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Abstract
Aims/hypothesis This study aimed to elucidate the aetiological role of plasma proteins in glucose metabolism and type 2 
diabetes development.
Methods We measured 233 proteins at baseline in 1653 participants from the Cooperative Health Research in the Region of 
Augsburg (KORA) S4 cohort study (median follow-up time: 13.5 years). We used logistic regression in the cross-sectional 
analysis (n=1300), and Cox regression accounting for interval-censored data in the longitudinal analysis (n=1143). We 
further applied two-level growth models to investigate associations with repeatedly measured traits (fasting glucose, 2 h 
glucose, fasting insulin, HOMA-B, HOMA-IR,  HbA1c), and two-sample Mendelian randomisation analysis to investigate 
causal associations. Moreover, we built prediction models using priority-Lasso on top of Framingham-Offspring Risk Score 
components and evaluated the prediction accuracy through AUC.
Results We identified 14, 24 and four proteins associated with prevalent prediabetes (i.e. impaired glucose tolerance 
and/or impaired fasting glucose), prevalent newly diagnosed type 2 diabetes and incident type 2 diabetes, respectively 
(28 overlapping proteins). Of these, IL-17D, IL-18 receptor 1, carbonic anhydrase-5A, IL-1 receptor type 2 (IL-1RT2) 
and matrix extracellular phosphoglycoprotein were novel candidates. IGF binding protein 2 (IGFBP2), lipoprotein lipase 
(LPL) and paraoxonase 3 (PON3) were inversely associated while fibroblast growth factor 21 was positively associated 
with incident type 2 diabetes. LPL was longitudinally linked with change in glucose-related traits, while IGFBP2 and 
PON3 were linked with changes in both insulin- and glucose-related traits. Mendelian randomisation analysis suggested 
causal effects of LPL on type 2 diabetes and fasting insulin. The simultaneous addition of 12 priority-Lasso-selected bio-
markers (IGFBP2, IL-18, IL-17D, complement component C1q receptor, V-set and immunoglobulin domain-containing 
protein 2, IL-1RT2, LPL, CUB domain-containing protein 1, vascular endothelial growth factor D, PON3, C-C motif 
chemokine 4 and tartrate-resistant acid phosphatase type 5) significantly improved the predictive performance (ΔAUC 
0.0219; 95% CI 0.0052, 0.0624).
Conclusions/interpretation We identified new candidates involved in the development of derangements in glucose metabo-
lism and type 2 diabetes and confirmed previously reported proteins. Our findings underscore the importance of proteins 
in the pathogenesis of type 2 diabetes and the identified putative proteins can function as potential pharmacological targets 
for diabetes treatment and prevention.
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LPL  Lipoprotein lipase
MEPE  Matrix extracellular phosphoglycoprotein
MR  Mendelian randomisation
NPX  Normalised protein expression
PEA  Proximity extension assay
p_FDR  p value after controlling for FDR
PON3  Paraoxonase 3
PPI  Protein–protein interaction

Introduction

Type 2 diabetes burden remains a major public health 
concern with a considerable impact on quality of life 
and health expenditures. Early diabetes screening and 
lifestyle interventions provide an opportunity to halt or 
delay disease onset [1]. Despite intense research on the 
pathophysiology of diabetes, the underlying mechanisms 
are not fully elucidated. Identification of novel biomark-
ers linked to the development of type 2 diabetes and 

early derangements in glucose metabolism may offer the 
opportunity to further advance our knowledge not only 
in uncovering aetiology, but also in improving disease 
prevention and prediction.

Proteins are the crucial functional units in biological pro-
cesses. Most previous studies linked single proteins to type 
2 diabetes, limiting the possibility to identify novel inter-
connected pathways. Advances in proteomic technology 
make it possible to simultaneously measure a large number 
of proteins, opening new avenues in biomarker discovery. 
Previous epidemiological studies using high-throughput 
proteomic technologies have identified up to 142 plasma 
proteins associated with prevalent type 2 diabetes [2–6], 
and additional ones for prevalent prediabetes (i.e. impaired 
glucose tolerance and/or impaired fasting glucose) [7, 8] or 
insulin resistance [9, 10]. However, most of the studies until 
now were of a cross-sectional nature, without the opportu-
nity to elucidate temporality. Of note, the limited number of 
longitudinal proteomics studies [2, 5, 9, 11–13] generally 
identified only a few proteins to be statistically significantly 
associated with incident type 2 diabetes. Given the dynamic 
nature of glucose and insulin metabolism prior to diabetes 
development, it is also important to investigate the role of 
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proteomics in longitudinal changes in glucose and related 
traits. Furthermore, although several studies have shown that 
the addition of newly identified biomarkers improves predic-
tion models of type 2 diabetes [5, 9, 11, 12, 14, 15], most 
studies lacked replication and there is still little consensus 
on a specific biomarker set that would be most relevant to 
improving type 2 diabetes prediction.

Therefore, using the proximity extension assay (PEA) 
technology, we aimed to investigate the association of 233 
plasma proteins with prevalent prediabetes as well as newly 
diagnosed type 2 diabetes and with type 2 diabetes devel-
opment and six closely related traits (fasting glucose, fast-
ing insulin, 2 h glucose, HOMA-IR, HOMA-B and  HbA1c), 
in a cohort with up to three repeated measurements of the 
examined traits. Moreover, we performed Mendelian ran-
domisation (MR) analysis to investigate the directionality 
of the observed associations. Lastly, we investigated type 2 
diabetes prediction performance of the identified biomark-
ers on top of the Framingham-Offspring Risk Score (FORS) 
variables [16].

Methods

Study population

We used data from the population-based Cooperative Health 
Research in the Region of Augsburg (KORA) S4 survey 
(1999–2001) (n=4261), F4 (2006–2008) (n=3080) and FF4 
(2013/2014) (n=2279) [17]. The present study population 
was restricted to participants aged 55–74 in the S4 study 
(n=1653) due to data availability. Participants with known 
diabetes or unclear diabetes diagnoses were excluded from 
the cross-sectional analysis. Furthermore, we excluded those 
who were non-fasting and had missing data as shown in 
electronic supplementary material (ESM) Fig. 1. Thus, the 
cross-sectional analysis finally included 1300 participants. 
For the prospective analysis, we additionally excluded those 
who were newly diagnosed with type 2 diabetes based on 
OGTT at baseline (S4). After further exclusion of 41 partici-
pants with unclear information on the diagnosis of diabetes 
during follow-up, 1143 participants remained for prospec-
tive analyses regarding incident type 2 diabetes (n=178). 
Of these, 881 participants attended the KORA F4 and/or 
FF4 follow-up examinations and had complete information 
to ascertain diabetes status. In addition to the follow-up 
examinations F4 and FF4, written questionnaires were dis-
tributed to all participants to assess their diabetes status, date 
of diagnosis and whether the disease had been diagnosed 
by a physician in 2008/2009 and 2016 [17]. Information 
from these questionnaires was used for another 262 partici-
pants to assess diabetes status. The longitudinal analyses 
of the traits of blood glucose and insulin were restricted 

to 840–896 participants with baseline data and at least one 
additional measurement at F4 or FF4 of the respective trait 
(see ESM Fig. 1).

Proteomics measurements

Protein levels were measured in plasma samples from 
KORA S4 using the PEA technology developed by Olink 
(Olink Proteomics, Uppsala, Sweden). Three panels (CVD-
II, CVD-III and Inflammation), each comprising 92 protein 
biomarkers, were measured as described previously [18]. 
The panels of biomarkers were selected due to the potential 
importance of CVD and inflammation for type 2 diabetes 
pathophysiology based on prior knowledge from experimen-
tal and epidemiological studies. Briefly, the Olink platform 
provided  log2-normalised protein expression (NPX) values 
and these were divided by their respective SDs, calculated 
in the complete dataset prior to exclusions. We excluded 29 
biomarkers with values below the limit of detection (LOD) 
in >25% of all participants (all remaining values <LOD 
were retained in the data and were not substituted), nine 
biomarkers duplicated in two panels (four of CVD-II, three 
of CVD-III and two of Inflammation; the duplicate with 
more values below the LOD value and a higher inter-assay 
coefficient of variation was excluded) and five biomarkers 
that had missing values. Finally, 233 proteins were included 
in the present analysis.

Outcomes

A detailed description of the measurement methods of out-
comes and covariates can be found in the ESM Methods.

All participants without known diabetes received a stand-
ard 75 g OGTT after an overnight fast of at least 8 h [11]. 
To avoid the influence of glucose-lowering drug intake 
and long-term hyperglycaemia, participants with known 
diabetes were excluded from the cross-sectional analysis. 
Therefore, unlike in other studies, prevalent diabetes com-
prises only newly diagnosed diabetes by OGTT test in S4. 
Prevalent prediabetes and newly diagnosed type 2 diabetes 
in S4 were defined according to the 1999/2006 WHO cri-
teria (see the ESM Methods). Incident type 2 diabetes was 
defined by a validated clinical diagnosis of type 2 diabetes 
initially assessed through self-report at F4, FF4 or question-
naire responses during the follow-up period in participants 
without prevalent diabetes at baseline. In addition, all par-
ticipants fulfilling the criteria for newly diagnosed diabetes 
described above at either F4 or FF4 were considered to have 
incident type 2 diabetes. At baseline and during follow-up, 
self-reported information regarding a medical diagnosis of 
diabetes and the date of diagnosis was validated by contact-
ing the treating physician or medical chart review, and only 
those without confirmed diabetes received an OGTT [19]. 
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The status changes of participants from KORA S4 to F4 and 
FF4 are presented in ESM Fig. 2.

Covariates

All participants took part in standard physical and medi-
cal examinations at KORA S4. Information about age, 
sex, parental history of diabetes and medical history was 
assessed during a standardised interview by trained medical 
staff. Parental history of diabetes was categorised as positive 
(at least one parent with diabetes), negative (both parents 
without diabetes) or unknown diabetes status (other). HDL-
cholesterol and triglycerides were measured by standard 
clinical methods. Waist circumference was evaluated at the 
minimum abdominal girth. Body weight and height were 
measured in light clothing by trained investigators. BMI 
was calculated as body weight (kg) divided by the square 
of height (m).

Statistical analysis

The analysis strategy of the study is shown in Fig. 1.

Baseline characteristics Characteristics of the study popu-
lation are shown as mean±SD or median (25th and 75th 

percentiles) for normally or not normally distributed con-
tinuous variables, respectively, and as numbers (percentages) 
for categorical variables.

Proteome‑wide analysis Multivariable logistic regression 
was used to estimate the associations between each protein 
and prevalent prediabetes and prevalent newly diagnosed 
type 2 diabetes (vs normoglycaemia). Cox regression 
accounting for interval-censoring was used to explore the 
associations with incident type 2 diabetes. The association 
analyses were adjusted for important baseline diabetes risk 
factors, i.e. sex and age (model 1), plus parental history of 
diabetes, systolic blood pressure, BMI, HDL-cholesterol, tri-
glycerides and waist circumference (model 2). These covari-
ates, together with fasting glucose, are components of the 
FORS clinical prediction model [16]. As fasting glucose is a 
defining feature of diabetes, we excluded it from the associa-
tion analyses and only included it in the prediction analysis. 
We used the false discovery rate (FDR) (Benjamini–Hoch-
berg method) for each outcome to account for multiple test-
ing. An association was considered statistically significant 
at a p value<0.05 after controlling for the FDR (p_FDR).

The significant proteins for prevalent prediabetes, prev-
alent newly diagnosed type 2 diabetes and incident type 2 

Prediction analysisType 2 diabetes-related biomarker discovery

233 proteins

Prediabetes (n=344) Newly diagnosed type 2 
diabetes (n=116)

14 proteins 
p_FDR<0.05

24 proteins 
p_FDR<0.05

Traits with repeated measurements (n=897)

100 random 
repeats of tenfold cross-validation

Training data Test data

Fasting glucose (n=892) 

2 h glucose (n=840) 

Fasting insulin (n=865)  

HOMA-IR (n=865)           

HOMA-B (n=865) 

HbA1c (n=896)              

17 proteins p_FDR<0.05

6 proteins p_FDR<0.05

20 proteins p_FDR<0.05

21 proteins p_FDR<0.05

14 proteins p_FDR<0.05

7 proteins p_FDR<0.05

1st    2nd   3rd    4th    5th    6th    7th    8th    9th  10th

Mechanistic exploration
PPI network analysis
Enrichment analysis

1000 times × priority-Lasso 
22 proteins (incident type 2 diabetes associated p<0.05) 

On top of FORS variables

AUC

Cross-sectional analysis (n=1300) Longitudinal analysis (n=1143)

Incident type 2 diabetes 
(n=178)

4 proteins 
p_FDR<0.05

Mendelian randomisation analysis

SNPs related 
to proteins

Type 2 diabetes
Fasting glucose 
2 h glucose 
Fasting insulin 
HOMA-IR 
HOMA-B 
HbA1c

Proteins
p_FDR<0.05

IVs Exposure Outcomes

28 proteins

Best prediction model
The top 12 proteins + FORS variables

Fig. 1  Flow chart illustrating the analysis strategy
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diabetes were defined as diabetes-related protein biomark-
ers and were included in the longitudinal analysis of traits 
of blood glucose and insulin. Protein–protein interaction 
(PPI) network analysis and enrichment analysis (see the 
ESM Methods) were conducted for these biomarkers. Two‐
level growth models [20] (see the ESM Methods) were 
used to investigate the relationship between the protein 
biomarkers at S4 and the rate of change from S4 to F4 and 
FF4 for continuous outcomes. The continuous outcomes 
(fasting glucose, 2 h glucose, fasting insulin, HOMA-B, 
HOMA-IR,  HbA1c) were log-transformed. Extreme out-
lier values of fasting insulin at baseline, defined as values 
above the 98th percentile of the distribution of all insulin 
measurements at any time point (i.e. >324 pmol/l), were 
excluded. Models were adjusted for the same covariates 
as described above.

In sensitivity analyses, we adjusted models regarding 
incident type 2 diabetes for other diabetes-related lifestyle 
factors including smoking, physical activity, alcohol use, 
consumption of whole-grain bread and muesli, consump-
tion of meat and consumption of coffee [14]. Furthermore, 
in order to explore the potential impact of drug use, we 
further adjusted for use of lipid-lowering medication at 
baseline on the incident type 2 diabetes–protein associa-
tions and the use of glucose-lowering medication during 
follow-up on the continuous traits–protein associations. In 
addition, we excluded the 262 participants who did not 
participate in F4 or FF4 and only had questionnaire-based 
information regarding the development of incident type 2 
diabetes. We further considered death as a competing risk 
and used the Fine–Gray subdistribution hazard model to 
estimate the incidence of type 2 diabetes over time in the 
presence of death risks. To overcome the effect of early 
derangements in glucose metabolism, we conducted an 
association analysis among 840 normoglycaemic individu-
als at baseline.

Two‑sample MR analysis We applied a two-sample MR 
using published large-scale European genome-wide asso-
ciation studies (GWAS) for selecting instrumental variables 
(IVs). The details regarding the choice of the GWAS data-
base are shown in the ESM Methods and MR processes 
are presented in ESM Fig. 3. First, we selected IVs associ-
ated with proteins at p value <5×10−8 and restricted these 
to those in cis regions. Second, we clumped the SNPs by 
using the cut-off r2=0.01, which removed SNPs in link-
age disequilibrium with the lead SNP. Third, we removed 
ambiguous palindromic SNPs (SNPs with A/T or G/C 
alleles). Finally, we extracted the results of these IVs from 
the outcome’s GWAS.

The Wald ratio test was performed when only one IV was 
available, whereas the inverse variance-weighted method 
was performed for proteins with at least two IVs [21, 22]. 

Cochran’s Q test and MR-Egger regression were used to test 
instrument heterogeneity and directional horizontal pleiot-
ropy. The significance p value was defined as 0.05 divided 
by the number of tested proteins (Bonferroni correction).

Prediction of incident type 2 diabetes We performed prior-
ity-Lasso to deal with the multicollinearity of included var-
iables [23]. Priority-Lasso is a least absolute shrinkage and 
selection operator (Lasso)-based intuitive analysis strategy 
that constructs a prediction model for a clinical outcome by 
defining the blocks of different types of predictor variables. 
In this study, we defined the nine clinical FORS variables 
as block 1 and forced block 1 in each repeat, while all 22 
proteins nominally significantly associated with incident 
type 2 diabetes in model 2 were defined as block 2. The 
penalisation parameter λ values were determined as values 
with maximum AUC estimated in a tenfold cross-valida-
tion. The biomarkers were ranked according to the selec-
tion times on the priority-Lasso path. The proteins with a 
selection frequency >20% among 1000 selection rounds 
were subsequently added consecutively to the FORS model 
(with nine clinical variables). To quantify the predictive 
performance of each built model, the AUC of the FORS 
model (AUC basic), a model additionally including protein 
markers (AUC extended) and ΔAUC (AUC extended−AUC basic) 
were estimated through tenfold cross-validation [24]. To 
account for the randomness in the selection process and 
to reduce the chance of overfitting, the whole process was 
bootstrapped 100 times.

Data analysis was conducted by using R version 4.1 
(https:// www.r- proje ct. org/).

Results

Description of the study population

The median follow-up time of this study was 13.5 years. 
Table 1 presents the characteristics of the study participants 
at baseline. Among the 1300 participants, 344 and 116 par-
ticipants had prevalent prediabetes and newly diagnosed type 
2 diabetes, respectively, whereas 840 participants were nor-
moglycaemic. Detailed information on six outcome traits in 
KORA S4, F4 and FF4 is shown in ESM Table 1.

Associations with three type 2 diabetes‑related 
outcomes

Fourteen, 24 and four protein biomarkers were statistically 
significantly associated with prevalent prediabetes, preva-
lent newly diagnosed type 2 diabetes and incident type 2 
diabetes at p_FDR <0.05, respectively (ESM Tables 2, 

https://www.r-project.org/
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3). IGF binding protein 2 (IGFBP2), lipoprotein lipase 
(LPL) and paraoxonase 3 (PON3) were inversely associ-
ated while fibroblast growth factor 21 (FGF21) was posi-
tively associated with incident type 2 diabetes. The ORs/
HRs and the 95% CIs of the identified 28 protein mark-
ers and the overlap of statistically significant markers are 
shown in Fig. 2. The correlation between the identified 28 
protein biomarkers is shown in ESM Fig. 4. The results 
of PPI network and enrichment analyses are shown in the 
ESM Fig. 5, 6.

We performed several sensitivity analyses regarding 
incident type 2 diabetes as the outcome. After adjusting for 
diabetes-related lifestyle factors, associations for LPL and 
FGF21 lost significance (p_FDR=0.054) (ESM Table 3). 
All associations remained statistically significant after 
consideration of 206 deaths as a competing risk and after 
adjusting for use of lipid-lowering medication at baseline. 
When we excluded the 262 participants who only had ques-
tionnaire-based information regarding the development 
of incident type 2 diabetes, PON3 was not significantly 
associated with incident type 2 diabetes (p_FDR=0.658) 
(ESM Table 4). Among normoglycaemic participants at 
baseline, the effect estimates of the four incident type 2 
diabetes-related proteins went in the same direction but lost 
statistical significance, most likely due to power limitations 
(ESM Table 5).

Associations of proteins with continuous outcomes

The identified 28 diabetes-related proteins were further 
included in the analysis of traits of blood glucose and insu-
lin resistance and secretion. The trajectories of all six traits 
are shown in Fig. 3 stratified by diabetes status by the end 
of follow-up. We found six to 21 proteins associated with 
fasting glucose, 2 h glucose, fasting insulin, HOMA-IR, 
HOMA-B or  HbA1c (Fig. 4 and ESM Tables 6, 7). IGFBP2, 
LPL, hepatocyte growth factor and IGF binding protein 1 
were found to be associated with all traits either cross-
sectionally or longitudinally. In the longitudinal results, of 
the four incident type 2 diabetes-related proteins, LPL was 
associated with fasting glucose and  HbA1c, while IGFBP2 
and PON3 were associated with both glucose- and insulin-
related traits.

In a sensitivity analysis adjusting for glucose-lowering 
medication intake, similar associations between proteins 
and continuous outcomes were observed (ESM Tables 8, 
9), except for the cross-sectional results of fasting glu-
cose. Here only one of 12 proteins (hydroxyacid oxidase 
1) remained statistically significant. IL-1 receptor type 
2 (IL-1RT2) lost statistical significance with HOMA-
IR cross-sectionally after adjusting for glucose-lowering 
medication.

Comparison of identified diabetes‑related markers 
with previous studies

We assessed the overlap between our identified proteins and 
previously reported diabetes-related markers by searching the 
Human Diabetes Proteome Project published in 2014 [25] and 
additional epidemiological publications after 2013 [3, 4, 12, 13, 
26, 27]. The three searching strategies employed in the present 
study and the summarised results can be found in ESM Table 10.

In summary, we observed that five of our identified pro-
teins, namely IL-17D, IL-18 receptor 1 (IL-18R1), carbonic 
anhydrase-5A (CA5A), IL-1RT2 and matrix extracellular 
phosphoglycoprotein (MEPE), have not been previously 
reported to be associated with either prevalent or incident 
type 2 diabetes or prediabetes.

Causal effects of top proteins on type 2 diabetes 
and continuous traits

We found 177 cis-acting genetic IVs for our top 28 diabetes-
related proteins from previously published GWAS, and exam-
ined possible causal effects (ESM Table 11). LPL was the only 
protein for which we observed a statistically significant causal 
effect on type 2 diabetes (Wald ratio, b = −0.3564; p value = 
7.23×10−7) and fasting insulin (Wald ratio, b = −0.0752; p 
value = 0.0027). Regarding MR analysis on other traits, we 
found no evidence of a causal association between the IVs 
and respective outcomes after adjusting for multiple testing.

Prediction of incident type 2 diabetes

The top 14 priority-Lasso-selected proteins (selection fre-
quency >20%) were added consecutively to the basic FORS 
model. The best set of predictors for incident type 2 diabetes 
consisted of the top 12 proteins (IGFBP2, IL-18, IL-17D, com-
plement component C1q receptor [CD93], V-set and immu-
noglobulin domain-containing protein 2 [VSIG2], IL-1RT2, 
LPL, CUB domain-containing protein 1 [CDCP1], vascular 
endothelial growth factor D [VEGFD], PON3, C-C motif 
chemokine 4 [CCL4] and tartrate-resistant acid phosphatase 
type 5 [TR-AP]) (ESM Table 12). The mean AUC value of 
this set of predictors for incident type 2 diabetes was 0.7699, 
which was 2.9% (ΔAUC [95% CI]=0.0219 [0.0052, 0.0624]) 
higher than the corresponding AUC value of the FORS model 
(0.7480). Moreover, IGFBP2 was the most important protein 
and was selected in 847 over 1000 repeats (ESM Table 13).

Discussion

This study provides a comprehensive large-scale analysis of 
proteomics data, identifying novel biomarkers and replicat-
ing previously identified proteins possibly involved in the 
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pathophysiology of derangements in glucose metabolism and 
type 2 diabetes development. Specifically, we identified 28 
diabetes-related proteins and five of them, including IL-17D, 
IL-18R1, CA5A, IL-1RT2 and MEPE, were reported for the 
first time. Four proteins were found to be associated with 
incident type 2 diabetes (IGFBP2, LPL, PON3 and FGF21). 

Longitudinally, these biomarkers were associated with 
changes in glucose-related traits only (LPL), or both glucose-
related traits and insulin-related traits (IGFBP2 and PON3). 
MR analysis provided suggestive evidence for a causal rela-
tionship between LPL and type 2 diabetes. The combination 

Table 1  Baseline characteristics 
of the study population 
(n=1300)

Continuous variables are presented as mean±SD for normally distributed data and as median (25th, 75th) 
for data not normally distributed. Categorical variables are presented as n (%)
a Data were calculated in 1297 participants at baseline (840 normoglycaemia, 344 prediabetes and 113 type 
2 diabetes)
b Data were calculated in 1296 participants at baseline (839 normoglycaemia, 342 prediabetes and 115 type 
2 diabetes)
c Data were calculated in 1299 participants at baseline (840 normoglycaemia, 343 prediabetes and 116 type 
2 diabetes)
d Data were calculated in 1298 participants at baseline (839 normoglycaemia, 343 prediabetes and 116 type 
2 diabetes)

Characteristic Normoglycaemia
(n=840)

Prediabetes
(n=344)

Newly diagnosed 
type 2 diabetes
(n=116)

Age (years) 63.4±5.5 65.0±5.2 65.0±5.4
Male 401 (47.7) 203 (59.0) 71 (61.2)
Parental diabetes
 Yes 178 (21.2) 85 (24.7) 48 (41.4)
 No 494 (58.8) 186 (54.1) 42 (36.2)
 Unknown 168 (20.0) 73 (21.2) 26 (22.4)
BMI (kg/m2) 27.6±4.1 29.6±4.1 30.0±3.9
Systolic BP (mmHg) 131.6±18.9 140.2±19.1 145.9±22.1
Diastolic BP (mmHg) 78.8±10.0 81.8±10.4 81.6±10.1
Waist circumference (cm) 93.2±11.2 99.3±10.4 101.8±10.8
HDL-cholesterol (mmol/l) 1.56±0.42 1.43±0.40 1.35±0.42
Triglycerides (mmol/l) 1.21 (0.90, 1.65) 1.42 (1.05, 2.00) 1.61 (1.22, 2.17)
Fasting glucose (mmol/l) 5.28 (5.06, 5.61) 6.11 (5.61, 6.33) 7.11 (6.33, 7.83)
2 h glucose (mmol/l)a 5.72 (4.83, 6.56) 8.39 (7.10, 9.50) 12.39 (11.17, 14.00)
Fasting insulin (pmol/l)b 52.2 (37.8, 73.8) 74.7 (55.8, 109.8) 86.4 (54.5, 125.1)
HOMA-IRb 2.06 (1.49, 2.95) 3.36 (2.36, 5.00) 4.69 (2.62, 7.58)
HOMA-Bb 100.0 (72.0, 138.4) 105.7 (77.7, 140.0) 77.0 (51.3, 117.7)
HbA1c (mmol/mol)c 38.0 (34.0, 40.0) 38.0 (36.0, 41.0) 42.0 (39.0, 46.0)
HbA1c (%)c 5.6 (5.3, 5.8) 5.6 (5.4, 5.9) 6.0 (5.7, 6.4)
Medication use
 Antihypertensive medication use 237 (28.2) 164 (47.7) 47 (40.5)
 Statin use 73 (8.7) 35 (10.2) 13 (11.2)
 Lipid-lowering drug treatment 87 (10.4) 39 (11.3) 18 (15.5)
Physically  actived 396 (47.2) 129 (37.6) 38 (32.8)
Smoking
 Never smoker 410 (48.8) 162 (47.1) 45 (38.8)
 Former smoker 309 (36.8) 143 (41.6) 51 (44.0)
 Current smoker 121 (14.4) 39 (11.3) 19 (16.4)
Alcohol intake (g/day)d 6.29 (0, 22.86) 13.20 (0, 26.80) 6.60 (0, 25.71)
Meat consumption (frequency/day)d 0.50 (0.14, 0.50) 0.50 (0.14, 0.50) 0.50 (0.14, 0.50)
Whole-grain bread/muesli consump-

tion (frequency/day)d
1.00 (0.50, 1.07) 1.00 (0.21, 1.03) 0.61 (0.14, 1.00)

Coffee consumption (cups/day)d 2 (2, 4) 2 (1, 4) 2 (1, 4)
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a

b p_FDR1 p_FDR2 p_FDR3

1.68 ×10-5*** 1.21 ×10-5*** 4.80 ×10-3**
4.14 ×10-6*** 1.21 ×10-5*** 2.90 ×10-2*
3.86 ×10-2* 8.77 ×10-1 6.26 ×10-2

2.09 ×10-4*** 5.54 ×10-5*** 2.90 ×10-2*
1.45 ×10-2* 8.46 ×10-5*** 4.77 ×10-1

3.25 ×10-2* 3.57 ×10-5*** 4.77 ×10-1

4.96 ×10-2* 6.84 ×10-1 7.26 ×10-1

2.72 ×10-2* 4.44 ×10-1 6.69 ×10-1

4.96 ×10-2* 1.13 ×10-1 7.09 ×10-1

2.72 ×10-1 6.20 ×10-3** 8.23 ×10-1

8.58 ×10-1 2.42 ×10-2* 8.35 ×10-1

1.67 ×10-1 1.30 ×10-3** 9.84 ×10-1

2.65 ×10-1 1.01 ×10-2* 9.09 ×10-1

6.23 ×10-1 6.20 ×10-3** 9.09 ×10-1

2.11 ×10-1 1.40 ×10-3** 8.23 ×10-1

3.25 ×10-2* 8.19 ×10-5*** 8.23 ×10-1

4.90 ×10-1 7.60 ×10-4*** 8.16 ×10-1

1.90 ×10-1 5.08 ×10-4*** 7.74 ×10-1

1.90 ×10-1 2.42 ×10-2* 7.06 ×10-1

3.07 ×10-1 3.34 ×10-4*** 7.09 ×10-1

8.78 ×10-2 8.19 ×10-5*** 6.25 ×10-1

4.39 ×10-1 8.50 ×10-3** 5.47 ×10-1

6.34 ×10-1 1.78 ×10-2* 5.36 ×10-1

2.98 ×10-2* 3.58 ×10-5*** 4.77 ×10-1

8.23 ×10-4*** 1.64 ×10-7*** 4.77 ×10-1

2.90 ×10-3** 3.97 ×10-7*** 2.11 ×10-1

2.72 ×10-2* 5.69 ×10-4*** 2.03 ×10-1

8.96 ×10-2 4.60 ×10-3** 2.90 ×10-2*

IGFBP2
LPL
IL-17D
PON3
TWEAK
SCF
IGFBP1
COL1A1
MEPE
PTX3
OPG
SELE
ST2
VWF
CHI3L1
CA5A
THBS2
Gal4
IL-6
HGF
REN
IL-1RA
PSGL1
IL-1RT2
ACE2
HAOX1
IL-18R1
FGF21

HR / OR and 95% CI

Prevalent prediabetes Prevalent newly diagnosed type 2 diabetes Incident type 2 diabetes

Markers

0 1.0 1.5 2.0 2.5 3.00.5

Prevalent prediabetes

Incident type 2 diabetes

Prevalent newly diagnosed type 2 diabetes

4

13

7

3

1IGFBP2, LPL, PON3
FGF21

ACE2, HAOX1, SCF, 
TWEAK, IL-1RT2, CA5A, 

IL-18R1 REN, SELE, IL-6, Gal4, 
CHI3L1, ST2, PTX3, HGF, 

IL-1RA, THBS2, VWF, 
PSGL1, OPG

COL1A1, IGFBP1, 
IL-17D , MEPE
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of 12 selected proteins yielded the best improvement in type 
2 diabetes prediction beyond classical diabetes risk factors.

Novel markers for prevalent prediabetes and type 2 
diabetes

Among the five new candidates related to prediabetes and/or 
type 2 diabetes, three (IL-1RT2, CA5A and IL-18R1) were 
positively associated with prevalent prediabetes and type 2 
diabetes. IL-1RT2 is an IL-1 family receptor, involved in the 
regulation of immune and inflammatory responses. It was 
included in type 2 diabetes-associated coexpression genes 
(module) enriched for IL-1-related genes [28]; however, our 
study is the only epidemiological study connecting IL-1RT2 
to type 2 diabetes and implicating IL-1RT2 to be involved 
in altered glucose metabolism and insulin resistance. CA5A 
is a ubiquitous zinc metalloenzyme, playing a vital role in 
various biosynthetic processes such as gluconeogenesis and 
lipogenesis [29], and increases in carbonic anhydrase (CA) 
activity have been reported to increase the production of 
hepatic glucose in type 2 diabetes [30]. In line with this, 
our study showed that higher CA5A was associated with a 
higher level of fasting glucose. IL-18R1 is a subunit of the 
proinflammatory factor IL-18 receptor and exists in mem-
brane-bound and soluble forms. Elevated levels of IL-18 
have been linked to an increased risk of type 2 diabetes [19, 
31] and previous epidemiological studies have reported posi-
tive associations of plasma IL-18R1 with the metabolic syn-
drome [32] and obesity [33]. Similarly, Mahdi et al observed 

an association between the expression of IL18R1 and  HbA1c 
levels among people without diabetes [28].

In the present study, IL-17D and MEPE were inversely 
associated with prevalent prediabetes. IL-17D, a member of 
the IL-17 cytokine family highly expressed in the brain and 
skeletal muscle, has previously been associated with auto-
immune and inflammatory diseases [34]. Moreover, DNA 
methylation at IL17D was associated with maternal early-
pregnancy glucose concentrations [35]. Of note, IL-17D is 
required for maintaining intestinal homeostasis so reduced 
IL-17D levels could be related to dysbiosis and higher pre-
diabetes risk [36]. MEPE is involved in the formation of the 
extracellular matrix of bone and the renal regulation of bone 
mineralisation including phosphate homeostasis [37]. New 
evidence has implicated this protein in pathways related to 
diabetes and obesity [38].

Known markers for incident type 2 diabetes

In agreement with previous reports, we found associations of 
LPL, IGFBP2, FGF21 and PON3 with incident type 2 diabe-
tes. LPL is an important enzyme in triglyceride metabolism 
and has been shown to impact type 2 diabetes development 
via improvements of insulin resistance and regulation of dys-
lipidaemia [39, 40]. Our MR analysis revealed a suggestive 
causal protective association between LPL and type 2 diabe-
tes, with a consistent directionality also for an inverse effect 
on fasting insulin. Previous studies support both our obser-
vational and MR analysis findings [3]. The inverse associa-
tion between IGFBP2 and incident type 2 diabetes observed 
in our study aligns with evidence from epidemiological stud-
ies [14, 41] and experimental work in mice [42]. FGF21 has 
been reported to be an important endocrine factor, regulating 
glucose and lipid metabolism, increasing insulin sensitivity 
and improving islet beta cell secretion and proliferation, with 
the potential to be a target for diabetes treatment [43–45]. 
However, in line with the present study, elevated FGF21 
concentrations were observed in patients with diabetes or 
obesity, possibly to compensate insulin deficiency [43, 46, 
47]. PON3 is bound to HDL-cholesterol in the circulation 
and is closely related to insulin resistance, lipid metabolism 
and obesity [48]. Previous epidemiological reports confirm 
our results of an inverse association with prevalent/incident 
type 2 diabetes [3, 12].

Prediction of incident diabetes

The addition of the top 12 selected proteins yielded the 
highest improved predictive performance with a ΔAUC 
of 0.0219, but, of note, the addition of the top nine pro-
teins had a ΔAUC of 0.0218 which was only margin-
ally lower. When we excluded fasting glucose from the 

Fig. 2  Twenty-eight identified proteins and their associations with 
prevalent prediabetes, prevalent newly diagnosed diabetes and inci-
dent type 2 diabetes. (a) The overlap between proteins associated 
with prevalent prediabetes (light grey), prevalent newly diagnosed 
type 2 diabetes (dark grey) and incident type 2 diabetes (red), respec-
tively. The novel diabetes-related proteins are marked in bold. (b) 
Forest plot summarising the results of the main analyses in model 
2. Effect estimates have been calculated per 1 SD increase in NPX 
values on a  log2 scale. The grey dashed line, the black dashed line 
and the red line represent OR and 95% CI of prevalent prediabetes 
and prevalent newly diagnosed type 2 diabetes, and the HR and 95% 
CI of incident type 2 diabetes, respectively. p_FDR1, p_FDR2 and 
p_FDR3 present the p values for prevalent prediabetes, prevalent 
newly diagnosed type 2 diabetes and incident type 2 diabetes after 
controlling for the FDR, respectively. Model 2 was adjusted for age, 
sex, parental history of diabetes, systolic blood pressure, BMI, HDL-
cholesterol, triglycerides and waist circumference. Protein biomark-
ers are sorted by strength of association for incident type 2 diabetes. 
*p<0.05, **p<0.01, ***p<0.001. CHI3L1, chitinase-3-like protein 
1; COL1A1, collagen alpha-1(I) chain; HAOX1, hydroxyacid oxi-
dase 1; HGF, hepatocyte growth factor; IGFBP1, IGF binding protein 
1; OPG, osteoprotegerin; PSGL1, P-selectin glycoprotein ligand 1; 
PTX3, pentraxin-related protein 3; REN, renin; SCF, stem cell fac-
tor; SELE, E-selectin; ST2, ST2 protein; THBS2, thrombospondin-2; 
TWEAK, tumor necrosis factor (Ligand) superfamily member 12; 
VWF, von Willebrand factor

◂
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reference model, we found a ΔAUC of 0.0477 (AUC 
of the corresponding basic model was 0.7040). Previ-
ous studies have tried to improve prediction models 
for type 2 diabetes using biomarkers [5, 9, 11, 12, 14, 
15]; however, only three of them showed improvement 
in discrimination by adding selected proteins to a clini-
cal model, and the magnitude of model improvement 
was moderate with ΔAUC values ranging from 0.012 to 
0.034 [11, 14, 15]. The direct comparisons of ΔAUC are 
restricted due to differences in baseline clinical models, 
available biomarker panels and analytical approaches. Of 
note, the ΔAUC was the lowest (0.012) in the study of 
Salomaa et al [15] which also included fasting glucose in 
the basic model. Moreover, when Huth et al [11] added 
 HbA1c to the basic non-invasive risk factor model, their 
extended protein model showed a ΔAUC of 0.005. Up 
to now, there is still little consensus regarding specific 
sets of biomarkers that would improve diabetes predic-
tion. Therefore, further prospective studies with larger 
samples are needed to validate the protein set identified 
in the present analysis.

Study strengths and limitations

The strengths of the present study include the examina-
tion of a large number of proteins by PEA technology 
with regard to type 2 diabetes and related traits in a popu-
lation-based study population. The availability of OGTT 
data at baseline and at up to two follow-up examinations 
characterises well changes in a wide range of diabetes-
related outcomes/traits. Finally, we were able to evalu-
ate the causal relationship using publicly available data 
on genetic associations of identified proteins with type 2 
diabetes and related traits.

The present study also has some limitations. First, the 
PEA approach provided only relative and not absolute pro-
tein concentrations, which, however, does not affect the 
reported associations. Second, proteomics measurements 
were only performed at baseline, precluding us from taking 
into consideration the impact of changes in protein concen-
trations on the progression towards type 2 diabetes. Third, 
we lack comprehensive dietary data to capture overall 
diet quality. Finally, although this study used an internal 

Fig. 3  Descriptive figure showing the trajectories of traits of blood glucose and insulin resistance and secretion during 14 years of follow-up 
grouped by incident type 2 diabetes. The red line and the black line represent participants with and without type 2 diabetes, respectively



1665Diabetologia (2023) 66:1655–1668 

1 3

Fig. 4  Chord diagram showing 
significant associations of traits 
of blood glucose and insulin 
resistance and secretion with 
circulating protein levels. (a) 
Significant proteins cross-sec-
tionally associated with traits of 
blood glucose and insulin resist-
ance and secretion. (b) Sig-
nificant proteins longitudinally 
associated with traits of blood 
glucose and insulin resistance 
and secretion. The ‘+’ indicates 
positive association, while ‘−’ 
indicates inverse association. 
HAOX1, hydroxyacid oxidase 
1; HGF, hepatocyte growth 
factor; OPG, osteoprotegerin; 
PSGL1, P-selectin glycoprotein 
ligand 1; REN, renin; SCF, stem 
cell factor; SELE, E-selectin; 
ST2, ST2 protein; THBS2, 
thrombospondin-2; TWEAK, 
tumor necrosis factor (Ligand) 
superfamily member 12; VWF, 
von Willebrand factor
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cross-validation method to evaluate the predictive perfor-
mance, external replication studies are needed to validate 
our findings regarding the prediction of type 2 diabetes 
and to confirm the relevance of novel protein candidates 
for type 2 diabetes.

In summary, we identified five novel candidates possi-
bly involved in the pathophysiology of type 2 diabetes and 
replicated previously reported associations with type 2 dia-
betes. Our results provide new insight into the aetiological 
roles of plasma proteins in glucose and insulin metabolism 
and type 2 diabetes. Further characterisation of the novel 
biomarkers identified in this study offers the potential to 
help us uncover new mechanisms that lead to type 2 diabe-
tes and discover new drug targets.
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