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Abstract
Diabetes in pregnancy affects 20 million women per year and is associated with increased risk of obesity in offspring, lead-
ing to insulin resistance and cardiometabolic disease. Despite the substantial public health ramifications, relatively little is 
known about the pathophysiological mechanisms underlying obesity in these high-risk children, which creates a barrier to 
successful intervention. While maternal glucose itself is undeniably a major stimulus upon intrauterine growth, the degree 
of offspring hyperinsulinism and disturbed lipid metabolism in mothers and offspring are also likely to be implicated in the 
disease process. The aim of this review is to summarise current understanding of the pathophysiology of childhood obesity 
after intrauterine exposure to maternal hyperglycaemia and to highlight possible opportunities for intervention. I present 
here a new unified hypothesis for the pathophysiology of childhood obesity in infants born to mothers with diabetes, which 
involves self-perpetuating twin cycles of pancreatic beta cell hyperfunction and altered lipid metabolism, both acutely and 
chronically upregulated by intrauterine exposure to maternal hyperglycaemia.
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CONCEPTT  Continuous Glucose Monitoring in Women 

with Type 1 Diabetes in Pregnancy Trial
HAPO  Hyperglycemia and Adverse Pregnancy 

Outcomes

Introduction

Diabetes in pregnancy affects one in six pregnancies inter-
nationally and is associated with short-term and long-term 
health sequelae for both mother and child [1, 2]. Infants born 
to mothers with diabetes are commonly large-for-gestational-
age at birth and have a higher risk of obesity in childhood 
[2, 3]. Obesity in childhood has many deleterious conse-
quences upon future cardiometabolic health, including early-
onset insulin resistance [4] and type 2 diabetes [5]. Rapid 

childhood growth is also associated with increased risk of 
type 1 diabetes [6]. The early development of obesity in chil-
dren with existing environmental and genetic susceptibilities 
to diabetes should be a major public health concern [7].

Unfortunately, very few interventions with proven effec-
tiveness are available to reduce the risk of obesity in high-
risk children [5]. Barriers to successful intervention include 
knowledge gaps about the mechanisms of disease, the opti-
mal timing for effective action and the most suitable short-
term or long-term measures to modify the disease process. 
The aim of this review is to summarise current understand-
ing of the pathophysiology of childhood obesity after intrau-
terine exposure to maternal hyperglycaemia and to highlight 
possible opportunities for intervention.

Childhood obesity after diabetes 
in pregnancy: the scale of the problem

There is a growing consensus that the risk of obesity (BMI 
≥95th centile for age [5]) is elevated in offspring exposed 
to gestational diabetes, type 1 diabetes or type 2 diabetes 
in utero [8, 9], although the data remain controversial [10, 
11]. Many studies are limited by incomplete adjustment for 
important confounding factors such as maternal obesity or 
socioeconomic status, insufficient sample size or inadequate 
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duration of follow-up. Maternal obesity is a particularly 
important confounding factor and is likely to exert effects 
both genetically and environmentally upon intrauterine 
development and postnatal lifestyle and behaviour. A recent 
metanalysis identified that maternal obesity was associated 
with offspring overweight or obesity in early-, mid- and late 
childhood with odds ratios (OR) of 2.43, 3.12 and 4.47, 
respectively [12].

Despite these limitations, there is consistent evidence 
of an association between maternal diabetes and child obe-
sity, described in diverse populations including from China 
[13], Denmark [14], Sweden [15], Turkey [16], South Korea 
[17] and in the multi-ethnic Hyperglycemia and Adverse 
Pregnancy Outcomes (HAPO) cohort [10]. There is also 
emerging evidence of a dose-dependent effect of maternal 
hyperglycaemia upon offspring obesity, with risk increas-
ing proportionately with maternal glucose concentrations in 
pre-gestational and gestational diabetes [11, 14]. This dose-
dependent effect is also evident in pregnancies with lower 
levels of hyperglycaemia in pregnancy, below the diagnostic 
thresholds for gestational diabetes [18, 19], with elevated 
obesity rates in affected offspring, even after adjustment 
for maternal BMI. A sibling study suggests that the effect 
of maternal hyperglycaemia upon offspring obesity risk is 
likely to be primarily a developmental effect [15].

Childhood obesity after diabetes 
in pregnancy: body composition

The importance of developmental effects upon obesity risk 
suggests that large-for-gestational-age and childhood obesity 
may be two manifestations of the same mechanistic pro-
cess. Size at birth is an important determinant of adiposity 
in adults [20, 21], and large-for-gestational-age is associated 
with a twofold increase in the rate of obesity in childhood [9, 
22]. Excessive growth postnatally (not unique to diabetes in 
pregnancy) also contributes to child obesity [23].

Although increases in child BMI are evident, it is unclear 
how this relates to body composition. BMI has limitations 
as a marker of adiposity in children, especially during active 
growth. The risk of childhood adiposity after gestational 
diabetes was assessed in over 4000 children aged 10 to 14 
years old from the HAPO cohort [2, 24, 25]. Associations 
were identified between gestational diabetes and child obe-
sity, percentage body fat and sum of skinfold thickness, 
independent of maternal BMI [2]. These data suggest that 
the increase in child BMI represents a true change in body 
composition, characterised by increased fat mass.

Questions still remain about fat distribution and type 
(white, brown and beige adipose cells) after exposure to 
intrauterine hyperglycaemia. Data from the multi-ethnic 
Growing Up in Singapore Towards healthy Outcomes 

(GUSTO) cohort suggest that the increased abdominal 
circumference seen in hyperglycaemia-exposed neonates 
is due to increased deep and subcutaneous adipose tis-
sue, with increases in liver fat [26]. Santos and colleagues 
found no association between maternal diabetes and infant 
fat distribution using anthropometry [27] (Generation 
XXI, Portugal; n=4747). However, rapid fetal growth, a 
key characteristic of intrauterine exposure to maternal dia-
betes [28], has been associated with specific increases in 
central fat accretion [29] and linked to future risk of liver 
steatosis [30].

Childhood obesity after diabetes 
in pregnancy: does the type of diabetes 
matter?

Although type 1, type 2 and gestational diabetes have dis-
tinct mechanistic causes, they all demonstrate similar asso-
ciations with childhood obesity, broadly proportionate to the 
severity of hyperglycaemia in pregnancy [11, 14, 18, 19]. 
This suggests that there is a common pathway to childhood 
obesity, regardless of diabetes aetiology. Offspring of moth-
ers with type 2 diabetes in pregnancy or gestational diabetes 
may be exposed to less severe hyperglycaemia but may have 
additional genetic and socioeconomic factors which predis-
pose to obesity.

Part 1: potential mechanisms

Maternal glucose homeostasis and offspring body size and 
composition Maternal glucose is the main fuel substrate for 
both fetus and placenta during a healthy pregnancy [31], with 
a direct effect upon offspring intrauterine growth in gesta-
tional diabetes, type 1 diabetes and type 2 diabetes [32]. We 
previously demonstrated strong associations between birth-
weight and maternal hyperglycaemia, assessed using continu-
ous glucose monitoring metrics or biochemical measures [33].
The Pedersen hypothesis from 1952 states that a fetus will 
develop hyperinsulinism in response to maternal hypergly-
caemia, as maternal glucose can travel freely across the pla-
centa, while maternal insulin cannot [34]. Abundant glucose 
from the maternal circulation and abundant insulin from the 
fetal pancreas produce an environment with enhanced glyco-
lysis and plentiful cellular energy for fetal growth.

Maternal lipid homeostasis and offspring body size and com-
position While established data highlight the importance of 
maternal glucose, not maternal lipids, in the development 
of offspring adipose tissue [35], there is emerging evidence 
that maternal hyperglycaemia may also directly or indirectly 
increase offspring adiposity through altered lipid metabolism. 
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Using the UK Pregnancies Better Eating and Activity Trial 
(UPBEAT) cohort, we recently identified that lipid species 
associated with de novo lipogenesis (species containing fatty 
acids 16:0, 16:1, 18:0 and 18:1) were elevated in mothers 
with gestational diabetes, and directly associated with off-
spring adiposity (abdominal circumference) independently of 
maternal hyperglycaemia [36]. These findings were further 
supported by evidence in women with type 1 diabetes, which 
demonstrated strong associations between offspring skinfold 
sum and lipid species in maternal serum, independently of 
maternal glucose [37]. The strongest independent associations 
were identified with species including fatty acids 16:0 or 18:1, 
consistent with increased or upregulated de novo lipogene-
sis. A mediation analysis suggested that maternal lipids are 
important but do not solely mediate the relationship between 
maternal hyperglycaemia and offspring adiposity [37].

Recent work has identified a reduction in brown adipose 
tissue (BAT) in mothers with gestational diabetes, with 
reduction in concentrations of BAT-derived adipokines, 
neuregulin-4 [38, 39] and angiopoietin-like protein 8 
(ANGPTL8) [40]. Although these data merit further inves-
tigation, the significance of maternal or offspring BAT upon 
offspring obesity risk in childhood remains unclear.

The fetal response to maternal hyperglycaemia: offspring insu-
lin secretion Hyperinsulinism, or augmented fetal beta cell 
function, is undoubtedly a key pathophysiological mechanism 
in diabetes in pregnancy and directly associated with many 
clinical sequelae, including neonatal hypoglycaemia and large-
for-gestational age [34, 41]. However, it is difficult to study 
potential genetic and environmental variations in the fetal 
response to maternal hyperglycaemia because a meaningful 
assessment of fetal metabolism in humans is so challenging.

Although it is logical to assume that neonatal hyperin-
sulinism, neonatal hypoglycaemia and large-for-gestational 
age are closely related sequelae of late pregnancy hypergly-
caemia, our recent metabolomics analysis of the Continu-
ous Glucose Monitoring in Women with Type 1 Diabetes 
in Pregnancy Trial (CONCEPTT) cohort suggests there are 
important differences in these conditions and in the timing of 
onset [37]. For example, neonatal hypoglycaemia was asso-
ciated with marked increases in lipid abundance in mater-
nal blood in the first trimester, suggesting maternal lipolysis 
(e.g. due to insufficient insulin dosing or energy restriction 
due to nausea and vomiting in pregnancy). Neonatal hyper-
insulinism was also associated with first-trimester changes 
in maternal metabolites, showing positive associations with 
phenolic compounds (saccharin, metabolites from phenolic 
compounds in tea, coffee, chocolate and olives). Taken 
together, these findings suggest that maternal metabolism 
and nutrition at the time of fetal pancreatic development may 
have an important effect upon offspring pancreatic function, 
but these data require corroboration with other cohorts.

New translational opportunities may arise from a bet-
ter understanding of the determinants of fetal hyperinsu-
linism longitudinally during pregnancy, especially if fetal 
metabolism can be measured and monitored. Recent work 
in the CONCEPTT cohort identified that pregnancies with 
the most hyperinsulinaemic offspring had a third-trimester 
increase in C-peptide in maternal blood, unexpected in 
women with no evidence of beta cell function at baseline, 
providing an opportunity to assess C-peptide as a potential 
biomarker for fetal hyperinsulinism [42], or fragments of 
C-peptide, insulin or proinsulin [43].

The longer-term significance of neonatal hyperinsulinism 
upon children’s metabolic health is also unclear, as current 
neonatal glucose testing stops 24 h after birth. As clinically 
relevant episodes of hypoglycaemia seem to happen rarely 
after the first week of life, the increased insulin production 
either normalises or becomes less clinically evident, through 
insulin resistance. Counter-regulatory hormones such as cor-
tisol and glucagon are important in the acute response to 
neonatal hypoglycaemia and may have a role in determining 
longer-term insulin sensitivity in childhood.

The fetal response to maternal hyperglycaemia: offspring 
insulin resistance Several studies have identified associa-
tions between maternal diabetes and offspring insulin resist-
ance in childhood and adolescence. Boney and colleagues 
studied children aged 11 years old and identified that expo-
sure to maternal gestational diabetes was associated with 
insulin resistance (OR 10.4; 95% CI 1.5, 74.4) [44]. The 
presence of large-for-gestational-age at birth appeared to 
have an additive effect upon risk [44]. Similar findings were 
obtained by Sauder et al, who identified increased insulin 
resistance (18% increase in HOMA-IR) and increased beta 
cell function (9% increase in HOMA-B) in 10–16 year old 
children after exposure to intrauterine hyperglycaemia in the 
Exploring Perinatal Outcomes among Children (EPOCH) 
study [4]. This study showed that the relationship between 
maternal diabetes and offspring insulin resistance was not 
mediated by offspring BMI. The HAPO follow-up study has 
corroborated these findings [25, 45]. Maternal glucose con-
centrations in pregnancy showed inverse linear associations 
between child insulin sensitivity and maternal pregnancy 
glucose concentrations in the fasting state and 1 h or 2 h 
after a glucose load. Importantly, these associations were 
independent of maternal and child BMI [25, 45].

However, since most studies have included older children 
and adolescents, it remains unclear if insulin resistance is an 
early or late feature in the development of obesity in chil-
dren exposed to intrauterine hyperglycaemia. The optimal 
method for assessing insulin sensitivity is the hyperinsuli-
naemic–euglycaemic clamp (reference standard) [46]. Sur-
rogate measures such as the hyperglycaemic clamp, the mini-
mal model of the frequently sampled intravenous glucose 
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tolerance test, oral glucose tolerance test or biomarker com-
binations are more convenient but still unachievable at scale 
in infants or very young children [46, 47]. Biomarkers asso-
ciated with insulin resistance have been identified at birth 
after exposure to gestational diabetes [48] or after antenatal 
steroids in individuals with type 1 diabetes in pregnancy [49].

The fetal response to maternal hyperglycaemia: epige-
netic influences Epigenetic changes such as methylation 
of cytosines in CG dinucleotides (CpG methylation), his-
tone modifications and non-coding RNA may contribute 
to the effect of the intrauterine environment upon offspring 
obesity. The Environmental Versus Genetic and Epige-
netic Influences on Growth, Metabolism and Cognitive 
Function in Offspring of Mothers With Type 1 Diabetes 
(EPICOM) study identified methylation patterns in ado-
lescents exposed to maternal diabetes [50]. Kelstrup and 
colleagues identified that offspring exposed to gestational 
diabetes had lower expression of the peroxisome prolifer-
ator-activated receptor-γ coactivator-1α (PPARGC1A) in 
skeletal muscle [51]. Non-coding RNAs such as miRNA 
and long non-coding RNA (lncRNA) may mediate the 
effect of maternal diabetes on offspring obesity and pan-
creatic beta cell dysfunction (reviewed in Saeedi Borujeni 
et al and Fernandez-Twinn et al [52, 53]). Further progress 
is this field is limited by technical issues restricting valida-
tion across cohorts and the need to adjust for confounders 
such as maternal obesity [54, 55] and offspring age [56].

The fetal response to paternal hyperglycaemia: social, 
genetic and epigenetic influences Fathers with diabetes 
pass on genetic and epigenetic traits which influence the 
metabolic health of their offspring, but they also contrib-
ute to social cues for diet and health. Sperm quality, sperm 
motility, DNA integrity, semen composition and the efficacy 
of the acrosome reaction are all affected by diabetes [57], but 
many of the exact mechanisms are unclear in humans. Our 
own previous work identified that the lipid composition of 
sperm, required for energy and cell membranes, is associated 
with sperm motility, suggesting that men’s metabolic health 
is intrinsically important to fertility [58]. Data from animal 
models suggest that paternal high-fat diet is associated with 
changes in DNA methylation and miRNA activity in sperm 
[59], while exercise may have a beneficial effect [60].

A unified hypothesis on the effect of intrauterine exposure 
to hyperglycaemia upon offspring body composition and 
metabolism Although we know that maternal and fetal glu-
cose and lipid homeostasis are mechanistically involved in 
the regulation of body composition after diabetes in preg-
nancy, many knowledge gaps have yet to be addressed. 
For example, how is it possible that exposure to maternal 
hyperglycaemia for a brief period in utero (e.g. 3 months in 

gestational diabetes, after the period of organogenesis) can 
have adverse consequences on health across the life course? 
In addition, why does neonatal metabolism not return to 
normal once the stimulus of exposure to maternal hyper-
glycaemia is removed at birth?

While the first trimester is considered the key window 
for organogenesis in general, the formation and distribu-
tion of fetal adipose tissue, a metabolically active endo-
crine organ, is not confined to the first trimester (reviewed 
in Desoye and Herrera [35]). Early fat lobules are identifi-
able in the human fetus from 14 weeks’ gestation, which 
gradually increase in size due to increasing triglyceride 
storage throughout the remainder of gestation [35]. Lipid 
metabolism undoubtedly occurs throughout pregnancy and 
is likely to be highly regulated, but there is little informa-
tion on the exact timing and regulation of key processes 
such as lipid mobilisation or lipid accretion. The third tri-
mester is a key time for lipid deposition in fetal adipose 
tissue, as demonstrated by the marked differences in body 
composition at birth and postnatally in preterm infants 
[61]. With rising maternal insulin resistance through the 
second trimester, exposure to maternal hyperglycaemia 
and fetal hyperinsulinaemia in late pregnancy may contrib-
ute to increased de novo lipogenesis (making fatty acids) 
and adipogenesis (making adipose tissue) in offspring. 
Increased lipoprotein lipase activity in fetal adipose tis-
sue is a potential mechanism behind the enhanced lipid 
storage [35].

One possible explanation for the persisting effect of 
pregnancy exposure to maternal diabetes is that, in addi-
tion to these short-term acute effects, it initiates subtle, 
chronic changes in body composition predisposing to obe-
sity in childhood. Mechanistically, this could involve two 
self-perpetuating cycles affecting lipid metabolism and pan-
creatic function (Fig. 1). Intrauterine exposure to maternal 
diabetes may result in acute changes in body composition 
but may also cause subtle upregulation of biological path-
ways in childhood which support continued lipogenesis and 
adipogenesis, fed by ongoing excess insulin secretion and 
resistance, placing children on a trajectory towards later-life 
cardiometabolic disease.

Part 2: Potential interventions

Babies born to mothers with diabetes often have multiple 
risk factors for childhood obesity, which appear to have an 
additive effect upon risk. Effective interventions targeting 
maternal hyperglycaemia, maternal obesity and offspring 
health in the preconception, pregnancy and postnatal periods 
are needed to prevent childhood cardiometabolic disease. 
Interventions in the preconception, pregnancy and postnatal 
periods will be considered in turn.
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Preconception interventions Pre-pregnancy BMI is a strong 
modifiable predictor of both birthweight and future childhood 
obesity [12]. Since many pregnancies are unplanned, and most 
women do not have access to individualised health promotion 
advice, preconception interventions are challenging. Popu-
lation wide strategies [62] and individual diet and lifestyle 
interventions are reviewed in detail elsewhere [63, 64].

However, preconception advice is more accessible to 
women with type 1 or type 2 diabetes in pregnancy, but this 
focuses on improving blood glucose levels and reducing risks 
of congenital anomalies, rather than reducing rates of child-
hood obesity [32, 65]. A UK-wide national audit recently 
found that only 22% of women with type 2 diabetes and 44% 
of women with type 1 diabetes were taking folic acid precon-
ception (marker of optimal pre-pregnancy care), suggesting 
that access to preconception advice is still limited [32].

Pregnancy interventions: addressing hyperglycae-
mia Addressing maternal hyperglycaemia through diabetes 
treatment or prevention may be key to reducing the burden 
of childhood obesity. Preventing maternal diabetes would 
be the optimal approach, but there is currently no clear way 
to prevent gestational diabetes, as trials of lifestyle interven-
tions in pregnancy have had variable results [66, 67]. Effective 
treatment of gestational diabetes is a helpful contribution to 

reducing child obesity [19]. The Programming of Enhanced 
Adiposity Risk in Childhood–Early Screening (PEACHES) 
study identified that offspring obesity risk was lower in 
women treated for gestational diabetes, compared with 
untreated women with hyperglycaemia [19].

Dietary management of gestational diabetes reduces 
hyperglycaemia in pregnancy and has been associated with 
lower birthweight, suggesting benefits upon future offspring 
body composition [68]. A metanalysis demonstrated that 
women who adhered to one of several dietary approaches 
to gestational diabetes management had babies 170 g lighter 
than those who did not follow a specific diet [68]. However, 
the optimal pregnancy diet to promote good pregnancy out-
comes and favourable cardiometabolic health in mothers 
and offspring is unclear. It is also unknown if dietary strate-
gies for gestational diabetes, type 1 diabetes and type 2 dia-
betes should be the same. Our RCT, the dietary intervention 
in gestational diabetes (DiGest) should soon provide some 
new evidence about the role of maternal energy restriction 
in short-term and longer-term maternal and offspring out-
comes [69].

The role of medication in pregnancy as a means of address-
ing future child obesity is controversial. Metformin is the 
most commonly used medication for diabetes in pregnancy, 
and is economical, convenient and safe. However, a previous 
meta-analysis identified associations between metformin and 
accelerated growth postnatally, leading to an increased risk 
of obesity in childhood, compared with children of women 
treated with insulin during pregnancy [70]. However, the latest 
findings on the role of metformin in childhood obesity, from 
the Metformin in Women with Type 2 diabetes in Pregnancy 
trial (MITy) follow-up study, have demonstrated no difference 
in BMI at 2 years of age in children of women who were ran-
domly assigned to receive metformin or placebo during preg-
nancies affected by type 2 diabetes [71]. While these findings 
are reassuring, it also suggests that despite treating hypergly-
caemia, metformin treatment does not confer any specific ben-
efit upon childhood obesity rates after diabetes in pregnancy. 
Further follow-up is required to assess the effects of metformin 
exposure upon BMI in older children.

Novel technologies such as continuous glucose monitor-
ing or closed loop systems have reduced maternal glucose or 
reduced hypoglycaemic episodes in type 1 diabetes [72, 73] 
(reviewed in detail [74]). However, technological options are 
underexplored in type 2 diabetes or gestational diabetes but 
may improve glycaemic control in the future.

Pregnancy interventions: addressing maternal gestational 
weight gain Some weight gain in pregnancy is expected, 
but excessive gestational weight gain is very common and 
has repercussions for women’s BMI for 15 years or more 
after the pregnancy [75]. Landon and colleagues found that 
gestational weight gain was strongly related to obesity in 

Summary of potential
interventions

Preconception
� Preconception care: optimise blood glucose levels 

and BMI for planned pregnancy

� Dietary interventions

� Exercise interventions

Pregnancy
� Addressing maternal blood glucose levels: diet and 

exercise interventions, medication and technology

� Diagnosing gestational diabetes

� Addressing gestational weight gain

Postpartum
� Addressing maternal BMI: diet and exercise inter-

ventions

� Breastfeeding

� Optimising parity and the inter-pregnancy interval

� Planning for future pregnancies

� Identifying and treating childhood obesity
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children aged 5–10 years old [76], with results confirmed by 
a meta-analysis [77]. Relatively few studies have attempted 
weight loss in pregnancy, although several observational 
studies have identified benefits from restricted gestational 
weight gain [78]. The DiGest study will provide new data 
in this field soon [69].

Postpartum interventions: addressing maternal obe-
sity Women with excessive gestational weight gain are more 
likely to retain weight postpartum, which has a long-term 
effect on maternal BMI [75]. The importance of postpartum 
weight loss to improve BMI and reduce risk of type 2 diabe-
tes is an area needing much greater attention. Relatively few 

Hypothesis: the developmental effects of maternal diabetes upon childhood obesity are partially mediated 
through altered lipid metabolism/distribution and increased offspring pancreatic function from birth

Genetic factors Developmental effects initiated in utero, 
sustained in childhood

Maternal
Insulin resistance

Beta cell dysfunction
Autoimmunity

Increased offspring counter-regulatory
hormone production?

Pancreatic cycle

Maternal hyperglycaemia
Increased offspring

insulin secretion Insulin resistance
Lipid cycle

Altered maternal 
lipid metabolism

Increased lipogenesis 
in adipose & organs

Obesity &
cardiometabolic 

disease

Increased offspring fat 
mass, central/intra-organ  

distribution

Maternal
diabetes

Intrauterine
exposure to

maternal diabetes

Large-for- 
gestational-age

babies

Children with
obesity

Young adults
with multimorbidity

Environmental/lifestyle factors

Aggravating factors

-High-glucose diet
-High-fructose diet
-High-fat diet
-High-energy diet
-Weight gain
-Sedentary behaviour
-Medication?

All promote insulin resistance and 
worsen body composition

Offspring
Insulin resistance

Beta cell dysfunction
Autoimmunity

Genetic factors

Mitigating factors

-Healthy diet
-Healthy weight
-Breastfeeding
-Physical activity
-Medication?

All reduce insulin resistance and 
improve body composition

Fig. 1  A unifying hypothesis for the development of large-for-gesta-
tional-age and childhood obesity after exposure to intrauterine hyper-
glycaemia. Hypothesis: the developmental effects of maternal hyper-
glycaemia upon childhood obesity are mediated directly or indirectly 
through altered offspring lipid metabolism/distribution and increased 

offspring pancreatic function from birth. These factors exert short-
term effects upon body composition but also chronically upregulate 
key pathways in postnatal life (the lipid cycle and pancreatic cycle), 
resulting in obesity and cardiometabolic disease. This figure is avail-
able as a downl oadab le slide

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-023-05965-w/MediaObjects/125_2023_5965_MOESM1_ESM.pptx
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interventions have shown efficacy in the postpartum period, 
but lactation remains an important opportunity to improve 
glucose tolerance, and possibly BMI, in women postnatally. 
Gunderson and colleagues identified that breastfeeding inten-
sity and duration in women after gestational diabetes were 
associated with a lower weight gain trajectory in infants [79] 
and reduced de novo lipogenesis activity in mothers and off-
spring, downregulating a crucial step in the disease process 
(Fig. 1). Recent work by Ma and colleagues, in 12 countries 
internationally, identified that longer breastfeeding duration 
was associated with reduced risk of obesity in children aged 
9–11 years [80].

Internationally, high parity and short inter-pregnancy inter-
vals (<12 months) are substantial contributors to obesity in 
women. One study in the USA demonstrated an increased 
risk of obesity in 3422 multiparous women with short inter-
pregnancy intervals [81]. Another study has identified a sig-
nificant effect of parity upon obesity, due in part to cumula-
tive effects of excessive gestational weight gain [82]. Although 
there is limited evidence on effective interventions, education 
of women and their partners about reproductive health with 
improved contraceptive availability may be useful [83].

Postpartum interventions: addressing child obesity Guide-
lines from the Endocrine Society, endorsed by the European 
Society of Endocrinology and the Paediatric Endocrine 
Society recognise the lack of good long-term evidence for 
prevention and amelioration of child obesity [5]. Promot-
ing a healthy diet [84], regular physical activity [85] and 
a built environment to support a healthy lifestyle [86] are 
all important, but large, well-controlled studies of specific 
interventions with prolonged follow-up are lacking [86, 
87]. New pharmacological treatments such as semaglutide 
[88] and an increasing acceptance of bariatric surgery [89, 
90] may help adolescents with obesity. The psychological 
effects of child obesity are significant and also need to be 
consistently assessed and addressed [5].

Conclusions

The early development of obesity in children with exist-
ing environmental and genetic susceptibilities to type 2 
diabetes needs to be addressed to prevent multimorbidity 
in future generations. Exposure to maternal diabetes and/
or obesity in utero is likely to influence offspring body 
composition, insulin sensitivity and beta cell function. 
While the mechanisms behind this are underexplored, the 
complex interplay between maternal and offspring insulin 
and lipid metabolism are likely to be involved. Effective 
intervention will require a new focus on maternal health 
before, during and after pregnancy to halt the intergenera-
tional cycle of obesity.

Supplementary Information The online version of this article https:// 
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download, which is available to authorised users.
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