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Abstract
Aims/hypothesis While autoantibodies are traditional markers for type 1 diabetes development, we identified gut microbial
biomarkers in 1-year-old infants associated with future type 1 diabetes up to 20 years before diagnosis.
Methods Infants enrolled in the longitudinal general population cohort All Babies In Southeast Sweden (ABIS) provided a stool
sample at a mean age of 12.5 months. Samples (future type 1 diabetes, n=16; healthy controls, n=268) were subjected to 16S
ribosomal RNA (rRNA) sequencing and quantitative PCR. Microbial differences at the taxonomic and core microbiome levels
were assessed. PICRUSt was used to predict functional content from the 16S rRNA amplicons. Sixteen infants, with a future
diagnosis of type 1 diabetes at a mean age of 13.3±5.4 years, and one hundred iterations of 32 matched control infants, who
remained healthy up to 20 years of age, were analysed.
Results Parasutterella and Eubacteriumwere more abundant in healthy control infants, while Porphyromonaswas differentially
more abundant in infants with future type 1 diabetes diagnosis. Ruminococcus was a strong determinant in differentiating both
control infants and those with future type 1 diabetes using random forest analysis and had differing trends of abundance when
comparing control infants and those with future type 1 diabetes. Flavonifractor and UBA1819 were the strongest factors for
differentiating control infants, showing higher abundance in control infants compared with those with future type 1 diabetes.
Alternatively, Alistipes (more abundant in control infants) andFusicatenibacter (mixed abundance patterns when comparing case
and control infants) were the strongest factors for differentiating future type 1 diabetes. Predicted gene content regarding butyrate
production and pyruvate fermentation was differentially observed to be higher in healthy control infants.
Conclusions/interpretation This investigation suggests that microbial biomarkers for type 1 diabetes may be present as early as 1
year of age, as reflected in the taxonomic and functional differences of the microbial communities. The possibility of preventing
disease onset by altering or promoting a ‘healthy’ gut microbiome is appealing.
Data availability The forward and reverse 16S raw sequencing data generated in this study are available through the NCBI
Sequence Read Archive under BioProject PRJNA875929. Associated sample metadata used for statistical comparison are
available in the source data file. R codes used for statistical comparisons and figure generation are available at: https://github.
com/PMilletich/T1D_Pipeline.
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Introduction

Type 1 diabetes, a heterogeneous, serious autoimmune
disease associated with high morbidity and a shorter life
expectancy [1], is characterised by the destruction of the
insulin-producing beta cells of the pancreas. The aetiology
of type 1 diabetes is complex, with suggested genetic and
environmental factors [2]. Approximately 50% of the genetic
risk of type 1 diabetes is conferred by the MHC class II HLA
alleles [3], where different combinations of alleles result in
varying risk. Most individuals with type 1 diabetes have no
family history of the disease. Low genetic risk does not
preclude the development of clinical type 1 diabetes. The inci-
dence of type 1 diabetes varies during childhood, with a peak
during puberty and earlier age at diagnosis and an increased
incidence in populations with a lower genetic risk of type 1
diabetes [4–6]. Early childhood diet [7, 8], duration of
breastfeeding [9], and antibiotic use early in life influence
the gut microbiome [10] and have been proposed in the patho-
genesis of type 1 diabetes.

The gut microbiome plays a critical role in differentiating
immune cells by mediating proinflammatory Th17 cells and
balancing Th1 and Th2 populations [11–13]. An altered gut
microbiome may facilitate inflammation by decreased differ-
entiation of CD8+ regulatory T cells, triggering an autoim-
mune response [13]. Dysbiosis early in life may result in
abnormal immunoregulation [14, 15], predisposing a child to
autoimmunity many years before the development of clinical
disease [16].

Associations between the gut microbiome and autoimmu-
nity have previously been described for type 1 diabetes
[17–20]. Longitudinal studies have found a marked reduction
in α diversity between seroconversion and type 1 diabetes
diagnosis [21]. Additionally, matched case–control studies
have found significant differences in gut microbiome compo-
sition in the first years of life [22, 23]. However, there are
discrepancies in what constitutes core microbiome or
dysbiosis related to type 1 diabetes.

Emerging evidence that gut microbiota contribute to the
pathophysiology of type 1 diabetes suggests that gut
dysbiosis is a central catalyst whereby bacterial metabolites
disrupt the intestinal barrier function (i.e. give rise to ‘leaky
gut’). In this environment, antigens then become dislocated
into the circulation, activating the immune system and
systemic inflammation [24]. This may initiate a cascade of
autoimmune processes and beta cell damage through
molecular mimicry from external antigens. Previous studies
have found associations between increased Bacteroides-
dominating communities and a decrease in butyrate-
producing bacteria of the phylum Bacillota (previously
Firmicutes), with early onset of autoantibody development
[25, 26]. It is unknown whether these communities develop
independently in these cohorts, although an imbalance in
the ratio of Bacteroidetes to Firmicutes in the gut
microbiome has been proposed in other pathologies such
as obesity and inflammatory bowel disease [27].

Attempts to investigate environmental risk factors in
large cohort studies have mainly focused on individuals
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with an increased genetic risk based on HLA alleles or a
family history of type 1 diabetes [19, 28]. Generally, a
reduced abundance of short-chain fatty acid (SCFA)-
producing microbiota in children progressing to autoimmu-
nity is implicated but no consistent differences in specific
taxa across different high-risk populations and geographi-
cal regions have emerged. Studies restricted to those at
genetic risk or with familial type 1 diabetes are limited in
their potential to evaluate other factors that can protect
against or trigger an autoimmune response in the general
population. For example, it has been shown that the genetic
risk HLA alleles of type 1 diabetes are associated with
distinct changes in the human gut microbiome composition
[29].

To further elucidate the role of the early microbiome in the
pathology of type 1 diabetes, this study evaluates differences
in the gut microbiome of infants in a general population,
characterising signatures that diverge between those with a
diagnosis of type 1 diabetes up to 20 years later and matched
healthy control infants without this diagnosis.

Methods

Study design and sample collection This study is based on the
longitudinal, general population cohort All Babies In
Southeast Sweden (ABIS). Families of children born in the
Swedish counties of Östergötland, Småland, Blekinge and
Öland between 1 October 1997 and 1 October 1999 were
invited to join the study. Of 21,700 children born, 17,055
participated at birth (78.6%) and 13,886 (64.0%) at 1 year of
age. Parents completed questionnaires at the time of birth and
when the infant reached 1 year of age, and filled in a diary
during the first year of life. The collected material includes
information about pregnancy, factors during the first year of
life such as nutrition, and information on parental lifestyle
such as smoking and alcohol use.

Stool samples were collected from infants’ diapers at
approximately 1 year by sterile spatula and tube and immedi-
ately frozen. Samples collected at home were transported
frozen to the WellBaby Clinic. The samples were then stored
dry in a −80°C freezer in Linköping and later transported
frozen to the University of Florida. The viability of samples
was confirmed previously by the ability to isolate and culture
non-spore-forming, facultative anaerobic strains of
Bifidobacterium [29].

Ethical considerations The ABIS project has been approved
by the Research Ethics Committees of the Faculty of Health
Science at the University of Linköping, Linköping, Sweden
(ref 1997/96287 and 2003/03-092) and the Medical Faculty at
the University of Lund, Lund, Sweden (Dnr 99227 and Dnr

99321). Participating families gave informed consent after
oral and written information and the opportunity to watch a
video of the study. The microbiome analysis performed at the
University of Florida has been approved by the University of
Florida’s Institutional Review Board as an exempt study
(IRB201800903).

HLA genotyping Sequence-specific hybridisation with
lanthanide-labelled oligonucleotide probes was used to deter-
mine HLA genotype by typing for HLA-DQB1 and informa-
tive DQA1 and DRB1 alleles. HLA-DR/DQ genotypes associ-
ated with risk and protection were defined according to the
presence of commonEuropeanHLA-DR-DQ haplotypes asso-
ciated with the risk of autoimmunity. Infants were categorised
into four risk groups according to HLA genotype [30]. Risk-
associated HLA haplotype alleles were defined as (DR3)-
DQA1*05-DQB1*02 and (DR4)-DQA1*03-DQB1*02 (DR3/
4), while protective HLA haplotypes were defined as (DR15)-
DQB1*0602, (DR13)-DQB1*0603, (DR5)-DQA1*05-
DQB1*0301 and (DR7)-DQA1*0201-DQB1-0603.

A high genetic risk is defined by the presence of two
increased risk-associated haplotypes.

Increased risk is defined by the presence of one risk-
associated allele and a neutral haplotype.

Neutral risk is defined by either of the risk-associated
haplotypes in combination with one of the protective haplo-
types or two neutral haplotypes.

Low genetic risk is defined by the presence of one or two
protective haplotypes.

Diagnosis The Swedish National Patient Register [31] and the
Swedish pediatric diabetes quality register SWEDIABKIDS
[32] have been used to identify children with type 1 diabetes,
with new incidences reported annually. A prescription of insu-
lin in the Swedish National Drug Prescription Register [33]
validated the diagnosis. As of the latest update in December
2020, 167 of the initial 17,055 participants have developed
type 1 diabetes (0.98%). A diagnosis of other autoimmune
diseases or neurodevelopmental disorders was confirmed by
the Swedish National Diagnosis Registry.

Microbiome analysis DNA extraction, 16S ribosomal RNA
(rRNA) barcoded PCR and V3-V4 16S sequencing using
Illumina Miseq 2×300 bp were performed as described previ-
ously [29]. Bacterial quantification through universal 16S
rRNA primers was performed [34] and reads were merged
and filtered [35]. In summary, forward and reverse fastq reads
were merged, ambiguous primers were removed, and
sequences were filtered and classified using SILVA version
138 before processing in R (version 4.2.2) [36, 37].
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Nomenclature was established by sorting amplicon sequence
variants (ASVs) by known genus and appending unique
sequential numbers to the genus (and species, as available).

For this investigation, 1598 infants possessed more than
1000 16S rRNA copies/g of stool (74,018±33,485). Of these,
177 infants with other autoimmune or neurodevelopmental
diagnoses were excluded. In the remaining 1421 infants, 16
received a future type 1 diabetes diagnosis. ASVs with fewer
than five reads in five or more infants, as well as those ASVs
lacking a known genus using SILVA classification, were
removed. The remaining 1669ASVswere conglomerated into
199 genera using the tax_glom function [38].

Random permutations for matched case–control iterations
Factors differentiating infants with a future type 1 diabetes
diagnosis were determined with χ2 tests and p values comput-
ed by Monte Carlo simulation. Factors impacting binomial β
diversity were tested using the permutational multivariate
analysis of variance (PERMANOVA) test with 999 permuta-
tions [39]. The p values were corrected for false discovery rate
(FDR) using the Benjamini–Hochberg method.

A subset of control infants (n=268) was identified by
matching to case infants on geographical region, presence of
siblings at birth, residence type, duration of total breastfeeding
and month of stool collection (ANOVA: p≤0.001, padj≤0.01).
On average, there were 14.5±19.09 control infants per case
infant. Case infants with missing data from the diary were
matched using the remaining variables. The month of stool
collection was matched with a range of ±1 month for each
case.

From the resulting sample of 268 healthy control infants,
100 iterations of 32 randomly selected control cohorts were
generated. This iterative process allowed accounting for the
inherent variability of control infants within a general popula-
tion cohort without the risk of overpowering the results. The
imbalance of control infants was mitigated while still
balancing for the most significant influences of gut microbial
diversity.

Statistical analysis Pairwise comparisons of α diversity
between infants with future type 1 diabetes (n=16) and
control infants without future type 1 diabetes (n=268) were
performed against both genera and ASVs using the default
parameter s of the R functions plot_richness, ggplot2, and
stat_compare_means [40, 41].

Prevalence filtering of the core microbiome The Prevalence
Interval for Microbiome Evaluation (PIME) R package was
employed on each of the 100 case–control group comparisons
using either ASVs or genera to obtain the core taxa represent-
ing the future type 1 diabetes or control groups [42].

The first ten iterations of the total abundance of case–
control cohorts were used as a model for the remaining
iterations. The initial out-of-bag error (OOB), without prev-
alence filtering, for genera ranged from 31.3% to 41.2%,
with a mean of 36.4% (data not shown). A prevalence
threshold of 70% was selected as it reduced the OOB to a
mean of 2.5% while retaining an average of 33 of the orig-
inal 199 genera (16.6%) (electronic supplementary material
[ESM] Table 1). At the ASV level, the initial OOB, without
prevalence filtering, ranged from 31.3% to 41.2%, averag-
ing 35% (data not shown). A prevalence threshold of 50%
was selected as it reduced the OOB to a mean of 4.0% while
retaining an average of 61 of the original 1669 ASVs
(3.7%) (ESM Table 2). After filtering for prevalence, bino-
mial distances for the tenth iteration were visualised using
Principal Coordinate Analysis (PCoA) [41].

Taxa found to be in the core microbiome in at least half of
the iterations and with a positive mean decrease accuracy
(MDA) in both the case and control groups were further
assessed. The average MDA was determined through PIME
and the difference in mean abundance between the case and
the control subset was calculated for each iteration at each
taxon.

Differential abundance analysis Differential abundances of
microbes, present in either 10% (genus-level analysis) or
20% (ASV-level analysis) of future type 1 diabetes or iter-
ative control cohorts, were assessed with the binomial
distribution model R package, DESeq2 [43]. The
estimateSizeFactor() function was first used with the
‘poscount’ type, allowing for zeroes. A local fit type for
the Wald test was used, without Cook’s distance filtering.
After each of the 100 iterations of DESeq2, significance
values were adjusted through default Benjamini–
Hochberg method. Taxa were deemed significant to this
investigation if they appeared in at least half of the itera-
tions of case–control matching with adjusted p value (padj)
<0.05. The distribution of Log2FoldChange was depicted
using ggplot2 [40].

Results

Description of cohort As of December 2020, 167 children in
the ABIS cohort have developed type 1 diabetes (Fig. 1). Of
these, stool samples at 1 year of age were available for 16
children; five had a high HLA risk for type 1 diabetes, five
had an increased risk, four had a neutral risk and two had a
decreased risk (see Genetic risk definition text box). There
was a slight overrepresentation of boys to girls (10 vs 6),
representative of the whole ABIS cohort (91 boys vs 76 girls
with type 1 diabetes diagnosis, χ2 p=0.49). The mean age at
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diagnosis was 13 years, with a median of 14 years. The youn-
gest age at type 1 diabetes diagnosis was 1 year and 4 months,
and the oldest was 21 years and 4 months (Table 1).

Genetic risk definitions

High risk: presence of two increased risk-associ-

ated haplotypes 

Increased risk: presence of one risk-associated 

allele and a neutral haplotype 

Neutral risk: presence of either of the risk-associ-

ated haplotypes in combination with one of the 

protective haplotypes or two neutral haplotypes

Low risk: presence of one or two protective 

haplotypes

Factors associated with future type 1 diabetes or microbiome
composition The HLA haplotype DR4-DQ8 was more prev-
alent in infants with future type 1 diabetes (62.5% vs 25.9%,
p=0.003, padj=0.04) (ESM Table 3). Infants with future type 1
diabetes were 4.4 times more likely to have DR4-DQ8, and
2.58 times more likely to have DR3-DQ2.5 (p=0.007 and
p=0.07, respectively) (Table 2). In contrast, the protective
allele DR15-DQ602 was not significantly different when
comparing the groups (p=0.15).

The most significant confounders of binomial β diversi-
ty included geographical region, presence of siblings at
birth, residence type, duration of total breastfeeding and
age, in months, at stool collection (ANOVA: p≤0.001 and
padj≤0.01) (ESM Table 4). These factors were used to select
control infants (n=268) and remove outliers. Additional
confounders identified included the infant’s biological
sex, both parents living abroad during infancy, mode of
delivery, maternal risk factors during pregnancy and
dietary factors during infancy (ANOVA: p≤0.05 and
padj≤0.05).

Genera microbiome signatures Despite the absence of a
difference in α diversity of genera between control infants
and those with a future diagnosis of type 1 diabetes (observed,
p=0.82; Shannon, p=0.25) (ESM Fig. 1a), distinct clustering
was observed after supervised learning through PIME (ESM
Fig. 2). The core microbiome was estimated by filtering
genera to a 70% prevalence threshold in either iterative
controls or cases.

Seventeen core genera demonstrated a positive MDA for
differentiating the future type 1 diabetes and iterative
control cohorts. Ruminococcus was a key factor for differ-
entiating both case and control infants, Flavonifractor and
UBA1819 were the strongest factors for differentiating

control infants, and Alistipes and Fusicatenibacter were
the strongest factors for differentiating infants with future
type 1 diabetes (Fig. 2a,b).

Bacteroides, Enterococcus, Gemella, Hungatella and
TM7x had higher total and relative abundance in infants
with a future diagnosis of type 1 diabetes. Alistipes,
Anaeros t ipes , Egger the l la , Flavon i f rac tor and
Ruminococcaceae UBA1819 had higher total and relative
abundance in control infants (Fig. 2c,d). Agathobacter,
Blautia and Fusicatenibacter had a higher total abundance
in control infants but a higher relative abundance in infants
with a future type 1 diabetes diagnosis (ESM Fig. 3a).
Alternatively, Romboutsia, Roseburia and Ruminococcus
had higher total abundance in infants with a future type 1
diabetes diagnosis but higher relative abundance in control
infants (ESM Fig. 3a).

Outside of the core microbiome analysis, differentially
abundant bacteria were identified using DESeq2 with a 10%
prevalence threshold applied (padj<0.05). Porphyromonas
was higher in both total and relative abundance in infants with
future type 1 diabetes, while Eubacterium and Parasutterella
had a higher total and relative abundance in control infants
(Fig. 2e,f). Prevalence differences of key genera are shown in
ESM Fig. 4a, ASVs composing key genera are shown in ESM
Table 5.

ASV microbiome signatures The case and control groups
demonstrated similar α diversity within ASVs (observed,
p=0.56; Shannon, p=0.51) (ESM Fig. 1b). Yet, distinct clus-
tering was observed in the core microbiome after filtering to a
50% prevalence threshold (ESM Fig. 2h).

Ten core ASVs were most significant in differentiating
between cases and controls. Agathobacter-434 had the
highest MDA score for both groups, Anaerostipes-747
had the next highest MDA for control infants, while
Lachnospira-5640 had the next highest for infants with
a future type 1 diabetes diagnosis (Fig. 3a ,b) .
Agathobacter-434 had a higher total and relative abun-
dance in in fan t s wi th fu tu re type 1 d iabe te s .
An a e r o s t i p e s - 7 4 7 , Eg g e r t h e l l a l e n t a - 3 6 6 5 ,
Faecalibacterium praustnitzii-4451 and Veillonella
atypica-10087 had higher total and relative abundance in
control infants (Fig. 3c,d). Agathobacter-387 and
Lachnospira-5640 had higher total abundance in control
infants but higher relative abundance in infants with
future type 1 diabetes. Additionally, Anaerostipes hadrus-
719, Veillonella-10427 and Veillonella atypica-10084 had
a higher total abundance in the future type 1 diabetes
group but a higher relative abundance in the control group
(ESM Fig. 3b).

Differentially abundant ASVs were identified after apply-
ing a 20% prevalence filter in either the case or iterative
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Table 1 Characteristics of the
cohort, including infants with
future type 1 diabetes, all control
infants, and a control subset

Characteristic T1D

(n=16)

All controls

(n=1405)

Matched controls

(n=268)

Age at T1D diagnosis, years

Mean±SE 13.83±1.28 NA NA

Range 1.33–21.33 NA NA

Age at stool collection, months

(p=0.57; padj=0.89)

Mean±SE 12.47±0.61 11.92±0.08 12.46±0.08

HLA risk groupa, n (%)

(p=0.0005; padj=0.006)

High (risk/risk) 5 (31.2) 54 (3.8) 8 (3.0)

Increased (risk/neutral) 5 (31.2) 326 (23.2) 60 (22.4)

Neutral (risk/protective) (neutral/neutral) 4 (25.0) 407 (29.0) 77 (28.7)

Decreased (protective/neutral) (protective/protective) 1 (6.3) 435 (31.0) 92 (34.3)

NA 1 (6.3) 183 (13) 31 (11.6)

Biological sex, n (%)

p=0.46; padj=0.89

Female 6 (37.5) 683 (48.6) 137 (51.1)

Male 10 (62.5) 709 (50.5) 131 (48.9)

NA 0 (0) 13 (0.9) 0 (0)

Geographical region, n (%)

(p=0.39; padj=0.89)

North 4 (25.0) 455 (32.4) 72 (26.9)

East 5 (31.2) 219 (15.6) 104 (38.8)

South 4 (25.0) 329 (23.4) 57 (21.3)

West 3 (18.8) 381 (27.1) 35 (13.1)

NA 0 (0) 21 (1.5) 0 (0)

Presence of siblings at birth, n (%)

(p=0.08; padj=0.34)

No 3 (18.8) 560 (39.9) 43 (16.0)

Yes 13 (81.2) 791 (56.3) 225 (84.0)

NA 0 (0) 54 (3.8) 0 (0)

Residence type, n (%)

p=0.01; padj=0.16

Flat/apartment 1 (6.2) 467 (33.2) 27 (10.1)

Other 15 (93.8) 876 (62.3) 241 (89.9)

NA 0 (0) 62 (4.4) 0 (0)

Duration of total breastfeeding, n (%)

(p=0.90; padj=1)

1–3 months 2 (12.5) 142 (10.1) 21 (7.8)

4–7 months 4 (25.0) 354 (25.2) 79 (29.5)

8–9 months 7 (43.8) 718 (51.1) 160 (59.7)

NA 3 (18.8) 191 (13.6) 8 (3.0)

χ2 p values and adjusted p values (by FDR) comparing infants with future type 1 diabetes and all control infants
are shown
a HLA haplotypes: risk, (DR3)-DQA1*05-DQB1*02 and (DR4)-DQA1*03-DQB1*02 (DR3/4); protective,
(DR15)-DQB1*0602, (DR13)-DQB1*0603, (DR5)-DQA1*05-DQB1*0301 and (DR7)-DQA1*0201-DQB1-
0603; neutral, non-risk or non-protective HLA

NA, data not available/provided in the survey; T1D, future type 1 diabetes diagnosis
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control cohort (DESeq2 padj<0.05) (Fig. 3e,f). Two ASVs,
Clostridium sensu stricto 1 butyricum-2752 and
Terrisporobacter-9845, had higher total and relative abun-
dance in infants with future type 1 diabetes. Eisenbergiella
massiliensis-3699, Enterococcus-3895, Enterococcus-4905,

Erysipelatoclostridium-3992 and Veillonella atypica-10085
had higher total and relative abundance in control infants.

ASV 16S rRNA sequences and BLAST [44] classifications
can be found in ESM Table 6, and prevalence differences of
key ASVs are shown in ESM Fig. 4b.

Eligible participants (n=21,700)

All babies born in Southeast Sweden 

from 1 October 1997 to 1 October 1999

Excluded (n=4645) 

Chose not to participate

Included (n=17,055)

Completed questionnaire at birth

Excluded (n=177)

Other autoimmune or 

neurodevelopmental 

diagnosis

1 year biological samples (n=1598)

Provided stool samples 

Follow-up 

SWEDIABKIDS reports new cases 

of type 1 diabetes annually from 

initial cohort of 17,055 participants

Type 1 diabetes (n=16)

Stool provided at 1 year 

Current analysis

16 infants with future type 1 

diabetes and 268 control 

infants

Type 1 diabetes (n=167)

Fig. 1 Flow diagram of study
selection process from the initial
ABIS cohort

Table 2 ORs of covariates
showing genetic HLA differences
between infants with future type 1
diabetes and healthy control
infants

HLA haplotype T1D

(n=15)

All controls

(n=1165)

OR (95% CI) Z value p value padj value

DR4-DQ8

Absent 5 (31.3) 801 (57) 4.4011 (1.49, 12.97) 2.69 0.007 0.022

Present 10 (62.5) 364 (25.9)

DR3-DQ2.5

Absent 8 (50) 870 (61.9) 2.58 (0.93, 7.18) 1.82 0.069 0.104

Present 7 (43.8) 295 (21)

DR15-DQ602

Absent 14 (87.5) 885 (63) 0.23 (0.03, 1.73) 1.435 0.151 0.151

Present 1 (6.3) 280 (19.9)

Data are shown as n (%)

Infants without HLA haplotype sequences were removed from the OR analysis (T1D, n=1; controls, n=240)

T1D, future type 1 diabetes diagnosis
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Functional differences In addition to taxonomical differences
in the gut microbiome, functional differences were also found
(Picrust2: Wilcox p≤0.05, padj>0.1) (Fig. 4) based on predic-
tions from the 16S rRNA data. Control infants (n=268)
possessed higher predicted expression of acetyl-CoA

fermentation to butanoate II (Cohen’s d=0.511), pyruvate
fermentation to acetone (Cohen’s d=0.417), cob(II)yrinate
a,c-diamide biosynthesis I (early cobalt insertion) (Cohen’s
d=0.447) and nitrate reduction VI (assimilatory) (Cohen’s
d=0.552).

Fig. 2 Significant differences in the core genera between future type 1
diabetes (n=16) and iterative control cohorts (n=32). (a, b) MDA from
iterations of PIME at 70% prevalence thresholding through total (a) and
relative (b) abundance. (c, d) Respective genera identified through PIME
with distribution of differences in average total (c) and relative (d) abun-
dance across all 100 iterations. Boxplots show the median and IQR for

each group, with circles representing outliers for each respective group.
(e, f) Differentially abundant genera (DESeq2 padj<0.05) with minimum
10% prevalence in either control or case infants using (e) total or (f)
relative abundance. Positive values are more abundant in future type 1
diabetes, negative values are more abundant in control iterations
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Discussion

This general population cohort study identified several poten-
tial early bacterial biomarkers for the future onset of type 1
diabetes. One hundred iterations of 32 control infants were
compared with 16 infants diagnosed with future type 1 diabe-
tes at a mean age of 13.3±5.4 years. Despite the considerable
period between stool collection and diagnosis of diabetes,
compositional and functional differences in gut microbiota
were observed when comparing healthy infants and those with
future type 1 diabetes.

To avoid progression to symptomatic type 1 diabetes, tools
to predict future diabetes before or during the first stage of the
disease must be developed. Beta cell autoantibodies are rarely
detected before the age of 6 months, while the peak incidence
of IAA is between 9 and 24 months and that for GADA is 36
months. Gut microbial biomarkers at 12months would benefit
the prediction opportunity well before the onset of multiple
autoantibodies. Although gut diversity did not significantly
differ between case and control infants, perhaps due to the
transient nature of this period of gut microbiome develop-
ment, taxonomical differences were observed.

Standard methods for microbial community analysis typical-
ly focus exclusively on differences in relative abundance of the
microbes. The microbial load on the gastrointestinal tract can
often not be accurately shown through relative abundance alone.
This prompted us to assess both total and relative abundance,
should both copy number and relative composition of the gut

play a role for the bacterium in question. While not statistically
significant, we observed an increase in bacterial load in infants
with a future diagnosis of type 1 diabetes (mean copies of 16S
per gram of stool: 6.59×105–5.68×108 in infants with future type
1 diabetes; 2.7×102–9.01×108 in control infants), possibly
explaining some of the differences between total and relative
abundance patterns. This warrants further investigation into
how these bacterial loads impact the gut microbiome.

Core genera more abundant in control infants were primar-
ily Firmicutes, such as Anaerostipes, Flavonifractor,
Ruminococcaceae UBA1819 and Eubacterium, which have
been associated with health [24, 45, 46]. Genera more abun-
dant in future type 1 diabetes consisted of Firmicutes
(Enterococcus, Gemella and Hungatella), as well as
Bacteroides (Bacteroides and Porphyromonas). Genera
contributing the most to core microbiome differentiation (i.e.
with a higher MDA score but inconsistent patterns of abun-
dance between cases and controls), such as Fusicatenibacter,
Granulicatella, Roseburia and Ruminococcus, all belong to
Firmicutes as well. Fusicatenibacter, a major contributor in
coremicrobiome analysis, is of particular interest for its ability
to create SCFAs and proinflammatory metabolites such as
succinate [47]. Ruminococcus, a genus with the highest
MDA score for both control infants and infants with future
type 1 diabetes, has been associated with increased GADA
production and inflammation [48, 49].

The pathological contribution of the differences that were
observed in this investigationmay be explained, in part, by the

Fig. 4 Functional pathway
differences between control
infants (n=268) and those with
future type 1 diabetes (n=16)
inferred by 16S amplicons
through PICRUSt. Pathway
expression was transformed to
relative abundance for each
infant, checked for normality, and
then assessed for significance
using either t test or Wilcoxon
test. p values adjusted through
FDR were non-significant (NS).
Boxplots show the median and
IQR for each group, with circles
representing outliers for each
respective group

1125



Diabetologia  (2023) 66:1116–1128

influence of differences in bacterial metabolism. The
increased abundance of Firmicutes, primary producers of
butyrate in the gut, that we observed in control infants paral-
lels the increase in predicted acetyl-CoA fermentation to
butanoate II, an ester of butyrate. Butyrate promotes intestinal
homeostasis by inhibiting proinflammatory mediators and
increasing epithelial barrier function [45]. Additional SCFAs
are generated by fermentation of pyruvate to acetone, another
predicted pathway higher in the ABIS control cohort. These
predicted pathway differences confirm previous studies of at-
risk populations describing a decrease in butyrate-producing
bacteria with early onset of autoantibody development.
Impairment in epithelial barrier function, resulting from
reduced butyrate production, could prime an infant to the
faulty immune activation that is responsible for autoimmune
disorders such as type 1 diabetes by dislocation of antigens
into the systemic circulation [24–26].

Furthermore, SCFA metabolites interact with T cell
immunometabolism, a possible link to reported findings of
intestinal inflammation in children with type 1 diabetes, signi-
fying activation of mucosal innate and adaptive immunity
combined with impaired induction of regulatory T cells in
the small intestine [50]. Regulatory T cells participate in
immune system tolerance to the body’s antigens and ingested
antigens. When impaired, antigens may elicit an inappropriate
immune response, such as a humoral response (Th2) to food
allergens, through the secretion of IL-4, IL-5 and IL-13.
Autoimmune diseases are associated with a cell-mediated
(Th1) response through IL-2 and IFN-γ [51]. Regulatory T
cell dysfunction is necessary for disease but other factors
responsible for Th1 or Th2 imbalance determine the progres-
sion to autoimmunity or allergy. Altered gut microbiome
metabolism, through regulatory T cell impairment and a Th1
overbalance, could explain the pathophysiological mechanism
of previously proposed environmental factors, like dietary
antigens and enterovirus infection, and autoimmunity in type
1 diabetes. Not surprisingly, duration of total breastfeeding
and other dietary and environmental factors were found to
be confounders of binomial β diversity in this study. Thus,
control infants were carefully selected accordingly to be better
able to determine the microbiome composition and associated
functional SCFA pathways of 1-year-old infants with a future
type 1 diabetes diagnosis.

By nature of 16S rRNA classification, a single genus is
typically characterised by multiple ASVs. As expected with
bacterial strains, ASVs with significant findings in a particular
genus may differ in directional abundance. This could explain
discrepancies that are observed at the genus level. For
instance, Agathobacter had higher total abundance in control
infants but had a higher relative abundance in case infants.
This could be in part due to strain-level differences, as
Agathobacter-387 was directionally split across analyses
while Agathobacter-434 was observed to have higher total

and relative abundance in case infants. Anaerostipes, with a
higher total and relative abundance in control infants,
contained two significant core ASVs, separated by only two
nucleotides in the 16S rRNA: Anaerostipes-747, which was
more abundant in control infants; and Anaerostipes hadrus
719, which had split patterns of abundance. Whether these
strains behave differently in the microbiome is unknown but
this is an area for future investigation. The same observation
was made for Eggerthella and Eggerthella lenta-3665. The
contribution made by Eggerthella lenta-3665 to the core
microbiome differences (i.e. the MDA score) is much higher
than was observed at the genus level, suggesting that the six
other Eggerthella ASVs could be mitigating the impact of the
genus. These examples demonstrate the importance of inves-
tigating strain-level differences in the gut microbiome, espe-
cially with the potential variability of bacterial function that is
observed within a given genus.

A major strength of this investigation is the opportunity to
study the gut microbiome at infancy in a non-HLA-restricted
general population. Furthermore, extensive questionnaires
allow for study of and matching on environmental factors,
particularly those known to influence the microbiota or type
1 diabetes risk independently. While the sample size of the
type 1 diabetes group is relatively small (~1% of the cohort),
as expected in a general population cohort, the iterative
process of matching in this investigation was employed to
mitigate inherent differences in other factors mediating the
control group. The fact that significant differences in the
microbiota were observed, notwithstanding the iterative
matching criteria, is a strength.

In conclusion, although the mean age at which type 1
diabetes was diagnosed was more than a decade after sample
collection, at 1 year of age distinct microbial signatures were
identified, with parallel observations in reduced predicted
bacterial SCFA pathways. The autoimmune processes usually
begin long before the onset of overt symptoms of type 1
diabetes [52], illustrating how differences in microbiome
composition this early in life could shed important light on
the complex interaction between the developing immune
system, environmental exposures in childhood, and autoim-
munity. The possibility of preventing disease onset by altering
or promoting a ‘healthy’ gut microbiome is appealing.
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