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The power of TOPMed imputation for the discovery
of Latino-enriched rare variants associated with type 2 diabetes
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Abstract
Aims/hypothesis The Latino population has been systematically underrepresented in large-scale genetic analyses, and previous
studies have relied on the imputation of ungenotyped variants based on the 1000 Genomes (1000G) imputation panel, which results
in suboptimal capture of low-frequency or Latino-enriched variants. The National Heart, Lung, and Blood Institute (NHLBI) Trans-
Omics for Precision Medicine (TOPMed) released the largest multi-ancestry genotype reference panel representing a unique oppor-
tunity to analyse rare genetic variations in the Latino population. We hypothesise that a more comprehensive analysis of low/rare
variation using the TOPMed panel would improve our knowledge of the genetics of type 2 diabetes in the Latino population.
Methods We evaluated the TOPMed imputation performance using genotyping array andwhole-exome sequence data in six Latino
cohorts. To evaluate the ability of TOPMed imputation to increase the number of identified loci, we performed a Latino type 2
diabetes genome-wide association study (GWAS) meta-analysis in 8150 individuals with type 2 diabetes and 10,735 control
individuals and replicated the results in six additional cohorts including whole-genome sequence data from the All of Us cohort.
Results Compared with imputation with 1000G, the TOPMed panel improved the identification of rare and low-frequency variants.
We identified 26 genome-wide significant signals including a novel variant (minor allele frequency 1.7%; OR 1.37, p=3.4 × 10−9).
A Latino-tailored polygenic score constructed from our data and GWAS data from East Asian and European populations improved
the prediction accuracy in a Latino target dataset, explaining up to 7.6% of the type 2 diabetes risk variance.
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Conclusions/interpretation Our results demonstrate the utility of TOPMed imputation for identifying low-frequency variants in
understudied populations, leading to the discovery of novel disease associations and the improvement of polygenic scores.
Data availability Full summary statistics are available through the Common Metabolic Diseases Knowledge Portal (https://t2d.
hugeamp.org/downloads.html) and through the GWAS catalog (https://www.ebi.ac.uk/gwas/, accession ID: GCST90255648).
Polygenic score (PS) weights for each ancestry are available via the PGS catalog (https://www.pgscatalog.org, publication ID:
PGP000445, scores IDs: PGS003443, PGS003444 and PGS003445).
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Abbreviations
1000G 1000 Genomes
AGEN Asian Genetic Epidemiology Network
AF Allele frequency
CADD Combined Annotation Dependent Depletion
CCHC Cameron County Hispanic Cohort
DIAMANTE Diabetes Meta-Analysis of Trans-Ethnic

association studies
FNRS Fonds National de la Recherche Scientifique
GERA Genetic Epidemiology Research on Aging
GTEx Genotype–Tissue Expression project
GWAS Genome-wide association study

LD Linkage disequilibrium
LoF Loss-of-function
MAF Minor allele frequency
METS Mexican Metabolic Syndrome (cohort)
MGB Mass General Brigham Biobank
MHTG Mexican Hypertriglyceridemia
MXBB Mexican Biobank
Neff Effective sample size
NHGRI National Human Genome Research Institute
NHLBI National Heart, Lung, and Blood Institute
NIMHD National Institute on Minority Health and

Health Disparities
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PAGE Population Architecture using Genomics and
Epidemiology

PC Principal component
PRODIGY Progress in Diabetes Genetics in Youth
PS Polygenic score
SIGMA Slim Initiative for Genomic Medicine in the

Americas
T2D-GENES Type 2 Diabetes Genetics Exploration by

Next-generation sequencing in multi-Ethnic
Samples

TODAY Treatment Options for Type 2 Diabetes in
Adolescents and Youth

TOPMed NHLBI Trans-Omics for Precision Medicine
TPM Transcripts per million
UKBB UK Biobank
WES Whole-exome sequencing

Introduction

Latino is a diverse ethnic group recently admixed from Native
American, European and African ancestries, with a high prev-
alence of metabolic disorders including type 2 diabetes.
Although genetic studies in the Latino population are limited,
they have revealed unexpected pathways and potential thera-
peutic targets for type 2 diabetes [1–4]. This is the case for a
Native American haplotype within the SLC16A11 gene iden-
tified as the main genetic contributor to type 2 diabetes in the
Latino population [1, 4], a rare risk variant within HNF1A
unique to Latino population [2] and a loss-of-function (LoF)
Latino-enriched variant within IGF2 associated with a 22%
decrease in the odds of type 2 diabetes in heterozygous
carriers [3].

Unlike genetically homogenous populations, the complex
linkage disequilibrium (LD) structure of admixed populations
imposes challenges in implementing statistical methods that
are crucial to maximise genetic discoveries [5]. This is espe-
cially relevant for genotype imputation, a method used to esti-
mate the genotype probabilities at genetic variants that have
not been experimentally genotyped [6]. A major factor limit-
ing the accuracy of genotype imputation in Latino samples has
been the poor representation of their haplotypes in the refer-
ence panels (i.e. 352 from the latest version of the 1000
Genomes [1000G] imputation model) [7]. The multi-
ancestry National Heart, Lung, and Blood Institute (NHLBI)
Trans-Omics for Precision Medicine (TOPMed) programme
has released a reference panel for genotype imputation that
includes the highest sequencing coverage (i.e. 30×) and the
largest number of reference samples (i.e. 97,256) to date, of
which ~15% are from Latino individuals. It has been shown to
increase the number of well-imputed low-frequency variants

in the Hispanic Community Health Study/Study of Latinos
(HCHS/SOL) [8, 9].

We hypothesised that by boosting the identification of vari-
ants in Latino samples with the recently released TOPMed
reference panel, we would improve our knowledge of the
genetic architecture of type 2 diabetes in the Latino popula-
tion. The 1000G (1000G) panel was chosen as a comparison,
since, besides TOPMed, it has the largest number of Latino
samples. We performed a type 2 diabetes genome-wide asso-
ciation study (GWAS) meta-analysis, as well as association
analyses on a collection of related phenotypes from TOPMed
Latino imputed datasets to allow the interpretation of our
novel variants that had low frequencies or were absent in other
publicly available biobanks that mainly contained individuals
of European ancestry. Finally, we leveraged the generated
GWAS data to develop, in combination with GWAS data
from other ancestries, a type 2 diabetes polygenic score (PS)
for the Latino population.

Methods

Detailed descriptions of the methods are given in electronic
supplementary material (ESM) Methods.

Discovery sampleWe aggregated data from six Latino cohorts
with a sample size of 18,885 individuals (8150 with type 2
diabetes [cases] and 10,735 without [controls]): the Slim
Initiative for Genomic Medicine in the Americas (SIGMA)
[1–3]; the Mexican Biobank (MXBB) [10]; the Mass
General Brigham (MGB) Biobank [11]; and the Genetic
Epidemiology Research on Aging (GERA) [12] (Fig. 1 and
ESM Table 1). We selected Latino samples based on their
genetically estimated ancestry using principal components
(PCs) and Admixture v1.3.0 [13] (ESM Fig. 1). All human
research was approved by the relevant Institutional Review
Boards and conducted according to the Declaration of
Helsinki. All participants provided written informed consent.

Genotyping and imputation Genotyping was done using
several commercially available genome-wide arrays, and for
a subset of the samples (N=9520), we integrated whole-exome
sequencing (WES) (ESM Table 1). We applied pre-
imputation quality control to each dataset separately. Clean
datasets were phased using SHAPEIT2 v2 [14]. For compar-
ison purposes, we imputed the phased haplotypes using both
1000G Phase3 version 5 [15] and TOPMed reference panels
freeze 8 [8].

Imputation performance evaluationWe evaluated the perfor-
mance of TOPMed and 1000G imputations by summarising
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the chromosome-wise r2 quality measure and the number of
well-imputed (r2≥0.8) variants at different allele frequency
(AF) thresholds. We used available WES data from the
SIGMA3 cohort and estimated the proportion of the
sequenced variants in chromosome 22 that were well-
imputed with TOPMed and 1000G panels at different WES
AF thresholds.We used SnpEff v4.3 [16] to annotate theWES
variants. We calculated the effective sample size (Neff) need-
ed to reach 80% statistical power to detect genome-wide
significant associations (α=5 × 10–8) at different effect sizes
and AFs covered by the imputations (Fig. 2c).

Type 2 diabetes GWAS meta-analysis Association analyses
were performed in each cohort with SNPTEST v2.5.4 [17].
Models were adjusted for sex, age, BMI and ten PCs to
account for population structure. We ran additional models
without adjusting for BMI. Only well-imputed variants
(r2≥0.5) were meta-analysed using the inverse of the

corresponding squared SEs in METALv2011-03-25 [18] We
used a standard GWAS significance threshold of p<5 × 10−8.

We performed LD-based clumping on the genome-wide
significant variants to keep one representative variant per
region of LD. If the lead SNP lay within a previously reported
type 2 diabetes locus, we defined it as conditionally distinct if
showing evidence of residual association (p<5 × 10−5) after
conditioning on each of the reported variants.

Variants with sub-genome-wide significance (p<1 × 10−6)
that were only imputed with the TOPMed panel, showed
increased frequency in the Latino population and were
>250 kb from other reported genome-wide significant variants
from European or East Asian ancestry large consortia [19, 20]
were considered for further investigation.

Replication sampleVariants associated with type 2 diabetes at
genome-wide and sub-genome-wide significance were tested
for replication in six independent cohorts: the Cameron
County Hispanic Cohort (CCHC) [21]; the Urban American

SIGMA1
1937 cases, 2253 controls

SIGMA2
1789 cases, 1941 controls

MXBB
409 cases, 1321 controls

SIGMA3
2989 cases, 2801 controls

MGB
360 cases, 1755 controls

GERA
666 cases, 664 controls

Quality control
Phasing

TOPMed/1000GP3 imputation
Type 2 diabetes GWAS

Type 2 diabetes GWAS meta-analysis
8150 cases, 10,735 controls

41 million high-quality variants

Novel loci

METS
6000 participants

MHTG
2000 participants

UKBB
995 participants

Discovery cohorts Related phenotypes

Quality control
Phasing

TOPMed imputation
Association analyses

46 phenotypes
26,400 participants

NMR-Metabolomics panel
999 participants, 168 metabolites

Annotation

GENE EXPRESSION
GTEx

TIGER Portal
Pancreatic islets

LATINO SUM STATS
SIGMA1,2,3, MGB,GERA

OTHER ANCESTRIES
DIAMANTE European

AGEN East Asian

TRAIN DATASET
MXBB

TEST DATASET
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PS METHODS
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PUBLIC RESOURCES
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OpenTargets

rs2891691
p=3×10-09 p=6×10-07

OR [95%CI]=2 [1.6, 2.5]
MAF=1.7%

ORC5/LHFPL3
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Genome-wide significant

rs1016378028

OR [95%CI]=1.8 [1.4, 2.2]
MAF=1.3%

HDAC2

chr6

Sub genome-wide significant

+

Replication
PRODIGY

1198 cases, 1805 controls

CCHC
971 cases, 857 controls

Urban American Indians
851 cases, 2191 controls

Arizona Pima Indians
2571 cases, 5088 controls

PAGE
6761 cases, 5747 controls

All of Us
1265 cases, 5134 controls

Polygenic scores

Fig. 1 General overview of the study. Six cohorts of admixed Latino
ancestry, representing a total of 8150 type 2 diabetes cases and 10,735
controls, were imputed with the TOPMed and 1000G Phase 3 panels
(grey box). A type 2 diabetes GWAS meta-analysis of the imputed vari-
ants resulted in the identification of two novel loci, which were tested for
replication in six additional Latino cohorts (green box). They were also
interrogated for association with a collection of phenotypes in eight

Latino cohorts (blue box) and for functional evidence in multiple avail-
able resources (purple box). The generated Latino type 2 diabetes GWAS
data were used, in combination with GWAS from other ancestries, to
construct ancestry-specific and multi-ancestry type 2 diabetes PSs (brown
box). CMDK, Common Metabolic Disease Knowledge; sum stats,
summary statistics
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Fig. 2 Performance of the TOPMed reference panel for the imputation of
Latino samples. (a) Number of chromosome-wide well-imputed variants
(imputation r2≥0.8) by AF for each analysed cohort when using the
1000GP3 (blue) or the TOPMed (black) reference panels. (b) Average
chromosome-wide imputation quality by AF for each analysed cohort
when using the 1000GP3 (blue) or the TOPMed (black) reference panels.
(c) Effective sample size required for reaching 80% statistical power to
detect genome-wide significant signals at different effect sizes (OR). The

dotted lines show the discovery effective sample size of this study. (d)
Percentage of the exome sequenced variants in chromosome 22 that could
be imputed when using the 1000GP3 (blue) or the TOPMed (black)
reference panels. (e) Percentage of the exome sequenced LoF and dele-
terious predicted variants based on CADD score in chromosome 22 that
could be imputed when using the 1000GP3 (blue) or the TOPMed (black)
reference panels
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Indians and Arizona Pima Indians cohorts [22]; the Population
Architecture using Genomics and Epidemiology (PAGE)
study [23]; the All of Us Research Program [24]; and the
Progress in Diabetes Genetics in Youth (PRODIGY), which
comprises the Treatment Options for Type 2 Diabetes in
Adolescents and Youth (TODAY) [25], the SEARCH for
Diabetes in Youth studies [26], the Type 2 Diabetes
Genetics Exploration by Next-generation sequencing in
multi-Ethnic Samples (T2D-GENES) cohorts and the
Mexican Metabolic Syndrome (METS) cohort [27] (ESM
Table 2).

Association with type 2 diabetes-related phenotypes Given
the lack of large-scale publicly available biobanks with Latino
samples that may allow for better characterisation of our novel
signals, we assembled a collection of cohorts to perform asso-
ciation analyses to several type 2 diabetes-related traits
comprising 46 glycaemic, anthropometric and lipid traits. In
addition to five of the Latino cohorts analysed in the type 2
diabetes meta-analysis (i.e. SIGMA1, SIGMA2, SIGMA3,
MXBB and MGB Biobank), we included three extra cohorts,
which we also imputed to the TOPMed panel: the METS and
the Mexican Hypertriglyceridemia (MHTG) cohorts, as well
as the genetically identified Latino samples from the UK
Biobank (UKBB) [28] We also analysed the Nightingale
NMR-based panel of 168 metabolomic biomarkers from the
UKBB. Association analyses were done with a maximum of
26,400 adult Latino individuals, depending on the trait, of
whom 19,459 were diabetes-free.

Credible sets For each novel variant, we identified the set of
variants with 99% probability of containing the causal variant.
We used a Bayesian method [29], considering variants in LD
with the lead variant (r2>0.1).We calculated LD using genetic
data from 1996 Hispanic/Latino samples from TOPMed
freeze 5b.

Genomic annotation We used the 99% credible sets to anno-
tate their genomic effect using the VEP v100 [30]
(GRCh38.p7) and SNPNEXUS release Dec 2020 [31] appli-
cations. We used the Genotype–Tissue Expression project
(GTEx) V8 [32] to assess the influence of the variants in
gene-level expression, the TIGER Portal v7 [33] to evaluate
the gene-level expression in pancreatic islets and the Islet
Gene View (accessed 17 Dec 2022) [34] to assess the gene
co-expression in human islets. We also assessed their associ-
ation with a variety of phenotypes and diseases using the
Common Metabolic Disease Knowledge Portal (cmdgenkp.
org, accessed 17 Dec 2022 ) and other resources.

Expression of genes near novel variants We assessed the
expression levels of the genes ±500 kb around the novel
signals in human islets under different conditions pertaining

to type 1 and type 2 diabetes. Gene expression differences
between groups were assessed using p values and adjusted
p values (Benjamini Hochberg correction) determined by the
Wald test using the DESeq2 pipeline [35] Transcripts per
million (TPM) was normalised by Salmon v1.4.0 [36].

Polygenic scores Polygenic scoring using single ancestry
summary statistics and LD reference panels was calculated
via Bayesian Regression and Continuous Shrinkage priors as
implemented in PRS-CS release 4 Jun 2021 [37]. We used the
UKBB LD reference panel and GWAS summary statistics
from European [20], East Asian [19] and Latino populations.
GWAS Latino summary statistics were calculated using a
meta-analysis with five of the discovery cohorts (i.e.
SIGMA1, SIGMA2, SIGMA3, MGB and GERA). Then, we
used the estimated posterior SNP effect sizes for each ancestry
to calculate and evaluate the performance of the polygenic
scores (PSs) in a training cohort (i.e. MXBB). The best model
was tested in a target cohort (i.e. the METS cohort).

Given that the ancestry-specific PSs were not highly corre-
lated (r2<0.3), we also used PRS-CSx release 29 Jul 2021
[38], a method that improves multi-ancestry polygenic predic-
tion by integrating GWAS summary statistics from multiple
populations. We assessed the performance of the ancestry-
specific vs the multi-ancestry PS.

Results

Overall strategy Figure 1 summarises our overall strategy. We
meta-analysed six type 2 diabetes GWAS of Latino ancestry,
comprising 8150 cases and 10735 controls from hospital and
population-based studies. All cohorts were imputed with
TOPMed and 1000G panels and the imputation performance
was evaluated. To replicate the novel loci, we analysed 13,617
type 2 diabetes cases and 20,822 controls from six indepen-
dent cohorts of Latino ancestry. To gain further insight into
the novel loci, we created a collection of type 2 diabetes-
related phenotypes that included 26,400 Latino participants
with 46 glycaemic and anthropometric traits, as well as 168
metabolomic traits. We used publicly available resources to
interrogate our top signals, including functional annotation of
the credible sets, and gene expression assessment of nearby
genes in pancreatic islets from either type 1 or type 2 diabetes
cases and controls or treated under conditions relevant for
diabetes pathophysiology. We then used the generated
Latino GWAS data, in combination with GWAS from other
ancestries, to construct ancestry-specific and multi-ancestry
type 2 diabetes PSs.
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TOPMed imputation performance On average, imputation
using the TOPMed panel resulted in 41 million (M) high-
quality (r2≥0.8) variants, being 24M rare (minor allele
frequency [MAF]<0.1%). This represents a 6.5-fold increased
number of imputed rare variants compared with 1000G
(Fig. 2a). The quality of imputation consistently improved
when using TOPMed, particularly for low-frequency and
rare variants (Fig. 2b).

We used WES data to confirm the improvement of
TOPMed imputation to detect low-frequency and rare vari-
ants. The TOPMed panel allowed the identification of >80%
of the WES variants with MAF≥0.1% compared with 60%
for the same MAF cut-off with the 1000G panel (Fig.
2d). It also improved the identification of likely pathogen-
ic variants predicted as deleterious that usually occur at
low frequency (Fig. 2e).

Type 2 diabetes GWAS meta-analysis To illustrate the gain in
discovery when using TOPMed imputation, we tested the
genetic variants for association with type 2 diabetes in six
Latino cohorts. Our discovery sample comprised 18,885
Latino non-related individuals (8150 cases, 10,735 controls).

We identified 26 genome-wide significant variants (p<5 ×
10−8) associated with type 2 diabetes at 13 loci. Twenty-five
of these were previously reported type 2 diabetes-associated
variants, including those consistently identified in multiple
populations (e.g. variants at KCNQ1 and TCF7L2) and others
enriched in the Latino population (e.g. variants at SLC16A11)
(Fig. 3a, ESM Fig. 2 and ESM Table 3).

We identified a novel locus between the ORC5 and
LHFPL3 genes on chromosome 7. The intergenic lead variant,
rs2891691, has low frequency in Latino people and is associ-
ated with a twofold increase in the odds of developing type 2
diabetes in the discovery sample (MAF 1.7%; OR 2.0 [95%
CI 1.59, 2.52], p=3.4 × 10−9) (Fig. 3b,c). Although it was also
imputed with the 1000G panel, TOPMed’s higher imputation
quality strengthened the association (1000G, mean ± SD
imputation r2=0.948 ± 0.057, p=2.3 × 10−8; TOPMed, mean
± SD imputation r2=0.983 ± 0.009, p=3.4 × 10−9).

This variant is rare in Europeans (MAF 0.04%), yet prev-
alent among African (MAF 16%) and East Asian populations
(MAF 7.6%). However, its association with type 2 diabetes
does not replicate in either Africans (p=0.149) or East Asians
(p=0.095). A fixed effects meta-analysis of the three ancestries
showed no association of the variant with type 2 diabetes
(p=0.734) but a significant heterogeneity in the allelic effects
(p=5 × 10−8). To further investigate the source of such hetero-
geneity, we used MR-MEGA v1.0.5 software [39], which
implements a multi-ancestry meta-regression approach to
model allelic effects as a function of axes of the genetic vari-
ation. This meta-regression approach showed a significant
association of rs2891691 with type 2 diabetes (p=1.1 ×

10−7), as well as significant heterogeneity of the allelic effects
between populations driven by ancestry (p=2.9 × 10−8). The
residual heterogeneity accounting for other factors, such as
phenotype definition or uncorrected population structure,
was not significant (p=0.944) (ESM Fig. 3). These results
show that the effects of rs2891691 on type 2 diabetes are
specific to the Latino population and suggest that the lead
variant we identified is in LD with the causal variant in
Latino but not African or East Asian populations, a phenom-
enon also observed in a previous type 2 diabetes multi-
ancestry meta-analysis [40] The heterogeneity in the allelic
effects across ancestries can also be explained by differences
in environmental exposures.

A sex-dimorphism in RELN gene expression has been
documented, with higher RELN expression in women [41]
and sex hormones likely mediating RELN expression.
Because of the proximity of RELN to rs2891691, we evalu-
ated the sex-specific association with type 2 diabetes and test-
ed for heterogeneity between sex-specific allelic effects using
GWAMA v2.2.2 [42]. rs2891691 showed a larger effect and
was more associated with type 2 diabetes in women (Neff
10,228; OR 2.4 [95%CI 1.73, 3.22], p=6.6 × 10−8) compared
with men (Neff 7206; OR 1.5 [95% CI 1.08, 2.19], p=0.018),
yet the between-sex heterogeneity did not reach statistical
significance (p=0.076) (ESM Table 4).

Replication analysis The replication analysis comprised
13,617 type 2 diabetes cases and 20,822 controls (ESM
Table 2). The meta-analysis of the replication cohorts, where
the variant was present, was nominally significant and showed
a consistent direction of effect with the discovery sample (OR
1.18 [95% CI 1.02, 1.36], p=0.025) (Fig. 3c, ESM Table 5).

By querying our Latino collection of type 2 diabetes-
related phenotypes, we found that the rs2891691 risk allele
C was nominally associated with lower fasting glucose levels
(p=0.026) (ESM Table 6). Such negative correlation might be
induced by collider bias since specifically for glycaemic traits
we only analysed diabetes-free individuals. Indeed, a positive
association of rs2891691 risk allele with 2 h glucose adjusted
for BMI has been previously reported in Latino ancestry
participants (β=3.4 mg/dl [0.2 mmol/l], p=0.006) [43] and
low potassium levels in East Asian ancestry participants
(p=8.5 × 10−5) [44]. Accumulated epidemiological evidence
points to a relationship between low potassium levels and
decreased insulin secretion and risk of type 2 diabetes [45, 46]

The 99% credible set consisted only of the lead variant
rs2891691 (ESM Table 7), yet we cannot discard other vari-
ants not called due to genotyping complexity nor those imput-
ed to the TOPMed panel, such as a structural, variable tandem
repeat or copy number variants.

To better characterise the role of theORC5/LHFPL3 locus,
we assessed gene expression using the GTEx [32] and TIGER
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[33] portals. ORC5 is expressed ubiquitously, while LHFPL3
is specifically expressed in the brain (ESM Fig. 5a, b). We
then assessed the expression levels of genes ±500 kb around
the novel signal in human islets under different conditions
relevant to diabetes pathophysiology. ORC5 was downregu-
lated after 2 h and 8 h exposure to IFN-α, and upregulated by
exposure to brefeldin A (ESM Fig. 6a, c). Both IFN-α and
brefeldin A are endoplasmic reticulum stress inducers that
reduce the insulin content with a rise in the proinsulin/
insulin ratio [47] and inhibit glucose-stimulated insulin secre-
tion [48], respectively.

Prioritising sub-genome-wide significant variants We next
searched for variants that were associated with type 2 diabe-
tes at sub-genome-wide significance (p<5 × 10−6) but that
deserved further study as they lay in previously unreported
type 2 diabetes loci, were enriched or Latino-specific, and/or
exclusively imputed with the TOPMed panel (Fig. 4a and

ESM Table 8). Three out of the 23 sub-genome-wide lead
variants lay in or near the known type 2 diabetes loci TACC
2, FGFR2 and CCND2. We considered them as distinct
variants as they retained locus-wide significance (p<5 ×
10−5) after conditioning on the nearest known associated
variant.

Three additional sub-genome-wide significant variants
were located ±1 Mb away from any reported type 2 diabetes
locus (Fig. 4a and ESM Table 9). Of interest, rs1016378028 is
a low-frequency variant (MAF 1.3%; OR 1.77 [95% CI 1.41,
2.21], p=7.0 × 10−7) that is Latino private (MAF<0.01% in
other populations) and is only imputed with the TOPMed
panel. It is intronic of HDAC2, a gene under strong purifying
selection (probability of being LoF intolerant [pLI]=1,
gnomAD, gnomAD-sg.org, accessed 17 December 2022)
and that is highly and mostly expressed in pancreatic islets
(tiger.bsc.es, accessed 17 December 2022) (Fig. 4f) [33].

Although the replication results did not show statistical
significance, the direction of the effect was consistent with the
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discovery effect (OR 1.17 [95%CI 0.94, 1.45], p=0.1547) (Fig.
4b,c, ESM Table 5). The Diabetes Meta-Analysis of Trans-
Ethnic association studies (DIAMANTE) European meta-
analysis [20] reported a suggestive signal ~80 kb upstream of
rs1016378028 (rs4945979, p=4.8 × 10−6). After conditioning
for the rs4945979 variant, the statistical significance of our
identified variant remained essentially the same (OR 1.75
[95% CI 1.4, 2.2], p=4.5 × 10−7).

The rs1016378028 risk allele was significantly associated
with higher levels of acetone (p=1.2 × 10−7), 3-
hydroxybutyrate (p=1.01 × 10−5) and acetoacetate (p=3.3 ×
10−5) (Fig. 4d and ESM Table 10). It was also nominally
associated with lower hip circumference (p=0.02) and higher
WHR (p=0.03) (ESM Table 6).

HDAC2 expression in human islets is downregulated after
exposure to IFN-α (8 h log2-fold change=−0.38, p=6 × 10−7;
18 h log2-fold change=−0.28, p=3 × 10−4) or IFN-γ+IL-1β
(log2-fold change=−0.39, p=3 × 10−7) (Fig. 4e). These cyto-
kines mimic the proinflammatory milieu of type 1 diabetes,
inhibit beta cell function [49, 50], induce beta cell stress
and may trigger beta cell dedifferentiation in type 2
diabetes [51, 52].

Development of PSs for the Latino populationWe then devel-
oped a PS for type 2 diabetes in Latino people using our
TOPMed imputed GWAS meta-analysis data. This PS
explained 1.6% of the type 2 diabetes status variance
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(Fig. 5a), which is expected given the relatively small
sample size of the Latino summary statistics compared with
European and East Asian ancestries. The PS derived from the
Diabetes Meta-Analysis of Trans-Ethnic association studies
(DIAMANTE) European GWAS [20] and from Asian
Genetic Epidemiology Network (AGEN) East Asian GWAS
[19] explained 5.1% and 4.4% of the type 2 diabetes variance
in the Latino population, respectively. The European and East
Asian PSs showed a weak correlation (r2<0.2) with our Latino
TOPMed-derived PS, suggesting that they could provide
orthogonal information and improve the overall predictive
performance. We developed a PS that incorporated GWAS
data from the three ancestries using PRS-CSx [38], a method
that allows for the integration of summary statistics and LD
reference panels from different ancestries. The multi-ancestry
PS including the three GWAS summary statistics explained
7.6% of the type 2 diabetes variance in the Latino target
sample. Our Latino GWAS added 1% of the explained

variance compared with the PS using only European and
East Asian GWAS, which explained 6.6% of the variance.

Each SD of the multi-ancestry PS was associated with an
OR of 1.9 (95% CI 1.6, 2.2, p=3.7 × 10−19) (Fig. 5c). People
in the 2.5 percentile of the PS showed four times more risk of
developing type 2 diabetes (OR 4.01 [95% CI 1.87, 8.62],
p=3.7 × 10−4) (Fig. 5c). The receiver operating characteristic
AUC of the full model including the multi-ancestry PS was
0.748 (95% CI 0.72, 0.775) compared with 0.729 (95% CI
0.701, 0.758) of the PS including European GWAS only,
representing a 2% improvement in the prediction accuracy
(p=0.008) (Fig. 5b).

Discussion

The Latino population has been underrepresented in most
genetic studies. Yet, recent studies of type 2 diabetes in
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Latino populations have been fruitful, even with sample-size
orders of magnitude smaller than those in studies of European
or East Asian ancestries. The poor representation of Latino
samples with genotype and phenotype data constrains nearly
every step of a gene–disease association framework, including
genotype imputation, a cost-effective technique to improve
the resolution of a GWAS. This is more problematic for
low-frequency and rare variation. Instead, next-generation
sequencing technologies have typically been chosen but
these are more expensive, precluding the study of large
samples. This study was motivated by the recent release
of the TOPMed imputation panel, which includes the larg-
est number of Latino haplotypes compared with all avail-
able panels.

In this study, we aggregate genotype and WES data from
six datasets to test the improvement in accuracy of the
TOPMed imputation compared with 1000G. To illustrate
how this panel can boost the discovery of complex disease
variants we performed a type 2 diabetes GWAS meta-
analysis using the imputed data. TOPMed imputation not only
improved the statistical significance of our findings but
allowed for the testing of up to 24 M rare variants, compared
with 3 M properly imputed with the 1000G panel. The high
quality of TOPMed imputation at low/rare frequencies is espe-
cially relevant for the study of disease-causing variation,
because deleterious variants usually span such a spectrum.
We show that by imputing with TOPMed, it is possible to test
>90% of the variants with a MAF≥0.1% predicted to be dele-
terious by the Combined Annotation Dependent Depletion
(CADD) score; previously, it was only possible to detect these
variants by relying on more expensive sequencing technolo-
gies. While ascertaining variants at frequencies <0.1% may
still require whole-genome sequencing (WGS) or WES, we
estimate that the power to identify associated variants may be
limited unless we undertake sequencing efforts with sample
sizes orders of magnitude larger than our study. For example,
for MAF<0.1%, the effective sample size required to reach
statistical power to detect associations with an effect of
OR>2.0 is above 170,000 individuals (Fig. 2c). Since the cost
of sequencing such a large sample size is a major constraint
for the study of underrepresented populations, we propose that
highly accurate imputation with dense reference panels may
be a more cost-effective approach.

In this study, we identified a novel low-frequency variant
associated with type 2 diabetes, rs2891691, which lies
between the ORC5 and LHFPL3 genes and showed increased
accuracy of imputation and association power when using the
TOPMed panel. ORC5 encodes the subunit 5 of the origin
recognition complex implicated in the DNA replication
origins, transcription silencing and heterochromatin formation
[53] Lipoma HMGIC fusion partner-like 3 (LHFPL3) is a
member of the tetraspanin superfamily, which functions as
membrane protein organiser. The rs2891691 risk allele is

present in 1% of Latino people. Overall, in discovery and
replication cohorts, carriers have 1.37-fold increased odds of
developing type 2 diabetes, with a possibly higher risk in
women.

We identified a second low-frequency variant,
rs1016378028, associated with a 1.7-fold increased risk of
type 2 diabetes, which is not imputed with the 1000G panel.
This variant was prioritised from a subset of variants at a sub-
genome-wide significant threshold that showed additional
evidence of association. rs1016378028 is a Latino private
variant (MAF: Latino, 1.3%; East Asian, 0.2%; other popula-
tions, <0.05%), and lies within HDAC2, a gene that is highly
intolerant of protein-changing variation and is mostly
expressed in pancreatic islets [33].

Histone deacetylase 2 (HDAC2) is a histone deacetylase
involved in gene transcription repression. HDACs play a regu-
latory role in insulin signalling, beta cell function and pancre-
atic endocrine cell development. At low glucose levels,
HDAC2 is recruited to the insulin promoter to downregulate
its expression [54]. In human islets, HDAC2 expression nega-
tively correlates with insulin gene expression (r=−0.56, false
discovery rate 3.7 × 10−16) and positively correlates with
IAPP expression, which encodes for a satiety hormone
(r=0.38, false discovery rate 1.8 × 10−7) [34] HDAC2 also
deacetylates IRS-1, uncoupling its downstream phosphoryla-
tion cascade. Both insulin expression and insulin signalling
are partially restored after treatment with HDAC2 inhibitors
[55, 56]. We show that cytokine treatment of pancreatic islets
downregulated HDAC2 expression.

Because there are no comprehensive phenome-wide asso-
ciation data to guide the interpretation of variants enriched in
Latino populations, we aggregated phenotypic glycaemic and
cardiometabolic data from 26,400 Latino individuals to
follow-up the identif ied variants. We found that
rs1016378028 risk allele carriers have higher levels of ketone
bodies, which are produced through the breakdown of fatty
acids and serve as an alternative energy source to glucose.
Uncoupled hepatic production of ketone bodies may be a
pathological consequence of relative insulin deficiency in
diabetes [57]. While the mechanism linking rs1016378028,
diabetes and 3-hydroxybutyrate levels remains to be deter-
mined, our results suggest this variant as a potential genetic
type 2 diabetes risk factor.

We leveraged our GWAS results and existing publicly
available data to develop an improved PS for Latino ancestry.
PSs developed in a particular ancestry group poorly transfer to
other populations, exacerbating disparities between popula-
tions. We provide an improved PS for the Latino population,
by using a combination of GWAS and LD data from East
Asian, European and our Latino GWAS. This PS showed a
similar performance to the previously reported in European
ancestry [58] with individuals at the top 2.5 percentile show-
ing a fourfold increased risk of type 2 diabetes. Evaluating this
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PS in additional external datasets of Latino ancestry may
prove useful in assessing its potential clinical utility.

Leveraging new resources to reanalyse Latino data, such as
imputation with the TOPMed panel, proved to be successful
in identifying additional type 2 diabetes-related loci. We
acknowledge that the TOPMed panel allows the testing of
an increased number of variants and additional evidence will
be needed to confirm associations at the standard GWAS
significance. Further efforts are needed to increase the power
of discovery and to follow-up on novel findings in diverse
populations. Until then, translation of identified genetic
variation-to-function and application to the clinic in Latino
populations will remain highly compromised compared with
the resources available for European populations. In this study
we gathered a high number of Latino samples with extensive
biomarker and clinical characterisation; however, larger
sample sizes are still needed to achieve sufficient statistical
power to detect low-frequency variants. Efforts must be
expanded to build shareable resources with a high representa-
tion of different ancestries, enabling ancestry-specific effects
to be interpreted within the local ancestry context, which is
instrumental to identify causal genes, to improve the biologi-
cal mechanistic insight and to develop targeted therapies.

Overall, this study confirms the superior imputation perfor-
mance of TOPMed, representing a cost-effective and unique
opportunity to analyse low-frequency and rare genetic vari-
ants in Latino samples at scale. It also presents the largest type
2 diabetes GWAS meta-analysis performed in individuals of
Latino ancestry imputed with the TOPMed reference panel.
Despite the sample size being orders of magnitude smaller
compared with studies performed in other populations, the
novel discoveries presented here suggest that more novel
genetic associations and new biology of type 2 diabetes will
be revealed as the sample size of discovery samples, reference
panels and large-scale biobanks with phenome-wide data
increase in studies including non-European populations.
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