
Vol.:(0123456789)1 3

Diabetologia (2023) 66:1481–1500 
https://doi.org/10.1007/s00125-023-05925-4

ARTICLE

Genetically proxied glucose‑lowering drug target perturbation 
and risk of cancer: a Mendelian randomisation analysis

James Yarmolinsky1,2 · Emmanouil Bouras3 · Andrei Constantinescu1,2 · Kimberley Burrows1,2 · Caroline J. Bull1,2,4 · 
Emma E. Vincent1,2,4 · Richard M. Martin1,2,5 · Olympia Dimopoulou1,2 · Sarah J. Lewis1,2 · Victor Moreno6,7,8,9 · 
Marijana Vujkovic10,11 · Kyong‑Mi Chang10,11 · Benjamin F. Voight10,12,13,14 · Philip S. Tsao15,16,17 · Marc J. Gunter18 · 
Jochen Hampe19 · Andrew J. Pellatt20 · Paul D. P. Pharoah21 · Robert E. Schoen22 · Steven Gallinger23 · 
Mark A. Jenkins24 · Rish K. Pai25 · the PRACTICAL consortium · VA Million Veteran Program · Dipender Gill26 · 
Kostas K. Tsilidis3,26

Received: 25 October 2022 / Accepted: 13 March 2023 / Published online: 12 May 2023 
© The Author(s) 2023

Abstract
Aims/hypothesis Epidemiological studies have generated conflicting findings on the relationship between glucose-lowering 
medication use and cancer risk. Naturally occurring variation in genes encoding glucose-lowering drug targets can be used 
to investigate the effect of their pharmacological perturbation on cancer risk.
Methods We developed genetic instruments for three glucose-lowering drug targets (peroxisome proliferator activated receptor 
γ [PPARG]; sulfonylurea receptor 1 [ATP binding cassette subfamily C member 8 (ABCC8)]; glucagon-like peptide 1 receptor 
[GLP1R]) using summary genetic association data from a genome-wide association study of type 2 diabetes in 148,726 cases and 
965,732 controls in the Million Veteran Program. Genetic instruments were constructed using cis-acting genome-wide significant 
(p<5×10−8) SNPs permitted to be in weak linkage disequilibrium (r2<0.20). Summary genetic association estimates for these SNPs 
were obtained from genome-wide association study (GWAS) consortia for the following cancers: breast (122,977 cases, 105,974 
controls); colorectal (58,221 cases, 67,694 controls); prostate (79,148 cases, 61,106 controls); and overall (i.e. site-combined) 
cancer (27,483 cases, 372,016 controls). Inverse-variance weighted random-effects models adjusting for linkage disequilibrium 
were employed to estimate causal associations between genetically proxied drug target perturbation and cancer risk. Co-localisation 
analysis was employed to examine robustness of findings to violations of Mendelian randomisation (MR) assumptions. A Bonfer-
roni correction was employed as a heuristic to define associations from MR analyses as ‘strong’ and ‘weak’ evidence.
Results In MR analysis, genetically proxied PPARG perturbation was weakly associated with higher risk of prostate cancer 
(for PPARG perturbation equivalent to a 1 unit decrease in inverse rank normal transformed  HbA1c: OR 1.75 [95% CI 1.07, 
2.85], p=0.02). In histological subtype-stratified analyses, genetically proxied PPARG perturbation was weakly associated 
with lower risk of oestrogen receptor-positive breast cancer (OR 0.57 [95% CI 0.38, 0.85], p=6.45×10−3). In co-localisation 
analysis, however, there was little evidence of shared causal variants for type 2 diabetes liability and cancer endpoints in the 
PPARG  locus, although these analyses were likely underpowered. There was little evidence to support associations between 
genetically proxied PPARG perturbation and colorectal or overall cancer risk or between genetically proxied ABCC8 or 
GLP1R perturbation with risk across cancer endpoints.
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Conclusions/interpretation Our drug target MR analyses did not find consistent evidence to support an association of 
genetically proxied PPARG, ABCC8 or GLP1R perturbation with breast, colorectal, prostate or overall cancer risk. Further 
evaluation of these drug targets using alternative molecular epidemiological approaches may help to further corroborate the 
findings presented in this analysis.
Data availability Summary genetic association data for select cancer endpoints were obtained from the public domain: 
breast cancer (https:// bcac. ccge. medsc hl. cam. ac. uk/ bcacd ata/); and overall prostate cancer (http:// pract ical. icr. ac. 
uk/ blog/). Summary genetic association data for colorectal cancer can be accessed by contacting GECCO (kafdem 
at fredhutch.org). Summary genetic association data on advanced prostate cancer can be accessed by contacting 
PRACTICAL (practical at icr.ac.uk). Summary genetic association data on type 2 diabetes from Vujkovic et al (Nat 
Genet, 2020) can be accessed through dbGAP under accession number phs001672.v3.p1 (pha004945.1 refers to 
the European-specific summary statistics). UK Biobank data can be accessed by registering with UK Biobank and 
completing the registration form in the Access Management System (AMS) (https:// www. ukbio bank. ac. uk/ enable- 
your- resea rch/ apply- for- access).
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PRACTICAL  Prostate Cancer Association Group to 
Investigate Cancer Associated Alterations 
in the Genome

SGLT2  Sodium–glucose cotransporter 2

Introduction

Globally, an estimated 460 million individuals have type 2 
diabetes, most of whom require long-term use of glucose-
lowering medications to maintain glycaemic control [1]. Sev-
eral different classes of oral glucose-lowering medications 
are used to manage this condition, including biguanides (e.g. 
metformin), sulfonylureas, thiazolidinediones, dipeptidyl 
peptidase-4 (DPP-4) inhibitors, sodium–glucose cotransporter 
2 (SGLT2) inhibitors and glucagon-like peptide-1 receptor 
(GLP1R) agonists, with diverse mechanisms of action [2].

Preclinical studies have variably reported both carcino-
genic and antineoplastic effects of glucose-lowering medi-
cations. For example, in vitro studies have suggested that 
metformin, an insulin sensitiser and first-line therapy for 
type 2 diabetes, can reduce cell proliferation, induce apop-
tosis and cause cell cycle arrest [3]. Thiazolidinediones, 
insulin sensitisers and selective peroxisome proliferator 
activated nuclear receptor (PPARG) agonists have been sug-
gested to increase cellular differentiation, reduce cellular 

proliferation and induce apoptosis in some cell lines but to 
promote metastatic prostate cancer in vivo [4–6]. There is 
also some evidence that sulfonylureas, secretagogues that 
lower blood glucose levels by stimulating pancreatic insu-
lin secretion, may promote carcinogenesis, potentially via 
increasing circulating insulin levels [7, 8]. Finally, in vitro 
studies have reported potential antiproliferative effects of 
GLP1R agonists in various cancer cell types [9–11].

Epidemiological studies of glucose-lowering medication 
use have provided some support for findings from labora-
tory studies. For example, some observational studies have 
reported that metformin users have lower risk of several 
cancers while sulfonylurea use has been associated with 
an increased risk of site-specific (i.e. colorectal, metastatic 
prostate) and overall cancer [12–17]. In addition, some 
thiazolidinediones (i.e. pioglitazones) have been linked to 
an elevated risk of bladder, prostate and pancreatic cancer, 
though use of rosiglitazone has been associated with lower 
breast cancer risk [18, 19]. Finally, GLP1R agonist use has 
been associated with a decreased risk of prostate cancer 
when compared with sulfonylurea use [20].

The causal nature of associations reported between 
glucose-lowering medication use and cancer risk in con-
ventional epidemiological studies is often unclear. This 
is because of the susceptibility of such studies to residual 
confounding (e.g. due to indication) and various forms of 

Table 1  Characteristics of SNPs 
used as instruments to proxy 
drug targets

Effect (SE) corresponds to change in  loge (OR) of type 2 diabetes or change in IRNT  HbA1c (mmol/mol)
p value corresponds to type 2 diabetes analyses
EA, effect allele; EAF, effect allele frequency; NEA, non-effect allele; T2D, type 2 diabetes

SNP EA/NEA EAF Effect (SE) T2D p value T2D Effect (SE)  HbA1c

ABCC8
 rs5219 C/T 0.63 –0.069 (0.005) 3.15×10−48 –0.016 (0.002)
 rs4148640 T/G 0.27 –0.045 (0.007) 4.47×10−11 –0.009 (0.002)
 rs61880293 T/C 0.92 –0.058 (0.009) 8.13×10−10 –0.015 (0.004)
 rs7130826 T/G 0.73 –0.031 (0.005) 1.94×10−9 –0.004 (0.002)
 rs10832783 G/A 0.92 –0.055 (0.009) 4.63×10−9 –0.011 (0.004)
 rs214080 A/G 0.41 –0.026 (0.005) 1.96×10−8 –0.007 (0.002)
GLP1R
 rs10305420 T/C 0.38 –0.032 (0.005) 2.69×10−11 –0.011 (0.002)
 rs34179517 A/C 0.87 –0.044 (0.007) 3.09×10−10 –0.007 (0.003)
 rs9296291 C/T 0.23 –0.033 (0.006) 3.42×10−9 –0.013 (0.002)
 rs10305457 C/T 0.90 –0.044 (0.008) 3.04×10−8 –0.018 (0.003)
PPARG 
 rs7637403 A/G 0.11 –0.074 (0.007) 1.03×10−24 –0.007 (0.003)
 rs4135247 A/G 0.57 –0.042 (0.005) 2.23×10−19 –0.035 (0.002)
 rs598747 A/G 0.84 –0.052 (0.007) 9.51×10−15 –0.022 (0.003)
 rs150535373 A/G 0.02 –0.140 (0.019) 5.38×10−13 –0.005 (0.009)
 rs143888770 T/C 0.02 –0.106 (0.016) 1.21×10−10 –0.015 (0.007)
 rs17819328 T/G 0.58 –0.028 (0.005) 9.56×10−10 –0.023 (0.002)
 rs4135300 C/T 0.89 –0.045 (0.008) 5.50×10−9 –0.013 (0.003)
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bias (e.g. immortal time, prevalent user), which can under-
mine robust causal inference [21]. While clinical trials of 
glucose-lowering medications have not consistently reported 
differences in rates of cancer among users of these medica-
tions, such studies are often underpowered to detect effects 
for individual cancer sites [22, 23]. Further, such studies 
often have limited follow-up periods, thus are not able to 
adequately capture outcomes with long induction periods, 
such as cancer.

Drug target Mendelian randomisation (MR) uses ger-
mline variants in genes encoding drug targets as instru-
ments (‘proxies’) for these targets to estimate the effect of 
their pharmacological perturbation on disease endpoints 
[24]. Since germline genetic variants are randomly assorted 
at meiosis and fixed at conception, analyses using vari-
ants as instruments should be less prone to conventional 
issues of confounding and reverse causation. In addition, 
given the length of time required for solid tumour develop-
ment, the use of germline genetic variants as instruments 
is advantageous as it permits estimation of the long-term 
effects of medication use on cancer risk [25].

Given the widespread use of glucose-lowering medica-
tions and reports of both adverse and protective associa-
tions of these medications with cancer risk in preclinical 
and epidemiological studies, there is a need to further 
evaluate the role of these medications in the risk of com-
mon adulthood cancers. Additionally, given the long 
induction period of cancers, using MR to examine target-
mediated effects of medications that have been on the mar-
ket for relatively short periods of time (e.g. SGLT2 inhibi-
tors and GLP1R agonists) can be informative in predicting 
their long-term safety profiles. We thus aimed to develop 
genetic instruments for the targets of five approved type 
2 diabetes medications with known mechanisms of action 
(sulfonylurea receptor 1 [ATP binding cassette subfam-
ily C member 8 (ABCC8)], PPARG, SGLT2, DPP4 and 
GLP1R). We also aimed to evaluate associations of geneti-
cally proxied perturbation of three of these targets with 
reliable cis-acting instruments (ABCC8, PPARG and 
GLP1R) with risk of breast, colorectal and prostate can-
cer, common cancers with epidemiological evidence sug-
gesting a link between glucose-lowering medication use 
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Fig. 1  Regional Manhattan plot of associations of SNPs with type 2 diabetes ±500 kb from the PPARG  locus. rs17036160 (purple dot) repre-
sents the sentinel SNP associated with genetic liability to type 2 diabetes in the PPARG  locus
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and their onset, and overall (i.e. site-combined) cancer [5, 
12–14, 18, 19, 26–28].

Methods

Summary genetic association data were obtained from 
three cancer-specific genome-wide association study 
(GWAS) consortia. Summary genetic association estimates 
for overall and oestrogen receptor (ER)-stratified breast 
cancer risk in up to 122,977 cases and 105,974 controls 
were obtained from the Breast Cancer Association Consor-
tium (BCAC) [29]. Summary genetic association estimates 
for overall and site-specific (i.e. colon, rectal) colorectal 
cancer risk in up to 58,221 cases and 67,694 controls were 
obtained from an analysis of the Genetics and Epidemiol-
ogy of Colorectal Cancer Consortium (GECCO), Colorec-
tal Transdisciplinary Study (CORECT), and Colon Cancer 
Family Registry (CCFR) [30]. Summary genetic associa-
tion estimates for overall and advanced prostate cancer risk 
(i.e. metastatic disease, Gleason score ≥8, prostate-specific 

antigen >100 or prostate cancer-related death) in up to 
79,148 cases and 61,106 controls were obtained from the 
Prostate Cancer Association Group to Investigate Cancer 
Associated Alterations in the Genome (PRACTICAL) con-
sortium [31]. These analyses were restricted to participants 
of European ancestry.

Overall (i.e. site-combined) cancer risk data in 27,483 
incident cases and 372,016 controls were also obtained 
from a GWAS performed in the UK Biobank cohort study 
[32]. Briefly, cancer cases were classified according to 
ICD-9 (http:// www. icd9d ata. com/ 2007/ Volum e1/ defau lt. 
htm) and ICD-10 (http:// apps. who. int/ class ifica tions/ icd10/ 
browse/ 2016/ en) with data completed to April 2019 and 
controls were defined as individuals who did not have any 
cancer code (ICD9 or ICD10) and did not self-report a can-
cer diagnosis. GWAS were performed using a linear mixed 
model as implemented in BOLT-LMM (v2.3) (to account 
for relatedness and population stratification) and adjusted 
for age, sex and genotyping array [33]. Further informa-
tion on imputation and quality control measures have been 
reported elsewhere [33].
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Fig. 2  Regional Manhattan plot of associations of SNPs with ALT 
concentrations ±500 kb from the PPARG  locus. rs17036160 (purple 
dot) represents the sentinel SNP associated with genetic liability to 

type 2 diabetes in the PPARG  locus. SNPs in unclear linkage disequi-
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Further information on statistical analysis, imputation, 
and quality control measures for summary genetic associa-
tion data obtained from cancer consortia is available in the 
original publications. All studies contributing data to these 
analyses had the relevant institutional review board approval 
from each country, in accordance with the Declaration of 
Helsinki, and all participants provided informed consent.

Instrument construction To generate genetic instruments 
to proxy glucose-lowering drug target perturbation, sum-
mary genetic association data were obtained from a GWAS 
of type 2 diabetes in the Million Veteran Program (148,726 
cases; 965,732 controls of European ancestry) [34]. Analyses 
were adjusted for age, sex and ten principal components of 
genetic ancestry. Instruments were constructed in PLINK by 
obtaining SNPs associated with type 2 diabetes at genome-
wide significance (p<5×10−8) that were in or within ±500 
kb from the gene encoding each respective target (PPARG, 
Chr3: 12328867–12475855; ABCC8, Chr11: 17414432–
17498449; GLP1R, Chr6: 39016574–39055519) using the 
1000 Genomes Phase 3 reference panel [35, 36]. We were 

unable to identify genome-wide significant SNPs within 500 
kb windows from SLC5A2 and DPP4 (i.e. instruments for 
SGLT2 and DPP-4 inhibitors, respectively) and therefore 
did not proceed with MR analyses for these targets. We also 
did not include putative metformin targets due to the unclear 
mechanism(s) of action of this medication [37]. For PPARG, 
ABCC8 and GLP1R, SNPs used as instruments were permit-
ted to be in weak linkage disequilibrium (r2<0.20) with each 
other to increase the proportion of variance in each respective 
drug target explained by the instrument, maximising instru-
ment strength. In total, nine SNPs that met these criteria were 
obtained for PPARG, six for ABCC8 and four for GLP1R.

In a separate population (i.e. the UK Biobank cohort study), 
we then evaluated the association of type 2 diabetes SNPs in 
drug target regions with  HbA1c levels, a marker of long-term 
blood glucose levels, in order to minimise winner’s curse bias. 
The UK Biobank is a prospective cohort study of ~500,000 
individuals aged 40–69 years when recruited in 2006–2010 
[38]. SNP summary statistics were re-scaled to represent a 
mmol/mol (0.09%) unit reduction in  HbA1c to provide more 
interpretable effect estimates in MR analyses.  HbA1c values 
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Fig. 3  Regional Manhattan plot of associations of SNPs with AST concentrations ±500 kb from the PPARG  locus. rs17036160 (purple dot) rep-
resents the sentinel SNP associated with genetic liability to type 2 diabetes in the PPARG  locus
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were obtained from a GWAS of 407,766 participants of the 
UK Biobank performed using a linear mixed model as imple-
mented in BOLT-LMM and adjusted for age, sex, batch and ten 
principal components of genetic ancestry. For the purposes of 
this analysis, we sequentially removed participants according 
to the following exclusion criteria: withdrawn from the study 
(N=502,506 retained); non-European ancestry (N=462,898 
retained); missing  HbA1c data (N=442,529 retained); missing 
or ‘prefer not to answer’ response to self-reported diabetes sta-
tus (N=442,268); self-reported diabetes diagnosis (N=418,574); 
ICD-10 diabetes diagnosis (N=409,812); missing data on glu-
cose-lowering medication use (N=409,762); self-reported glu-
cose-lowering medication use (N=409,614);  HbA1c >48 mmol/
mol (6.5%) (N=408,319); and  HbA1c <21.88 mmol/mol (4.2%) 
(N=407,766). Further information on imputation and quality 
control measures have been reported elsewhere [39].

For the PPARG instrument, two SNPs where the effect 
on  HbA1c was in the opposite direction to that of type 2 
diabetes were removed from the instrument (rs17036160, 
rs11712085), as these associations likely represent pleio-
tropic mechanisms that would bias consequent MR analyses.

Instrument validation Instruments were validated by exam-
ining the association of genetically proxied drug target per-
turbation with endpoints influenced by these medications in 
randomised controlled trials. For PPARG, alanine aminotrans-
ferase (ALT) and aspartate aminotransferase (AST) levels 
were used as positive controls (i.e. PPARG agonists lower 
levels of ALT and AST) and for ABCC8 and GLP1R, BMI 
was used (i.e. sulfonylureas cause weight gain and GLP1R 
agonists cause weight loss) [40–43]. Co-localisation was then 
performed to assess whether genetic liability to type 2 dia-
betes and traits representing positive controls share the same 
causal variant at each locus encoding a drug target (i.e. PPARG 
, ABCC8, GLP1R). Such an analysis can permit exploration of 
whether genetic liability to type 2 diabetes and positive con-
trol traits at each drug target locus are influenced by distinct 
causal variants that are in linkage disequilibrium with each 
other, indicative of horizontal pleiotropy (an instrument influ-
encing an outcome through pathways independent to that of 
the exposure), a violation of the exclusion restriction criterion.

Co-localisation analysis was performed using the coloc 
(version 2.0) R package (https:// cran.r- proje ct. org/ web/ packa 
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ges/ coloc/ index. html), which uses approximate Bayes factor 
computation to generate posterior probabilities that associa-
tions between two traits represent each of the following config-
urations: (1) neither trait has a genetic association in the region 
 (H0); (2) only the first trait has a genetic association in the 
region  (H1); (3) only the second trait has a genetic association 
in the region  (H2); (4) both traits are associated but have differ-
ent causal variants  (H3); and (5) both traits are associated and 
share a single causal variant  (H4) [44]. Co-localisation analysis 
was performed by generating ±500 kb windows around the 
gene encoding each respective drug target. We used a posterior 
probability of >50% to indicate support for a configuration 
tested. Where there was not support for  H4, we then examined 
the possibility of co-localisation across other secondary condi-
tionally independent signals for either genetic liability to type 
2 diabetes or positive controls within drug target loci by per-
forming pairwise conditional and co-localisation analysis on 
all conditionally independent association signals using GCTA-
COJO and the coloc package as implemented in pwCoCo [45]. 
We employed default priors for p1 (i.e. prior probability that a 
SNP is associated with type 2 diabetes liability within a drug 

target locus, 1×10−4), p2 (i.e. prior probability that a SNP is 
associated with positive controls or cancer risk within a drug 
target locus, 1×10−4) and p12 (i.e. prior probability that a SNP 
is associated with both traits, 1×10−5). As sensitivity analyses, 
we re-performed co-localisation analysis employing two alter-
nate priors for p12 (5×10−5, 5×10−6).

Statistical analysis Causal estimates were generated using 
inverse-variance weighted (IVW) random-effects models 
(permitting overdispersion in models). These models were 
adjusted for weak linkage disequilibrium between SNPs with 
reference to the 1000 Genomes Phase 3 reference panel [46]. 
Where there was under-dispersion in causal estimates gener-
ated from individual genetic variants, the residual SE was set 
to 1 (i.e. equivalent to a fixed-effects model).

MR analysis makes the following assumptions: (1) that 
a genetic instrument is associated with a modifiable expo-
sure or drug target (‘relevance’); (2) the instrument does 
not share a common cause with an outcome (‘exchange-
ability’); and (3) the instrument has no direct effect on the 
outcome (‘exclusion restriction’).
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Fig. 5  Regional Manhattan plot of associations of SNPs with BMI ±500 kb from the ABCC8 locus. rs5219 (purple dot) represents the sentinel 
SNP associated with genetic liability to type 2 diabetes in the ABCC8 locus
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The ‘relevance’ MR assumption was evaluated by generating 
estimates of the proportion of variance of each drug target (in 
 HbA1c units) explained by the instrument (r2) and F statistics. 
F statistics can be used to examine whether results are likely to 
be influenced by weak instrument bias (i.e. reduced statistical 
power and bias when an instrument explains a limited propor-
tion of the variance in a drug target). As a convention, an F 
statistic of >10 is indicative of minimal weak instrument bias.

We evaluated the ‘exclusion restriction’ MR assumption 
by performing co-localisation to examine whether drug tar-
gets and cancer endpoints showing nominal evidence of an 
association in MR analyses (p<0.05) share the same causal 
variant at a given locus. Iterative leave-one-out analysis was 
performed by removing one SNP at a time from instruments 
to examine whether findings showing nominal evidence of 
association were driven by a single influential SNP.

To account for multiple testing across analyses, a Bon-
ferroni correction was used to establish a p value thresh-
old of <0.0019 (false-positive rate = 0.05/27 statistical 
tests [three drug targets tested against nine primary can-
cer endpoints]), which we used as a heuristic to define 

‘strong evidence’, with findings between p≥0.0019 and 
p<0.05 defined as ‘weak evidence’.

There was no formal prespecified protocol for this study. 
All statistical analyses were performed using R version 3.3.1 
(https:// www.r- proje ct. org/).

Results

Characteristics of genetic variants used to instrument glu-
cose-lowering drug targets are presented in Table 1. Across 
all three drug targets, F statistics for their respective instru-
ments ranged from 56.32 to 487.14, suggesting that weak 
instrument bias was unlikely to affect the conclusions (ESM 
Table 1). Power calculations suggested that we had 80% 
power to detect ORs ranging from 1.40 to 2.62 (in PPARG 
analyses), 2.03 to 8.34 (in ABCC8 analyses) and 2.22 to 
8.78 (in GLP1R analyses) per mmol/mol reduction in target-
mediated inverse rank normal transformed [IRNT]  HbA1c 
across all cancer endpoints (α=0.05). Complete power esti-
mates across all MR analyses are presented in ESM Table 2.
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Fig. 6  Regional Manhattan plot of associations of SNPs with type 2 diabetes ±500 kb from the GLP1R locus. rs10305420 (purple dot) repre-
sents the sentinel SNP associated with genetic liability to type 2 diabetes in the GLP1R locus
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Instrument validation Genetically proxied PPARG pertur-
bation was associated with lower levels of ALT (SD change 
in ALT per PPARG perturbation equivalent to 1 unit IRNT 
 HbA1c reduction: −0.57 [95% CI −1.01, −0.13], p=0.01) 
and AST (−0.49 [95% CI −1.79, −0.19], p=1.53×10−3). 
Co-localisation analysis suggested that type 2 diabetes asso-
ciations in the PPARG  locus had a 92% and 84% probability 
of sharing a causal variant with ALT and AST, respectively 
(Figs 1, 2 and 3 and ESM Tables 3, 4).

Genetically proxied ABCC8 perturbation was associated 
with elevated BMI (SD change in BMI per ABCC8 perturba-
tion equivalent to 1 unit IRNT  HbA1c reduction: 0.530 [95% 
CI 0.004, 0.172], p=3.75×10−3). Co-localisation analysis 
suggested that type 2 diabetes and BMI associations had a 
94.0% posterior probability of sharing a causal variant in 
ABCC8 (Figs 4, 5 and ESM Table 5).

There was little evidence to support an association of 
genetically proxied GLP1R perturbation with BMI (SD 
change in BMI equivalent to 1 unit IRNT  HbA1c reduction: 
−0.08 [95% CI −0.30, 0.15], p=0.51). Co-localisation anal-
ysis applied to both marginal and conditionally independ-
ent associations for type 2 diabetes and BMI in the GLP1R 
locus did not support shared causal variants across these 

traits (posterior probability of shared causal variants across 
models: 0.22–0.49%) (Figs 6, 7 and ESM Table 6).

Genetically proxied PPARG perturbation and cancer risk There 
was weak evidence for an association of genetically proxied 
PPARG perturbation with an elevated risk of prostate cancer 
(OR 1.75 [95% CI 1.07, 2.85], p=0.02) but little evidence of 
association with other cancer endpoints (Table 2). Findings 
for prostate cancer risk were consistent in iterative leave-one-
out analysis (ESM Table 7). Co-localisation using marginal 
and conditional associations for type 2 diabetes and prostate 
cancer in the PPARG  locus suggested that type 2 diabetes 
was unlikely to share a causal variant with this cancer in this 
region (posterior probability of a shared causal variant across 
models: ≤0.09%, posterior probability of distinct causal vari-
ants: ≤25%) (Fig. 8 and ESM Table 8).

In subtype-stratified analyses, genetically proxied PPARG 
perturbation was weakly associated with lower risk of  ER+ 
breast cancer (OR 0.57 [95% CI 0.38, 0.85], p=6.45×10−3). 
This finding was consistent in iterative leave-one-out analy-
sis (ESM Table 9). Co-localisation using marginal and con-
ditional associations for type 2 diabetes and  ER+ breast can-
cer in the PPARG  locus reported a low posterior probability 

Fig. 7  Regional Manhattan plot 
of associations of SNPs with 
BMI ±500 kb from the GLP1R 
locus. rs10305420 (purple dot) 
represents the sentinel SNP 
associated with genetic liability 
to type 2 diabetes in the GLP1R 
locus
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 (H4<5%; posterior probability of distinct causal variants: 
≤23%) of both traits sharing one or more causal variants 
within this region (Fig. 9 and ESM Table 10).

Genetically proxied ABCC8 and GLP1R perturbation and 
cancer risk There was little MR evidence of association of 
genetically proxied ABCC8 or GLP1R perturbation with 
site-specific or overall cancer risk (Tables 3, 4).

Sensitivity analyses altering priors for co‑localisation Across 
positive control traits and cancer outcomes, findings from 
co-localisation analyses remained robust to using two alter-
nate priors for p12 (5×10−5, 5×10−6) (ESM Table 11).

Discussion

In this MR analysis of up to 287,829 cases and 606,790 
controls, we found weak evidence for an association of 
genetically proxied PPARG perturbation with a higher risk 
of prostate cancer and lower risk of  ER+ breast cancer. In 

co-localisation analysis, however, there was little evidence 
that genetic liability to type 2 diabetes and these cancer end-
points shared one or more causal variants within PPARG , 
though these analyses were likely underpowered given low 
posterior probabilities to support both  H3 (i.e. distinct causal 
variants) and  H4 (i.e. shared causal variants) across these 
analyses. We found little evidence of association of geneti-
cally proxied GLP1R or ABCC8 perturbation with cancer 
risk.

Despite in vivo studies suggesting an important role for 
PPARG in prostate tumour growth and conventional epide-
miological studies suggesting a link between pioglitazone 
use and elevated prostate cancer risk, our combined MR 
and co-localisation analyses did not find consistent evi-
dence for an association of genetically proxied PPARG per-
turbation with prostate cancer risk [6, 18]. Likewise, our 
findings are not consistent with some previous epidemio-
logical studies that have reported links between rosiglita-
zone use and lower breast cancer risk and thiazolidinedione 
use and lower colorectal cancer risk [5, 19]. Though our 
analyses were powered to detect effect sizes comparable 
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Fig. 8  Regional Manhattan plot of associations of SNPs with prostate cancer risk ±500 kb from the PPARG  locus. rs17036160 (purple dot) rep-
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with those reported in some previous studies (e.g. ~60% 
increased prostate cancer risk among pioglitazone users 
and ~60% lower risk of colorectal cancer among thiazoli-
dinedione users), they were likely less powered to detect 
other, more modest, effect sizes reported in the literature 

(e.g. ~10% lower risk of breast cancer in rosiglitazone 
users) [19, 26, 47]. Interpretation of the pharmacoepide-
miological literature linking glucose-lowering medica-
tion use with cancer risk is challenging because of the 
likely susceptibility of many previous studies to residual 

Table 2  MR estimates 
examining the association of 
genetically proxied perturbation 
of PPARG with site-specific and 
overall cancer risk

ORs (95% CIs) are scaled to represent the effect of genetically proxied perturbation of PPARG equivalent 
to a 1 unit lowering of IRNT  HbA1c (mmol/mol)
a Advanced prostate cancer is defined as metastatic disease, Gleason score ≥8, prostate-specific antigen 
>100 or prostate cancer-related death

Outcome N (cases; controls) OR (95% CI) p value

Breast cancer 122,977; 105,974 0.67 (0.43, 1.04) 0.08
  ER+ breast cancer 69,501; 105,974 0.57 (0.38, 0.85) 6.45×10−3

  ER− breast cancer 21,468; 105,974 1.14 (0.64, 2.01) 0.66
Colorectal cancer 58,221; 67,694 0.95 (0.51, 1.75) 0.86
 Colon cancer 32,002; 64,159 1.22 (0.72, 2.08) 0.46
 Rectal cancer 16,212; 64,159 0.82 (0.25, 2.71) 0.75
Prostate cancer 79,148; 61,106 1.75 (1.07, 2.85) 0.02
 Advanced prostate  cancera 15,167; 58,308 1.64 (0.62, 4.33) 0.32
Overall cancer risk 27,483; 372,016 0.72 (0.44, 1.19) 0.20
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Fig. 9  Regional Manhattan plot of associations of SNPs with  ER+ breast cancer risk ±500 kb from the PPARG  locus. rs17036160 (purple dot) 
represents the sentinel SNP associated with genetic liability to type 2 diabetes in the PPARG  locus
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confounding (e.g. by indication) due to the use of inappro-
priate comparator groups (i.e. non-medication users), the 
inclusion of ‘prevalent users’ of medications in analyses 
and the possibility of ‘immortal time’ bias arising due to 
misalignment of the start of follow-up, eligibility and treat-
ment assignment of participants [21].

Among the strengths of our analysis is the strict instru-
ment selection and validation process employed. By using 
cis-acting variants, in close proximity to the genes that code 
for the drug targets of interest, horizontal pleiotropy should 
be minimised. In addition, we used strict positive control 
analysis (i.e. testing drug targets against established sec-
ondary effects of medications) and co-localisation analyses 
(including co-localisation analyses permitting multiple causal 
variants) to validate the selected instruments. Our use of a 
summary-data MR approach permitted us to leverage large-
scale genetic data from several GWAS consortia, enhancing 
statistical power and precision of causal estimates.

There were several limitations to this analysis. First, we had 
sufficient statistical power to detect large effect sizes only per 

SD decrease in  HbA1c (~6.75 mmol/mol [~0.61%]) and there-
fore cannot rule out more modest effects of the drug targets 
examined on cancer risk. In clinical trials, monotherapy with 
sulfonylureas, thiazolidinediones (rosiglitazone, pioglitazone) 
and the GLP1R agonist liraglutide has been shown to reduce 
 HbA1c by around 8–17 mmol/mol (0.7–1.5%), as compared 
with placebo [48–50]. Second, although co-localisation analy-
ses of PPARG and cancer endpoints provided low posterior 
probabilities for shared causal variants, it should be noted that 
this may also reflect limited power. The low posterior prob-
abilities supporting either shared or distinct causal variants 
across several co-localisation analyses suggests that many of 
these analyses may have been too underpowered to support 
either of these configurations evaluated. Third, the low poste-
rior probability of shared causal variants in ‘positive control’ 
co-localisation analyses for GLP1R and BMI could reflect dis-
tinct signalling mechanisms influencing type 2 diabetes and 
BMI in GLP1R, the presence of which would not necessarily 
influence the validity of this as an instrument for GLP1R sig-
nalling perturbation’s effect on glycaemic control [51]. Fourth, 

Table 3  MR estimates 
examining the association of 
genetically proxied perturbation 
of ABCC8 with site-specific 
and overall cancer risk

ORs (95% CIs) are scaled to represent the effect of genetically proxied perturbation of ABCC8 equivalent 
to a 1 unit lowering of IRNT  HbA1c (mmol/mol)
a Advanced prostate cancer is defined as metastatic disease, Gleason score ≥8, prostate-specific antigen 
>100 or prostate cancer-related death

Outcome N (cases; controls) OR (95% CI) p value

Breast cancer 122,977; 105,974 2.09 (0.81, 5.39) 0.13
  ER+ breast cancer 69,501; 105,974 2.10 (0.66, 6.74) 0.21
  ER− breast cancer 21,468; 105,974 1.83 (0.48, 6.97) 0.38
Colorectal cancer 58,221; 67,694 0.61 (0.21, 1.76) 0.36
 Colon cancer 32,002; 64,159 0.55 (0.15, 1.93) 0.35
 Rectal cancer 16,212; 64,159 0.76 (0.15, 3.87) 0.74
Prostate cancer 79,148; 61,106 0.94 (0.37, 2.43) 0.91
 Advanced prostate  cancera 15,167; 58,308 1.67 (0.32, 8.57) 0.54
Overall cancer risk 27,483; 372,016 0.90 (0.31, 2.59) 0.85

Table 4  MR estimates 
examining the association of 
genetically proxied perturbation 
of GLP1R with site-specific and 
overall cancer risk

ORs (95% CIs) are scaled to represent the effect of genetically proxied perturbation of GLP1R equivalent 
to a 1 unit lowering of IRNT  HbA1c (mmol/mol)
a Advanced prostate cancer is defined as metastatic disease, Gleason score ≥8, prostate-specific antigen 
>100 or prostate cancer-related death

Outcome N (cases; controls) OR (95% CI) p value

Breast cancer 122,977; 105,974 0.72 (0.33, 1.58) 0.42
  ER+ breast cancer 69,501; 105,974 0.81 (0.33, 2.01) 0.65
  ER− breast cancer 21,468; 105,974 0.48 (0.13, 1.71) 0.26
Colorectal cancer 58,221; 67,694 1.36 (0.50, 3.68) 0.55
 Colon cancer 32,002; 64,159 1.94 (0.59, 6.33) 0.27
 Rectal cancer 16,212; 64,159 1.13 (0.25, 5.23) 0.87
Prostate cancer 79,148; 61,106 0.87 (0.35, 2.14) 0.76
 Advanced prostate  cancera 15,167; 58,308 0.99 (0.10, 9.51) 0.99
Overall cancer risk 27,483; 372,016 1.21 (0.45, 3.26) 0.70
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we were unable to evaluate the role of some glucose-lowering 
drug targets (i.e. DPP-4 and SGLT2) due to the absence of 
reliable genetic instruments for these targets. Fifth, our analy-
ses were restricted to the examination of target-mediated (i.e. 
‘on-target’) effects of glucose-lowering medications on cancer 
endpoints. Sixth, our analyses assume no gene–environment or 
gene–gene interactions and linear and time-dependent effects 
of drug targets on cancer risk. Seventh, though associations 
of genetically proxied PPARG perturbation and prostate and 
 ER+ breast cancer risk attenuated towards the null in iterative 
leave-one-out analysis removing rs4135247 from the PPARG 
instrument, 95% CIs overlapped across models with and 
without this variant. Though this attenuation in association 
is consistent with sampling error, we cannot rule out the pos-
sibility that this attenuation was driven, in part, through hori-
zontally pleiotropic mechanisms linking this variant to cancer 
risk. Eighth, though we found strong and suggestive evidence 
for associations of genetically proxied PPARG perturbation 
with  ER+ breast cancer and prostate cancer risk, respectively, 
after applying a Bonferroni correction to account for multi-
ple testing, we cannot rule out the possibility that these find-
ings represent false-positive results. Ninth, the MR estimates 
reported represent long-term effects of target modulation in 
non-diabetic populations, whereas the clinical effects of these 
medications may be more pronounced among individuals with 
type 2 diabetes and could depend on length of medication use. 
Tenth, we cannot rule out the possibility that controls in cancer 
GWAS included individuals with latent, undiagnosed cancer, 
the presence of which would bias associations towards or away 
from the null, depending on the site of undiagnosed cancer 
and the relationship between drug targets examined and this 
cancer. We also cannot rule out the possibility of survival bias 
influencing genetic association estimates from cancer GWAS 
consortia that employed case–control study designs. If, for 
example, genetic variants used to instrument glucose-lowering 
drug target perturbation increased cancer risk and subsequent 
mortality prior to enrolment in a case–control study, this could 
induce an artificial ‘protective’ association between perturba-
tion of this drug target and cancer risk. Finally, samples were 
restricted to individuals of European ancestry and therefore 
the generalisability of these findings to non-European popula-
tions is unclear.

In conclusion, we developed novel instruments for 
PPARG, ABCC8 and GLP1R using strict validation proto-
cols and evaluated the association of genetically proxied per-
turbation of these targets with risk of cancer. In MR analysis 
we found weak evidence that genetically proxied PPARG per-
turbation was associated with a higher risk of prostate cancer 
and a lower risk of  ER+ breast cancer. There was little evi-
dence of co-localisation for these findings, a necessary pre-
condition to infer causality between PPARG perturbation and 
these cancer endpoints, possibly reflecting either the absence 
of shared causal variants across type 2 diabetes liability and 

these cancer endpoints in PPARG  or the low statistical power 
of these analyses. Further assessment of these drug targets 
using alternative molecular epidemiological approaches (e.g. 
using protein or expression quantitative trait loci or using 
direct circulating measures of these proteins) and/or studies 
using medical registry data (e.g. ‘target trial’ analyses) may 
help to further corroborate findings presented in this analysis. 
Finally, we found little evidence for an association of geneti-
cally proxied ABCC8 and GLP1R perturbation with risk of 
breast, colorectal, prostate or overall cancer risk.

Supplementary Information The online version contains peer-reviewed 
but unedited supplementary material available at https:// doi. org/ 10. 
1007/ s00125- 023- 05925-4.
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