesogenic effects. However, the dual GIP recep-
tor (GIPR)/GLP-1R agonist, tirzepatide, has demonstrated 
superior efficacy in reducing HbA1c and body weight in 
people with type 2 diabetes [5]. The emergence of GIPR/
GLP-1R co-agonists has fostered a growing interest in the 
actions of GIP and glucagon-like peptide-1 (GLP-1) in 
metabolically relevant tissues, including liver, muscle and 
adipose tissue, regarding the control of glucose and lipid 
homeostasis. Interestingly, the discovery of poly-agonist 
drugs that activate multiple gut–brain pathways promises 
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to further transform the management of metabolic diseases 
besides type 2 diabetes, including obesity and non-alcoholic 
fatty liver disease (NAFLD) [6–8]. With NAFLD affecting 
25–30% of the global population, up to 60–70% of people 
with type 2 diabetes and almost all individuals with severe 
obesity [9, 10], an available pharmacotherapy for NAFLD 
is highly warranted.

This review highlights established and emerging concepts 
regarding the use of incretins for controlling body weight 
and treating obesity and, potentially, NAFLD.

Incretin hormones in the regulation of body 
weight

The knowledge of the complex mechanisms controlling body 
weight is evolving rapidly. However, the understanding of 
hunger, satiety and weight control is still mainly based on 
findings from preclinical studies with rather limited trans-
lational value in humans. In addition, limited data are avail-
able on the pathophysiological neuroendocrine regulation of 
satiety in the development of human obesity.

GIP was the first incretin hormone to be discovered; how-
ever, the understanding of GIP's biology was overshadowed 
by research focusing on GLP-1 and its impact in diabetes and 
obesity treatment [4, 11–14]. Today it is recognised that the 
hypothalamus is a key region of the brain that is implicated 
in homeostatic regulation and is suggested to be an integral 
centre for the control of feeding behaviour [15, 16]. It has 
also been shown that neuronal tissue has a dense expres-
sion of both the GIPR and the GLP-1R [17]. Interestingly, 
exogenously administered GIP and GLP-1 seem to access 
the brain predominately via leaks in the blood–brain barrier, 
where the underlying neuronal tissue has dense expression 
of their receptors [11–13, 17] (Fig. 1). However, early work 
indicated that GIP was obesogenic (Fig. 1), limiting interest 
in developing GIPR agonists to treat type 2 diabetes [18]. 
However, recent GIP research has reinvigorated interest in 
this peptide, and paradoxical observations with different 
approaches have been discussed for treating obesity, one 
promoting GIPR agonism and the other GIPR antagonism 
[19]. Different hypotheses are considered, including a com-
pensatory relationship between incretin receptors by which 
GIPR enhances GLP-1R activity and/or that chronic GIPR 
agonism produces desensitisation and loss of GIPR activ-
ity, thus, mimicking antagonism. However, a more profound 
understanding of GIP biology in relation to satiety and body 
weight remains to be fully elucidated [19].

In contrast to GIP, a substantial number of preclinical and 
clinical studies link GLP-1 as a central peptide that, through 
hormonal and neural pathways, not only regulates pancreas 
function but also hunger and satiety (Fig. 1). The impor-
tance of brain-derived GLP-1, the direct vs indirect actions 

of GLP-1 and GLP-1-induced control of neural activity is 
extensively discussed since many organs and cellular targets 
of GLP-1 action do not exhibit detectable levels of GLP-1R 
[20–23]. Studies using exogenous GLP-1 infusion in humans 
demonstrated reduced energy intake, reduced appetite and 
decreased brain responses to food anticipation and consump-
tion without direct changes in energy expenditure, and data 
strongly suggest that body-weight loss ensuing from GLP-
1R agonist administration in humans largely reflects reduc-
tions in food intake [24, 25]. Whereas the relative contribu-
tion of brain-derived GLP-1, which is synthesised in the 
nucleus of the solitary tract, on the reduction in food intake 
or body weight remains to be elucidated [16].

GLP-1R agonists were initially developed for the treat-
ment of type 2 diabetes. However, due to their efficacy in 
inducing body-weight loss, extensive evidence with high 
doses of GLP-1R agonists have demonstrated clinically 
relevant and sustained effects on body weight in obesity 
[26]. Recently, through the engagement of their respective 
receptors, studies have shown that GIP and GLP-1 have a 
synergistic effect on appetite and body weight when the pep-
tides are combined in pharmacology [6, 8], but the exact 
mechanisms underlying the enhanced weight loss exhibited 
by GIPR/GLP-1R co-agonism are still to be elucidated.

Incretin‑based therapies for treatment 
of obesity

The concept of incretin-based treatment of overweight 
and obesity was driven by the effect of native GLP-1 and 
GLP-1R agonists on appetite and satiety in combination 
with an observed loss in body weight in trials investigating 
liraglutide for the treatment of type 2 diabetes [27]. The 
first incretin-based treatment regimen to be approved for 
the management of overweight and obesity was liraglutide  
3.0 mg once-daily, which was followed by semaglutide 
2.4 mg once weekly [16]. Recently, the dual GIPR/GLP-1R  
co-agonist, tirzepatide, has demonstrated a marked effect 
on body weight in individuals with overweight and obesity, 
and Phase III trials of this drug are expected to be completed 
in 2023 [28].

Body‑weight reductions  The efficacy and safety of lira-
glutide for the treatment of overweight and obesity was 
investigated in the Satiety and Clinical Adiposity – Lira-
glutide Evidence (SCALE) programme [29–33]. The trials 
included individuals with overweight (BMI ≥27 kg/m2) and 
≥1 weight-related complication, including dyslipidaemia, 
hypertension, sleep apnoea, impaired glucose tolerance and/
or impaired fasting glucose and type 2 diabetes, or individu-
als with obesity (BMI ≥30 kg/m2) with or without com-
plications. When combined with lifestyle changes and not 
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preceded by body-weight loss due to low-energy diet, daily 
administration of 3.0 mg of liraglutide provided an addi-
tional body-weight loss of 4.0–5.4% compared with placebo 
[30–32] (Fig. 2), which was sustained after 3 years of treat-
ment [33]. Although providing clinically meaningful body-
weight loss, the efficacy of once-daily liraglutide has been 
markedly exceeded by 2.4 mg of semaglutide once weekly 
[34]. The efficacy and safety of weekly semaglutide (2.4 mg) 
for the treatment of overweight and obesity was investigated 
in the Semaglutide Treatment Effect in People with Obe-
sity (STEP) programme, which included individuals with 

overweight (BMI ≥27 kg/m2) and complications, includ-
ing dyslipidaemia, hypertension, sleep apnoea, cardiovas-
cular disease and type 2 diabetes, or individuals with obe-
sity (BMI ≥30 kg/m2) with or without complications [26, 
34–39]. Compared with placebo, the smallest percentage 
body-weight loss was observed in individuals with type 2 
diabetes, with an estimated treatment difference of 6.2% 
after 68 weeks of treatment [35], whereas an additional 
body-weight loss of 10.3–12.5% after 68 weeks of treat-
ment (without prior run-in with semaglutide) was observed 
in individuals without diabetes in trials aiming to directly 
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compare semaglutide with placebo [26, 36, 38, 39] (Fig. 3). 
In a head-to-head trial, mean body-weight loss was 15.8% 
with semaglutide compared with 6.4% in the liraglutide 
group [34] (Fig. 3). A continuous decline in body weight 
for the first 60 weeks of treatment with semaglutide has been 

demonstrated, followed by a stable body weight for up to 104 
weeks with continued treatment [38]. Importantly, discon-
tinuation of semaglutide after 20 weeks of treatment led to 
regain of body weight, whereas maintaining treatment led to 
continued body-weight loss over an additional 48 weeks of 
treatment, underlining that life-long treatment is necessary 
to maintain treatment effect [37]. Recently, semaglutide (2.4 mg 
once weekly) has also been investigated for the treatment of 
childhood obesity in children aged 12 years to <18 years 
with overweight (BMI ≥85th percentile) and ≥1 weight-
related complication, or with obesity (BMI ≥95th percentile) 
[40]. In children receiving lifestyle intervention, semaglutide 
resulted in an additional 16.7% body-weight loss compared 
with placebo.

Safety  GLP1-R agonists have been utilised in clinical prac-
tice for decades and long-term safety is well described. 
Though adverse effects of the emerging co-agonists have 
been extensively studied in developmental programmes, 
potential long-term adverse effects cannot be excluded for 
obvious reasons. Adverse events in relation to GLP-1R 
agonists for the treatment of obesity are mainly gastroin-
testinal side effects, including nausea, diarrhoea, vomiting 
and constipation, which is consistent with observations in 
type 2 diabetes, and rates of discontinuation due to adverse 
events are generally higher with GLP-1R agonists treatment 
compared with placebo [26, 30–39]. Furthermore, there is 
an increased risk of gallbladder-related disorders, which is 
consistent with the known association between rapid weight 
loss and gallbladder-related disorders [41, 42]. The STEP 8 
trial demonstrated similar rates of adverse events for sema-
glutide and liraglutide, but with less discontinuation due to 
adverse events with semaglutide [33]; however, it should 
be noted that this study had a relatively small number of 
participants (n=338) [34].

Future incretin‑based therapies  Future research in incretin-
based treatment of overweight and obesity aims to investi-
gate the potential of combining GLP-1-R agonism with the 
targeting of other peptide hormones to achieve synergistic 
effects, with the most prominent targets of interest being 
the GIPR, the glucagon receptor (GCGR) and the amylin 
receptor [16]. GIPR/GLP-1R co-agonism has already 
proved efficient in clinical trials in obesity. Results from 
the first Phase III trial in obesity and overweight investi-
gating the GIPR/GLP-1R co-agonist tirzepatide, which is 
currently approved for the treatment of type 2 diabetes and 
has resulted in marked body-weight reductions in type 2 
diabetes [5, 43–46], were published in 2022 [28]. In this 
trial, three doses of tirzepatide (5 mg, 10 mg and 15 mg 
once weekly) were compared with placebo in individuals 
with overweight (BMI ≥27 kg/m2) and complications, or 
with obesity (BMI ≥30 kg/m2). Individuals with diabetes 

0

10

20

30

40

10.6

15.9

1.7
6.3

33.1

25.2 23.4
26.1

SCALE
Obesity and
Prediabetes

Obesity or
overweight
without T2D
n=3652

SCALE
Diabetes

Obesity or
overweight
with T2D
n=846

SCALE
Sleep

Apnoea

Obesity and
sleep

apnoea
without T2D

n=359

SCALE
Maintenance

Obesity or
overweight
without T2D

after a 12 week
run-in with LED

n=382

Liraglutide
Placebo

-10

-8

-6

-4

-2

0

-2.6
-2.0 -1.6

-0.2

-8.0

-6.0 -5.7
-6.2

C
ha

ng
e

in
bo

dy
w

ei
gh

t(
%

)
In

di
vi

du
al

s 
w

ith
 b

od
y-

w
ei

gh
t 

lo
ss

 >
10

%
 (%

)

Fig. 2   Overview of body-weight loss in the Satiety and Clinical Adi-
posity – Liraglutide Evidence (SCALE) trials. In all trials, partici-
pants were administered 3.0 mg of liraglutide daily or placebo. The 
SCALE trials included individuals with overweight (BMI ≥27 kg/
m2) and ≥1 weight-related complication, including dyslipidaemia, 
hypertension, sleep apnoea, impaired glucose tolerance, impaired 
fasting glucose and type 2 diabetes, or individuals with obesity (BMI 
≥30 kg/m2) with or without complications. The SCALE Obesity and 
Prediabetes trial included individuals with obesity/overweight with-
out type 2 diabetes (n=3652), SCALE Diabetes participants had obe-
sity/overweight with type 2 diabetes (n=846), SCALE Sleep Apnoea 
participants had obesity and sleep apnoea without type 2 diabetes 
(n=359), and SCALE Maintenance involved individuals who had 
obesity/overweight without type 2 diabetes and were randomised 
after achieving a ≥5% body-weight loss after following a low-energy 
diet for 12 weeks (n=382). Data are reported as observed means for 
change in body weight and proportions for individuals with body-
weight loss >10%, using the last observation carried forward, except 
for SCALE Diabetes for which data are estimated means using mul-
tiple imputations. LED, low-energy diet; T2D, type 2 diabetes. This 
figure is available as part of a downl​oadab​le slide​set
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were excluded. Compared with placebo, tirzepatide pro-
vided an additive body-weight loss of 11.9%, 16.4% and 
17.8% with an increasing dose of 5 mg, 10 mg and 15 mg, 
respectively, and 83.5% of participants in the 15 mg group 
had ≥10% body-weight loss [28]. Recently, after 72 weeks 
of treatment, adults with obesity or overweight and type 2 
diabetes had a mean weight loss of 12.8% and 14.7% with 
10 mg and 15 mg tirzepatide, respectively, vs 3.2% with 
placebo [47]. In the group treated with 15 mg of tirzepatide, 
48% had ≥15% body-weight loss. Tirzepatide has not been 
directly compared with semaglutide 2.4 mg in individu-
als with overweight or obesity; however, when compared 
with semaglutide 1.0 mg in type 2 diabetes, in doses of 5 mg,  
10 mg and 15 mg, tirzepatide resulted in significantly greater 

body-weight reductions [5]. As alluded to above, the ration-
ale for combining GLP-1R agonism with either GIPR ago-
nism or antagonism is, however, still debated, and how the 
GIPR agonistic properties of tirzepatide contribute to body-
weight loss remains unclear [19]. It is noteworthy that the 
combined GIPR antagonist and GLP-1R agonist AMG 133 
demonstrated a body-weight loss of 14.5% at the highest 
dose (420 mg every 4 weeks) after 12 weeks in a Phase I 
trial, and this compound will now enter Phase II trials [48]. 
Hence, research is needed to elucidate the underlying mech-
anisms of GIPR as a therapeutic target in obesity.

Currently, several co- and tri-agonists targeting the 
GLP-1R and the GIPR in combination with the GCGR 
are under investigation for metabolic conditions including 
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Fig. 3   Overview of body-weight loss in the STEP trials. The STEP 
programme included individuals with overweight (BMI ≥27 kg/m2) 
and complications, including dyslipidaemia, hypertension, sleep 
apnoea, cardiovascular disease and type 2 diabetes, or individuals 
with obesity (BMI ≥30 kg/m2) with or without complications. Par-
ticipants were administered 2.4 mg of semaglutide once weekly or 
placebo and were observed for 68 weeks in all trials apart from the 
STEP 5 trial, in which they were observed for 104 weeks. The STEP 
1 trial included individuals with obesity/overweight without type 2 
diabetes (n=1961), STEP 2 participants had obesity/overweight with 
type 2 diabetes (n=1210), STEP 3 participants had obesity/over-
weight without type 2 diabetes and received semaglutide/placebo as 
an adjunct to intensive behavioural therapy (n=611), STEP 4 par-

ticipants had obesity/overweight without type 2 diabetes and were 
observed after taking semaglutide for 20 weeks (n=803), STEP 5 
participants had obesity/overweight without type 2 diabetes (n=304), 
STEP 6 participants had obesity/overweight with or without type 2 
diabetes (n=401), and the STEP 8 trial included individuals who had 
obesity/overweight without type 2 diabetes who were either allocated 
(3:1:3:1) to receive semaglutide or matching placebo, or 3.0 mg of 
liraglutide daily or matching placebo (n=338). Data are reported as 
observed means for change in body weight and proportions for indi-
viduals with body-weight loss >10%, and represent the treatment 
policy estimands (intention-to-treat analysis). IBT, intensive behav-
ioural therapy; T2D, type 2 diabetes. This figure is available as part of 
a downl​oadab​le slide​set
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obesity. Previous studies have demonstrated a synergistic 
effect of co-infusion of GLP-1 and glucagon on food intake, 
and GCGR agonism may provide an additive effect due to 
increased energy expenditure [49, 50]. However, balancing 
the body-weight lowering effect of GCGR agonism with 
its hyperglycaemic effect is a challenge. Hence, combining 
GCGR agonism with the glucose-lowering effect of GLP-
1R and GIPR agonism is a necessity. The GIPR/GLP-1R/
GCGR tri-agonist LY3437943 has been compared with dula-
glutide 1.5 mg and placebo in a Phase I study in individuals 
with type 2 diabetes [51]. In this study, dose-escalation of 
LY3437943 to 12 mg once weekly over a period of 12 weeks 
resulted in an additional body-weight loss of 9 kg compared 
with both the placebo and dulaglutide, while demonstrating 
an acceptable safety profile.

Another approach has been to combine the long-acting 
acylated amylin analogue cagrilintide with semaglutide. 
Cagrilintide as a monotherapy has demonstrated an ability 
to induce significant body-weight reductions compared with 
placebo, with synergistic effects when added to semaglutide 
[52, 53]. In a study comparing different once-weekly doses 
of cagrilintide in combination with 2.4 mg of semaglutide 
with semaglutide (2.4 mg) monotherapy in individuals with 
overweight or obesity, the combination of cagrilintide 2.4 mg 
and semaglutide 2.4 mg resulted in a 17.1% body-weight 
loss compared with a 9.8% body-weight loss with semaglu-
tide as a monotherapy [53].

Incretins: a potential therapy in NAFLD

Based on the impressive effect of GLP-1R agonists on body 
weight and also the ability of these drugs to improve liver 
enzymes [54], incretin-based therapy for the treatment of 
NAFLD is currently being explored. NAFLD is a group of 
metabolism-related liver conditions that are characterised by 
ectopic hepatic lipid accumulation not attributed to excessive 
alcohol consumption [55]. Increased fat accumulation can 
lead to inflammation (non-alcoholic steatohepatitis [NASH]) 
and liver fibrosis, and can further advance to NASH-related 
cirrhosis, which is the fastest-growing indication for liver 
transplantation in western countries [10]. The incidence of 
NAFLD is rapidly increasing worldwide, concurrently with 
the epidemics of obesity and type 2 diabetes [56]. The exact 
cause of NAFLD is unknown. The complex pathophysiology 
involves multiple features, such as metabolic disturbances, 
lipotoxicity, insulin resistance, chronic inflammation, fibro-
sis, intestinal function and the gut microbiome [57], and 
is closely associated with obesity, type 2 diabetes and the 
metabolic syndrome [58]. NASH has a strong genetic com-
ponent, which may be amplified by co-existing obesity [59, 
60]. Currently, no pharmacotherapies are available for the 
treatment of NAFLD/NASH and the disease is managed 

by targeting lifestyle changes and treating cardiometabolic 
risk factors [61]. Thus, novel treatment options for NAFLD/
NASH are highly warranted. Incretin-based therapy may tar-
get the underlying metabolic and hormonal pathways that are 
thought to be involved in developing NAFLD. Incretin-based 
therapy may also have a role in the treatment of NASH, 
especially in those carrying a high polygenic risk for this 
condition.

The independent and combined hepatic effects of 
GIP and GLP-1 have been explored in preclinical stud-
ies and potential beneficial effects on NAFLD/NASH 
have been demonstrated [6, 62–66]. GIP and GLP-1 have 
indirect hepatic effects that are thought to be generated 
by changes in portal and peripheral plasma insulin and 
glucagon concentrations and may partly be related to 
neural regulation signals (Fig. 1). In preclinical studies, 
GLP-1R agonists have been demonstrated to improve 
hepatocyte mitochondrial function and hepatic insulin 
sensitivity [67], and reduce adipose tissue lipotoxicity 
both due to body-weight loss and mechanisms independ-
ent of body-weight reductions [68]. An overview of the 
randomised controlled trials conducted in humans to 
evaluate the potential of GLP-1R agonists for treating 
NAFLD/NASH is shown in Table 1. The largest and long-
est trial to date includes 320 individuals with biopsy-
confirmed NASH and fibrosis randomised to treatment 
with once-daily semaglutide (0.1 mg, 0.2 mg or 0.4 mg) 
vs placebo [69]. Semaglutide dose-dependently reduced 
liver enzymes, and resulted in greater NASH resolution 
(reduced ballooning and lobular inflammation) without 
worsening of fibrosis, as compared with placebo after 
72 weeks of treatment. Semaglutide 0.4 mg once-daily 
significantly improved NASH compared with placebo 
(NASH improved in 59% vs 17% of participants). In con-
trast, the difference in liver fibrosis resolution stage did 
not reach statistical significance (liver fibrosis staging 
improved in 43% of participants in the semaglutide arm 
vs 33% in the placebo arm), potentially owing to a lack 
of power within the study or the relatively short follow-
up time of 72 weeks. Notably, there was a relatively high 
proportion of individuals with fibrosis resolution in the 
placebo arm (observed in 33% of participants). Liver 
fibrosis staging (NASH clinical research network [CRN] 
score) depends on a complex classification that is based 
on several subjective histological evaluations that have 
low sensitivity [70, 71]. It has therefore been considered 
suboptimal when evaluating treatment effects in clinical 
trials [71, 72]. Currently, the effects of 2.4 mg sema-
glutide once weekly are being explored in 1200 partici-
pants with biopsy-confirmed NASH in a Phase III clinical 
trial with a combined primary endpoint of resolution of 
NASH without worsening fibrosis, improvement in liver 
fibrosis without worsening of steatohepatitis, and time 
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to first liver-related clinical event (NCT04822181) (see 
Table 2). A recent meta-analysis based on available data 
from placebo-controlled randomised trials confirms that 
GLP-1R agonists are associated with reduced liver fat 
content, improved liver enzyme levels, and greater his-
tological resolution of NASH without worsening of liver 
fibrosis [73].

While GIP is less-well studied, it is suggested to have 
an essential role in lipid metabolism, to enhance lipid dep-
osition in the liver and to induce inflammatory changes 
within the liver [74, 75]. GIP appears to have both benefi-
cial and potentially deleterious effects. The effects of GIP 
appear to be beneficial when combined with GLP-1 or 
when GIP is administrated in pharmacological doses [76]. 
Fifty-two weeks of treatment with the once-weekly dual 
GIPR/GLP-1R agonist tirzepatide has been demonstrated 
to reduce liver fat content and improve liver enzyme lev-
els compared with insulin degludec; however, histological 
changes and liver fibrosis stage were not assessed in this 
study [77]. Once-weekly tirzepatide (5 mg, 10 mg and 15 mg) 
is currently being explored in 196 participants with over-
weight or obesity and biopsy-confirmed NASH in a Phase 
II clinical trial (NCT04166773; see Table 2).

GLP-1R agonists may be ideally suited for combina-
tion therapy in NAFLD/NASH, as most of their mecha-
nisms do not directly target the liver. Thus, poly-agonist 
drugs may complement classical incretin actions on 
NASH pathophysiology, providing a promising therapeu-
tic approach. Dual (GCGR/GLP-1R and GIPR/GLP-1R) 
and triple (GCGR/GIPR/GLP-1R) agonists have led to 
improvements in lipid metabolism and hepatic steatosis 
[6, 64–66]. Moreover, studies suggest that dual and triple 
receptor agonists may have additional effects on histo-
logical NASH features vs high-dose GLP-1R agonists 
alone, and that these may be independent of changes in 
body weight [78]. In addition, combining GLP-1R ago-
nists with other peptide agonists or small-molecule thera-
peutics, including fibroblast growth factor 21 (FGF21), 
the farnesoid X receptor (FXR) agonist cilofexor with/
without the acetyl coenzyme A carboxylase inhibitor 
firsocostat, a long-acting amylin agonist, cannabinoid 
receptor antagonists and sodium-glucose cotransporter 
2 inhibitors (SGLT-2i), is currently being explored and 
may lead to additional improvements in NASH features 
vs GLP-1R agonists therapy alone [79–83]. An over-
view of ongoing clinical trials with GLP-1R agonist and 
incretin combination therapy is provided in Table 2. It is 
unclear how much of the hepatic improvements observed 
with use of GLP-1R agonists and GIPR/GLP-1R agonists 
are driven by a reduction in body weight. Larger Phase 
III trials with liver-associated histological endpoints are 
needed to establish the therapeutic role of incretins for 
NAFLD/NASH.

Conclusions and perspectives

Body-weight homeostasis relies on complex mechanisms and 
the development of obesity occurs on a background of genetic 
susceptibility and an environment promoting reduced physi-
cal activity and increased energy intake. The pathophysiol-
ogy of common obesity links neuroendocrine and metabolic 
disturbances with behavioural changes, genetics, epigenetics 
and cultural habits. Diet and lifestyle modification are neces-
sary but not sufficient for sustained body-weight loss in the 
majority of individuals with obesity [84]. As of today, no 
pharmacotherapies are available for the treatment of NASH 
and the disease is managed by lifestyle changes targeting 
weight loss [85]; however, most people with NASH can-
not lose weight through lifestyle interventions or sustain the 
weight loss achieved [86]. The therapeutic potential of GLP-
1R agonists alone or in combination with other peptide ago-
nists or other small-molecule therapeutics for the treatment 
of overweight/obesity and NASH is under evaluation, with a 
specific focus on efficacy and safety. Ongoing trials in people 
with obesity will further clarify the safety of mono, dual and 
triple receptor agonists, and pivotal studies are underway in 
individuals with fatty liver disease [87] and cardiovascular 
disease [88] that will define whether these peptides repre-
sent effective and safe therapies for people suffering from 
diseases beyond diabetes. So far, the therapeutic potential of 
combination therapies seems to be huge with predictable side 
effects and no major safety concerns. Moreover, based on the 
reduction in major cardiovascular events observed with use of 
GLP-1R agonists in cardiovascular outcome trials in people 
with type 2 diabetes [89], large-scale outcome trials in over-
weight and obesity have been initiated (ClinicalTrials.gov 
registration no. NCT03574597 and NCT05556512). These 
trials will investigate the ability of semaglutide and tirzepa-
tide to reduce cardiovascular disease and mortality, poten-
tially expanding evidence of clinical benefit of these therapies 
and establishing a benchmark for future pharmacotherapies 
in overweight and obesity. As the development of additional 
gut-hormone poly-agonists progresses, pharmacotherapies 
used for the treatment of obesity may become as efficient as 
bariatric surgery for reducing weight. These developments 
have the potential to reshape the treatment landscape for 
individuals with metabolic disorders, offering new hope for 
effective management and improved quality of life.
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