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Altered blood gene expression in the obesity-related type 2 diabetes
cluster may be causally involved in lipid metabolism: a Mendelian
randomisation study
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Abstract
Aims/hypothesis The aim of this study was to identify differentially expressed long non-coding RNAs (lncRNAs) and mRNAs
in whole blood of people with type 2 diabetes across five different clusters: severe insulin-deficient diabetes (SIDD), severe
insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), mild diabetes (MD) and mild diabetes with high HDL-
cholesterol (MDH). This was to increase our understanding of different molecular mechanisms underlying the five putative
clusters of type 2 diabetes.
Methods Participants in the Hoorn Diabetes Care System (DCS) cohort were clustered based on age, BMI, HbA1c, C-peptide and
HDL-cholesterol. Whole blood RNA-seq was used to identify differentially expressed lncRNAs and mRNAs in a cluster
compared with all others. Differentially expressed genes were validated in the Innovative Medicines Initiative DIabetes
REsearCh on patient straTification (IMI DIRECT) study. Expression quantitative trait loci (eQTLs) for differentially expressed
RNAs were obtained from a publicly available dataset. To estimate the causal effects of RNAs on traits, a two-sample Mendelian
randomisation analysis was performed using public genome-wide association study (GWAS) data.
Results Eleven lncRNAs and 175 mRNAs were differentially expressed in the MOD cluster, the lncRNA AL354696.2 was
upregulated in the SIDD cluster and GPR15 mRNA was downregulated in the MDH cluster. mRNAs and lncRNAs that were
differentially expressed in the MOD cluster were correlated among each other. Six lncRNAs and 120 mRNAs validated in the
IMI DIRECT study. Using two-sample Mendelian randomisation, we found 52 mRNAs to have a causal effect on anthro-
pometric traits (n=23) and lipid metabolism traits (n=10). GPR146 showed a causal effect on plasma HDL-cholesterol
levels (p = 2×10–15), without evidence for reverse causality.
Conclusions/interpretation Multiple lncRNAs and mRNAs were found to be differentially expressed among clusters and partic-
ularly in theMOD cluster. mRNAs in theMOD cluster showed a possible causal effect on anthropometric traits, lipid metabolism
traits and blood cell fractions. Together, our results show that individuals in the MOD cluster show aberrant RNA expression of
genes that have a suggested causal role on multiple diabetes-relevant traits.
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Abbreviations
DCS Diabetes Care System
eQTL Expression quantitative trait locus
FDR False discovery rate
GWAS Genome-wide association study
IMI DIRECT Innovative Medicines Initiative DIabetes

REsearCh on patient straTification
IVW Inverse variance weighting
LD Linkage disequilibrium
lncRNA Long non-coding RNA
MARD Mild age-related diabetes
MD Mild diabetes
MDH Mild diabetes with high HDL-cholesterol
MR Mendelian randomisation
MOD Mild obesity-related diabetes
PP3/4 Posterior probability 3/4
SAID Severe autoimmune diabetes
SIDD Severe insulin-deficient diabetes
SIRD Severe insulin-resistant diabetes
QL Quasi-likelihood

Introduction

Individuals with diabetes are heterogenous as a group, urging
the need for further stratification [1]. It has been shown that
individuals with diabetes can be organised into five clusters
based on six clinical variables: age, GAD antibodies, BMI,
HbA1c, insulin resistance (HOMA2-IR) and beta cell function
estimates (HOMA2-B) [1].

Among these five clusters was one type 1 diabetes-like clus-
ter (severe autoimmune diabetes, SAID) and four type 2 diabe-
tes clusters, including an insulin-deficient cluster (severe
insulin-deficient diabetes, SIDD), an insulin-resistant cluster
(severe insulin-resistant diabetes, SIRD), an obesity-related
cluster (mild obesity-related diabetes, MOD) and a remaining
group with no extreme characteristics (mild age-related diabe-
tes, MARD). In our previous work we have further refined this
MARD cluster into two clusters based on low (mild diabetes,
MD) and high HDL-cholesterol levels (mild diabetes with high
HDL-cholesterol, MDH). These clusters are based on five clin-
ical variables: HbA1c, BMI, age, HDL-cholesterol and C-
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peptide [2]. We have also shown in our previous work that
these clusters not only show differences in their clinical char-
acteristics, but are also different on the lipid, protein and metab-
olite level [3].

Long non-coding RNAs (lncRNAs) are regulatory RNAs
with a length of more than 200 nucleotides. The majority of
the genome is comprised of non-coding RNAs, including
lncRNAs [4], which are not translated into functional protein.
lncRNAs are regulators of gene expression [5], for example
via mRNA decay, which directly affects the production of
proteins. There are multiple examples in which lncRNAs are
involved in regulation of pathways associated with the devel-
opment of diabetic complications [6–8].

While clusters differ in terms of clinical outcomes and
diabetes progression, their differences on the molecular level
are largely unclear. In our previous work we have shown that
the insulin-resistant cluster has higher levels of branched-
chain amino acids, diacylglycerol and triacylglycerol, and
aberrant protein levels in plasma were enriched for proteins
in the intracellular phosphoinositide 3-kinase (PI3K)/Akt
pathway [3]. In addition, the obesity-related cluster showed
higher cytokine levels. We hypothesise that these metabolic
differences are also reflected in whole blood gene expression
among individuals with type 2 diabetes assigned to one of the
five clusters. To address this, we investigated differences in
lncRNA and mRNA levels in whole blood of individuals with
type 2 diabetes assigned to one of the five previously identi-
fied clusters. We also investigated the genetic influences on
these mRNAs and the extent to which these lncRNAs and
mRNAs play a suggestive, causal role in diabetes-relevant
traits, such as lipid metabolism and anthropometric measures,
using two-sample Mendelian randomisation (MR).

Methods

Participants The Hoorn Diabetes Care System (DCS) cohort is
an open prospective cohort started in 1998 with individuals
with type 2 diabetes from the northwest part of the
Netherlands. People visit the DCS annually to monitor their
type 2 diabetes. Repeated measurements are collected as part
of routine care during this visit, including anthropometric and
lab measurements. Individuals in the Hoorn DCS cohort were
asked to participate in the Hoorn DCS biobank in which, after
obtaining informed consent, we also collected and stored
blood samples for future research. All laboratory measure-
ments were carried out on samples taken in a fasted state.
Details of the laboratory measurements have been described
in van der Heijden et al [9]. The study has been approved by
the Ethical Review Committee of the VU University Medical
Center, Amsterdam. Blood for RNA was collected in 2013
and 2014 from 1033 individuals who had participated in the
biobank previously, without any specific selection criteria.

From this group, 400 individuals were selected for RNA
sequencing based on the following criteria: age at onset
between 40 and 75 years; European descent; diabetes duration
less than 10 years; and estimated eGFR > 30 ml/min.

RNA isolation and sequencing Details of the RNA isolation
procedure and RNA sequencing have been described else-
where [10]. In short, RNA was isolated from whole blood
using the Direct-zol RNA MiniPrep (Zymo Research, Irvine,
CA, USA). RNA sequencing libraries were generated using
the Illumina Truseq v2 library preparation kit (Illumina, San
Diego, CA, USA). Libraries were paired-end sequenced using
the Illumina Hiseq2000. Reads were aligned to the genome
using STAR (v2.3.0) [11]. Expression, as read count per
RNA, was calculated using HTSeq (v0.6.1p1) with default
settings based on the Ensembl v71 annotation (corresponding
to GENCODE v16) [12, 13]. Counts were normalised using
trimmed mean of M-values (TMM). Sex was confirmed using
expression of XIST (chromosome X) and UTY (chromosome
Y). The final dataset comprised expression levels of 391 indi-
viduals. RNAs with very low counts across all samples were
filtered out.

Clusters Type 2 diabetes clusters were previously assigned by
Slieker et al [2]. In short, individuals with type 2 diabetes in
the DCS cohort were clustered based on five clinical variables:
age at first visit (years); BMI (kg/m2); HbA1c (mmol/mol); C-
peptide (nmol/l) and HDL-cholesterol (mmol/l). Clustering
was stratified by sex and were defined based on k-means.
The following five clusters were defined: an insulin-deficient
cluster (SIDD), an insulin-resistant cluster (SIRD), an obesity-
related cluster (MOD) and mild clusters with low HDL-
cholesterol levels (MD) and high HDL-cholesterol levels
(MDH). The final dataset comprised expression levels and
assigned clusters for 244 individuals.

Blood cell fractions Levels of neutrophils, lymphocytes,
monocytes, eosinophils and basophils were measured with a
UniCel DxH 800 Coulter Cellular Analysis System (Beckman
Coulter, Brea, CA, USA) and the FC 500 Series system
(Beckman Coulter) in all individuals with RNA-seq data.
The stats R package (v4.3.0) was used for a linear model,
adjusted for age and BMI to test for differences in white blood
cell fractions across clusters.

Statistical analysis Power calculations were performed with
the ssizeRNA R package (v1.3.2). For this we included the
total number of genes, the dispersion parameter and mean
count in the control group (mu). For the lncRNAs we have
sufficient power (80%) to detect fold change 1.55 at a sample
size of 26. For the mRNAs we have sufficient power (80%) to
detect fold change 1.3 at a sample size of 26. Differential
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expression analysis was performed using a quasi-likelihood
(QL) F test with the R package edgeR (v3.40.2). The base
model was adjusted for the first three principal components
of the blood cell fractions and technical covariates. We
tested one cluster vs the other four clusters. RNA was
considered differentially expressed if an observed differ-
ence between two conditions was statistically significant
based on a false discovery rate (FDR)-adjusted p value
below 0.05. A correlation heatmap between lncRNAs and
mRNAs was made using the Spearman's rank-order corre-
lation based on reads per kilobase per million mapped reads
(RPKM) values. Lasso regression was performed testing
each cluster separately with the R package glmnet (v4.1-
3). lncRNA and mRNA cis-expression quantitative trait
loci (eQTLs) were obtained from a publicly available
dataset described by Võsa et al [14]. eQTLs were consid-
ered cis-eQTLs if the gene was <1 Mb from the SNP. Cis-
eQTLs were considered significant at a p value below
5×10−8.

Traits associated with eQTLs were found in the publicly
available genome-wide association study (GWAS) datasets
IEU OpenGWAS [15]. The traits were divided into eight cate-
gories: anthropometry, lipid metabolism, cardiometabolic,
metabolite/protein, white blood cell fractions, red blood cells,
bone and other.

Two-sample MR To estimate the causal effect between
lncRNAs/mRNAs and traits a two-sample MR analysis was
performed using the TwoSampleMR R package (v0.5.6). To
obtain independent SNPs, clumping was performed, remov-
ing SNPs in linkage disequilibrium (LD) r2 <0.001. Traits
were used at a genome-wide level (p<5×10−8). The instrumen-
tal strength of each SNP was assessed using the F statistics =
(β/SE)2. The mean F statistic of the SNPs used as instruments
was reported and an F statistic >10 indicates a strong instru-
ment [16]. For single instruments, the Wald ratio test was
used: Wald estimates were calculated by dividing the SNP-
outcome by the SNP-exposure. In the case of multiple instru-
ments the inverse variance weighting (IVW) method was
used, which uses information on all instruments. A causal
association was statistically significant based on an FDR-
adjusted p value below 0.05. For IVW estimates heterogeneity
was calculated: a high heterogeneity indicates a high variance
across instruments suggestive of invalid instruments. For visu-
alisation of the MR results, a scatter plot for the effect of the
SNPs on the exposure against the effect of the SNPs on the
outcome was produced. A forest plot was used to visualise the
estimates of multiple instruments. A funnel plot was plotted to
visually assess heterogeneity and a leave-one-out plot to visu-
alise the MR estimates when leaving one instrument out. We
performed colocalisation analysis to assess pleiotropywith the
colocR package (v5.1.0.1). For this, we included all cis-acting

SNPs associated with the gene before clumping and p value
filtering. Next we determined the PP3 and PP4 posterior prob-
abilities and calculated the extent of pleiotropy based on a
threshold of PP4/(PP3+PP4) > 0.8 [17, 18]. We also perform-
ed colocalisation analyses as a sensitivity analyses for MR.
Given that many loci are not limited to one signal, we dissect-
ed the individual signals using the coloc.signals function from
the coloc R package (v5.1.0.1). For the colocalisation analyses
we used all SNPs associated with the gene in cis before
clumping and p value filtering. The coloc.signals function
was used with the following settings: method: conditioning,
mode: allbutone which allows testing of each signal without
the influence of other signals, p=5×10−8, r2=0.001, maximum
number of hits =5, prior probability P12 = 1×10–5.
Colocalisation was defined as the posterior probability of H4
(PP.H4) higher than 0.8. Finally, reverse causality was
assessed. For the above-described analyses we used the
TwoSampleMR R package (v0.5.6). All analyses were
performed using R statistics (v4.1.1). Figures were produced
using the R package NMF (v0.23.0) and ggplot2 (v3.3.5).

External validation (IMI DIRECT study) The Innovative
Medicines Initiative Diabetes ResearCh on patient straTification
(IMI DIRECT) study was used to validate the differentially
expressed RNAs. In IMI DIRECT, individuals with type 2 diabe-
tes from six cohorts were followed longitudinally. At baseline,
clinical measures and multi-omics were measured, includ-
ing RNA-seq (n=795). Details of the study design and the
core characteristics are provided elsewhere [19, 20]. Six
individuals were excluded based on DIRECT’s exclusion
criteria and seven individuals could not be clustered due to
missing data resulting in a dataset of 782 individuals.
Individuals with RNA-seq data were assigned to one of
the five clusters based on the cluster centres from DCS.
Differential expression analysis was performed in the same
way as described above. p values were Bonferroni adjusted
based on the number of significant genes from the discov-
ery dataset. A Bonferroni-adjusted p value below 0.05 was
considered significant. Similarity between the effect size of
the current study and IMI DIRECT study were calculated
with the Pearson correlation coefficient.

Results

Characteristics of individuals included in this study are given
in electronic supplementary material (ESM) Table 1. The
median (IQR) age of included individuals was 64.6 (57.7–
70.3) years and 44.3% of the population was female. The
population was overweight (median BMI: 29.3 [26.3–33.1]),
with well controlled HbA1c levels (median: 46.0 [42.0–52.3]
mmol/mol; 6.4% [6.0– 6.9%]). The median age of type 2

1060



Diabetologia  (2023) 66:1057–1070

diabetes diagnosis was 60.8 (54.0–66.5) years with a time
since diagnosis of 3.3 (2.1–4.7) years and 16.0% of the study
group smoked. As expected, the large majority (93.9%) were
treated with metformin, 31.1% with sulfonylureas and 11.5%
with insulin. Furthermore, 75.6% were treated with
cholesterol-lowering drugs.

All individuals with type 2 diabetes participating in the
Hoorn DCS biobank with sufficient data available for cluster-
ing (n=2953) were previously clustered based on the five clin-
ical variables: age (years), BMI (kg/m2), HbA1c (mmol/mol),
HDL-cholesterol (mmol/l) and C-peptide (nmol/l).
Characteristics of the subgroup used in this RNA-seq study
(n=244) matched that of the larger group (Fig. 1a–f). We
observed that the SIDD cluster defined by high HbA1c repre-
sented 11% (n=26) of the individuals (ESM Table 1). Twenty
per cent of the study population clustered to SIRD, 21% to
MOD, 27% to MD and 21% to MDH.

Blood cell fractions are not different across clusters To exam-
ine whether different amounts of white blood cells in blood of
individuals with type 2 diabetes are different across the clus-
ters and therefore could possibly influence our subsequent
analyses, we investigated blood cell fractions, including levels
of neutrophils, lymphocytes, monocytes, eosinophils and
basophils. In an unadjusted model we showed that neutrophil
levels were lower in the MD cluster. The lymphocyte levels
are higher in the SIRD cluster and lower in the MD cluster.
The monocyte levels were differentially expressed in every
cluster except in the MD cluster. In addition, the basophils
are lower in the MDH cluster. We included the age of the

individuals as an independent covariable owing to the fact that
age can contribute to the content of white blood cells in the
blood [21, 22]. In addition, BMIwas included as an independent
covariable owing to the fact that the white blood cell fractions are
associated with BMI [23, 24]. In the adjusted model we show
that the blood cell fractions are not differentially expressed across
the clusters (ESM Table 2). Despite that the differences between
the groups were relatively small, the first three principal compo-
nents were taken along in the models (ESM Fig. 1).

lncRNAs and mRNAs are differentially expressed in clusters
Out of the 574 lncRNAs expressed, we identified 12 lncRNAs
associated with the clusters (ESM Fig. 2). Eight lncRNAs were
upregulated in the MOD cluster compared with the other four
clusters: AC092490.1, LINC00570, RAB30-DT, AC079922.2,
AP000787.1, LINC02772, AL139220.2 and LINC00861 (Fig.
2a, ESM Fig. 3, ESM Table 3). The upregulated lncRNAs in
theMOD cluster correlated with BMI and C-peptide, which is in
line with the high BMI and low age and relatively lower levels of
HbA1c and HDL-cholesterol in theMOD cluster (Fig. 2e). Three
lncRNAs were downregulated in the MOD cluster: NORAD,
FGD5-AS1 and LINC02289 (Fig. 2a) and these lncRNAs corre-
lated with age and HDL-cholesterol (ESM Fig. 4, Fig. 2e). On
the basis of lasso regression, six out of 11 lncRNAswere selected
for the MOD cluster (ESM Table 4). The lncRNA AL354696.2
was upregulated in the SIDD cluster and was also selected for
this cluster (ESMTable 4). TheMODcluster was also the cluster
with the most significant differentially expressed mRNAs. In
total 175 mRNAs were differentially expressed in the MOD
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Fig. 1 The characteristics of the five type 2 diabetes clusters. (a) Pie
diagram of five clusters in the DCS Hoorn study (n=244). (b–f) The
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used to cluster type 2 diabetes patients in five clusters: SIDD, SIRD,
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participated in this study. Boxplot shows median, 25th percentile and
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cluster, 118 were upregulated and 57 downregulated (Fig. 2b,
ESM Fig. 5, ESM Table 5). The upregulated mRNAs in the
MOD cluster correlated with BMI, weight and C-peptide, which
is in line with the high BMI and low age and relatively lower
levels of HbA1c and HDL-cholesterol in the MOD cluster. The
downregulated mRNAs in the MOD cluster correlated with age
and HDL-cholesterol (Fig. 2f). On the basis of lasso regression
we found that 18 out of 175 mRNAs were selected for theMOD
cluster (ESM Table 6). GPR15 was the only mRNA different in
the MDH cluster and was downregulated and correlated with
length (Spearman’s ρ 0.19) and HbA1c (Spearman’s ρ 0.11).
GPR15 is a chemoattractant receptor that regulates T cell migra-
tion and immunity [25].GPR15 has previously been described to

�Fig. 2 Differentially expressed RNAs in the MOD type 2 diabetes
cluster. (a) Volcano plot of differentially expressed lncRNAs in the
MOD cluster. (b) Volcano plot of differentially expressed mRNAs in
the MOD cluster. (c) Expression (RPKM) of the lncRNA AC092490.1
against the five clusters. Boxplot shows median, 25th percentile and 75th
percentile. (d) Expression (RPKM) of NPRL3 mRNA against the five
clusters. Boxplot shows median, 25th percentile and 75th percentile. (e)
Correlation heatmap of differentially expressed lncRNAs and clinical and
biochemical characteristics. (f) Correlation heatmap of differentially
expressed mRNAs and clinical and biochemical characteristics. (g)
Correlation heatmap of differentially expressed lncRNAs and mRNAs
in the MOD cluster. (e–g) The Spearman correlation coefficient is
shown. Data were log10 transformed and Z-scaled
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five type 2 diabetes clusters in the IMI DIRECT study: age, BMI, HbA1c,
HDL-cholesterol and C-peptide. Boxplot shows median, 25th percentile

and 75th percentile. (g) Effect size plot of differentially expressed
lncRNAs from the current study (DCS Hoorn) and the IMI DIRECT
study. (h) Effect size plot of differentially expressed mRNAs from the
current study (DCS Hoorn) and the IMI DIRECT study
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be induced in individuals that smoke compared with non-
smokers [26, 27]. Indeed, in the MDH cluster the percentage of
smokers (percentage 3.8%) was much lower compared with
other clusters (percentage 16%). Interestingly, this is particularly
low compared with the MD cluster where 28.4% smoked. To
verify that GPR15 expression is influenced by smoking status,
GPR15 was plotted against individuals that never smoked,
former smokers and smokers (ESM Fig. 6). We observed that
the expression of GPR15 was very low for individuals who had
never smoked compared with individuals who were former
smokers (p=2×10−9) and even more to smokers (p=1×10−22).
After adjustment for BMI, the differentially expressed mRNAs
are completely eliminated in the MOD cluster. Adjustment for
age and sex resulted in similar differentially expressed lncRNAs
and mRNAs (ESM Fig. 7).

Next, we investigated the pairwise correlation between the
differently expressed lncRNAs and mRNAs in the MOD clus-
ter (ESM Table 7). We observed that lncRNAs (LINC00570,
LINC02772, AC092490.1,NORAD, FGD5-AS1, LINC00861,
AP000787.1 and AC079922.2) strongly correlated with multi-
ple mRNAs (Fig. 2g). The top ten positively correlated
lncRNAs and mRNAs had a correlation coefficient between
0.93 and 0.84 and the top negatively correlated ranged from
−0.76 and −0.61 (ESM Table 8). This correlation is visualised
in the scatterplot of the top three positive and negative corre-
lations (ESM Fig. 8). Pathway analysis did not yield any
significantly enriched pathways (data not shown).
Interestingly, genes identified in the current study showed an
overlap (110 genes) with BMI-associated genes [28]. Of note,
in the current study we identify 65 additional genes that were
not observed in this external study (ESM Fig. 9, ESM
Table 9).

External validation (IMI DIRECT study) Characteristics of
individuals from the IMI DIRECT study are given in
ESM Table 1. Characteristics of the IMI DIRECT study
matched that of the discovery set (Fig. 3a–f). In the
current study (DCS Hoorn), 11 lncRNAs were differen-
tially expressed in the MOD cluster. Two of these were
not available in the RNA-seq data of the IMI DIRECT
study, six were validated based on the Bonferroni-
adjusted p value and three were not validated (ESM
Table 10). The lncRNA found to be upregulated in the
SIDD cluster in the current study was not available in
the IMI DIRECT data. The nine lncRNAs available in
the IMI DIRECT study had similar effect sizes in the
current study (DCS Hoorn) and the IMI DIRECT study
(Pearson’s ρ 0.93, p=3.3×10-4) (Fig. 3g).

In total 175 mRNAs were found to be differentially
expressed in the MOD cluster of the current DCS Hoorn
study, one of these was not available in the RNA sequencing
data of the IMI DIRECT study, 119 mRNAs were validated

based on the Bonferroni-adjusted p value whereas 55 were not
validated. GPR15 was also downregulated in the MDH clus-
ter, based on the Bonferroni-adjusted p value, in the IMI
DIRECT study (ESM Table 11). One hundred and seventy-
five mRNAs had a similar effect size in the current study
(DCS Hoorn) and the IMI DIRECT study (Pearson’s ρ 0.85,
p=2.2×10-16) (Fig. 3h). We continued the analysis with the
Bonferroni significant lncRNAs and mRNAs in both the
discovery and replication cohorts.

Differentially expressed mRNAs in the MOD cluster may have
a causal role To investigate the role these lncRNAs and
mRNAsmay have on related traits, cis-expression quantitative
trait loci (cis-eQTLs) were selected from a previously
published dataset [14]. The cis-eQTLs were compared with
published GWASs in the IEU OpenGWAS database [15]. In
total, one cis-eQTL was associated with the expression of one
lncRNA and 207 cis-eQTLs were associated with the expres-
sion of 103 mRNAs after clumping SNPs that are in LD (r2

<0.001). The range of the mean F statistics of the SNPs used
as instruments was 43.2–2113.4, indicating strong instru-
ments. Multiple mRNAs were found to be associated with
anthropometric, lipid metabolism and blood cell fraction
traits. Next, we wanted to estimate the causal association these
mRNAs may have on the traits found with the IEU
OpenGWAS database. A two-sample MR test was performed
(ESM Table 12). A chord diagram based on FDR-adjusted
p values of the MR results on the lncRNAs and mRNAs and
related traits is shown in Fig. 4. In total 52 mRNAs were
shown to have a suggestive causal effect on 217 traits that
related to anthropometric, lipid and blood cell fraction traits.

Twenty-three mRNAs were causally associated with
anthropometric traits (Fig. 4). We found that KCNH2 showed
the strongest causal effect on anthropometric traits: the trunk
fat-free mass and trunk predicted mass (IVW, 2 SNPs,
p=8×10−22) (ESM Table 12). Higher genetically determined
levels of KCNH2 are suggested to reduce trunk fat-free mass
(ESM Fig. 10a, ESM Fig. 11). We found no evidence for
heterogeneity (Q=0.74, p=0.39), pleiotropy (5×10−5) and
reverse causality (p=0.96) (ESM Table 12). This causal effect
was not supported by colocalization analyses (PP.H4=0)
(ESM Table 12). Six mRNAs showed a causal effect on
BMI, however five causal associations are based on one
instrument.

Ten mRNAs were causally associated with all lipid
metabolism traits, some mRNAs were causally associated
with almost all lipid metabolism traits, and others were only
causally associated with one type of lipid trait, for example
LDL-cholesterol (Fig. 4). We observed that GRINA had the
strongest causal effect on LDL-cholesterol (IVW, 2 SNPs,
p=2×10−31) (ESM Fig. 12). Higher genetically determined
levels of GRINA are suggested to reduce LDL-cholesterol
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levels in plasma (ESM Fig. 10b, ESM Fig. 12). This causal
ef fec t was suppor ted by colocal iza t ion analys is
(PP.H4=0.99) (ESM Table 12). We found no evidence for
heterogeneity (Q=0.30, p=0.58), pleiotropy (4×10−3), nor
for reverse causality (p=0.92) (ESM Table 12). GRINA was
found to have a strong correlation with two lncRNAs, one
of which was also upregulated in the MOD cluster:
LINC00570 (Spearman’s ρ 0.54) and one downregulated
in the MOD cluster: NORAD (Spearman’s ρ −0.57) (ESM
Fig. 13). GRINA also has a suggested causal effect on
platelets (IVW, 2 SNPs, p=2×10−82) (ESM Table 12).
Furthermore, GPR146 had the strongest causal effect on
HDL-cholesterol (IVW, 2 SNPs, p=2×10−15) (ESM
Fig. 14). Higher genetically determined levels of GPR146

are suggested to induce higher levels of HDL-cholesterol in
plasma (ESM Fig. 10c, ESM Fig 14). This causal effect was
supported by colocalization analysis (PP.H4=0.99) (ESM
Table 12). Again we found no evidence for heterogeneity
(Q=0.86, p=0.35), pleiotropy (2×10−4) and reverse causal-
ity (p=0.81) (ESM Table 12).

Nineteen mRNAs had a causal effect on white blood cell
fractions (Fig. 4). CEBPE has a causal effect on almost every
white blood cell (basophil, eosinophil, granulocyte, monocyte
and neutrophil), based on the Wald ratio with one instrument
(ESM Table 12). These causal effects were supported by
colocalization analyses (PP.H4>0.8) (ESM Table 12). We
could not test for heterogeneity based on one instrument;
however, we found evidence for reverse causality on
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eosinophil (p=5×10−26) and neutrophil fractions (p=8×10−11)
(ESM Table 12). Furthermore, strong evidence for pleiotropy
was found. MARK3 showed a causal effect on monocyte cell
count (IWV, 3 SNPs, p=2×10−159) (ESM Fig. 15). This was
supported by colocalization analysis (PP.H4=0.99) (ESM
Table 12). Higher genetically determined levels of MARK3
are suggested to reduce monocyte levels in plasma (ESM
Fig. 10d, ESM Fig. 15). We found no evidence for heteroge-
neity (Q=0.43, p=0.80) nor reverse causality (p=0.99).
However, we found evidence for pleiotropy (0.99) (ESM
Table 12). We also found 20 mRNAs that had a causal asso-
ciation with red blood cells (Fig. 4). Based on the Wald ratio
with one instrument KANK2 had the highest causal effect on
reticulocyte traits (p=4×10−227); however, we found evidence
for pleiotropy (0.95) and reverse causality (p=0.01) (ESM
Table 12). With the IVW method based on three instruments
we found that DNAJA4 has a causal effect on the reticulocyte
count (p=4×10−18) (ESM Fig. 16). Higher genetically deter-
mined levels ofDNAJA4 are suggested to induce higher levels
of reticulocytes (ESM Fig. 10e, ESM Fig. 16). Here we found
no evidence for heterogeneity (Q=1.53, p=0.47), pleiotropy
(9×10−7) nor reverse causality (p=0.95). However, this
suggested causal effect was not supported by colocalisation
analysis (PP.H4=0) (ESM Table 12).

Discussion

The aim of this study was to identify differentially expressed
RNAs in blood of patients with type 2 diabetes in five previ-
ously defined clusters. In the current study, we show that
lncRNAs and mRNAs are differentially expressed primarily
in MOD, and much less often in other clusters. In total, 11
lncRNAs and 175 mRNAs were differentially expressed in
the MOD cluster. In addition, the lncRNA AL354696.2 was
upregulated in the SIDD cluster and GPR15 mRNA was
downregulated in the MDH cluster. Of those, six lncRNAs
and 120 mRNAs were validated in the IMI DIRECT study.
A strong correlation was observed between the lncRNAs and
mRNAs found in the MOD cluster, suggesting a possible
relation between them. Interestingly, we showed that the
expression of specific genes may have a causal role on multi-
ple traits linked to anthropometrics, lipid metabolism and
blood cell fractions.

Using the five clusters, almost all identified RNAs showed
aberrant expression in the MOD cluster. We show that this
subgroup, comprised of people with diabetes and a high BMI,
have an altered blood transcriptome profile compared with the
other clusters. A possible explanation for the profound differ-
ences in MOD vs other clusters may be that obesity is associ-
ated with low-grade inflammation [29, 30]. Even though this
generally occurs within metabolic tissues, our results suggest

that changes may also occur in the expression levels of circu-
lating blood cells, which we observed previously as well [10].

The identified lncRNAs correlated with the expression
of specific mRNAs. It has previously been described that
lncRNAs regulate a wide range of biological processes
through their crosstalk with miRNAs that, in turn, regulate
mRNAs [31]. This suggests that target mRNA would play a
role in the same pathway, but we did not observe such an
enrichment. However, in the two-sample MR we showed
that many of the identified genes do not play a role in a
single pathway but in several very distinct processes, for
example lipid metabolism and blood cell fractions.

A two-sample MR analysis was used to evaluate a possi-
ble causal relation between whole blood RNAs that were
differentially expressed in the MOD cluster and traits. For
the anthropometric traits, we found a suggestive causal
relationship for 23 mRNAs. Among them, KCNH2 was
found to be upregulated in the MOD cluster and is
suggested to reduce the trunk fat-free mass. The fat-free
mass is a marker of body muscle development. KCNH2
encodes a voltage-activated potassium channel that has
been mainly indicated as playing a role in long QT
syndrome [32, 33]. Obesity is associated with long QT
syndrome, where it is suggested to decrease expression of
potassium channels [34].

Twelve mRNAs were suggested to have a causal effect on
lipid metabolism. We found that higher GRINA expression is
suggested to reduce LDL-cholesterol levels in plasma.GRINA
is also suggested to have a causal effect on platelets (ESM
Table 12). This indicates pleiotropy; however, LDL-
cholesterol and platelets interact with each other. Oxidised
(ox)-LDL leads to platelet activation and the activated plate-
lets produce reactive oxygen species, which can oxidise LDL-
cholesterol again [35]. Jiménez-González et al suggested that
GRINA may regulate genes involved in lipid and cholesterol
synthesis [36]. For example, GRINA has been shown to inter-
act with SREBP1 in Caenorhabditis elegans [37, 38].
SREBP1 and SREBP2 are both regulators of lipid biosynthesis
[39]. They control the expression of several enzymes neces-
sary for cholesterol, fatty acid, triacylglycerol and phospho-
lipid synthesis [40]. Interestingly, SREBP1 can also activate
gene expression of FDPS and FDFT1, which were also found
to be upregulated in the MOD cluster (ESM Table 5) [41–47].
FDPS encodes a gene that facilities the formation of farnesyl
pyrophosphate, which is a key intermediate in cholesterol
biosynthesis [48]. The FDFT1 gene also plays a role in a later
stage of the sterol and cholesterol biosynthesis [49]. It encodes
a membrane-associated enzyme that is the first specific
enzyme in cholesterol biosynthesis, catalysing the
dimerisation of two molecules of farnesyl diphosphate in a
two-step reaction to form squalene [50]. This suggests that
multiple aberrant RNAs in the MOD cluster play a role in
cholesterol synthesis.
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One of the striking genes wasGPR146, for which we show
that higher expression was suggested to increase HDL-
cholesterol levels in plasma. While higher HDL-cholesterol
levels in the MOD cluster may seem counterintuitive—
HDL-cholesterol levels are lowest in the MOD cluster—
previous reports have shown that there is an overall change
in lipid homeostasis in relation to GPR146. Specifically,
GPR146 regulates plasma cholesterol levels through the sterol
regulatory element-binding protein 2 (SREBP2) signalling
pathway and ERK signalling [51]. Increased expression of
GPR146 has been shown to be associated with increased plas-
ma total cholesterol levels in humans [52–54]. In line with
these findings Yu et al found that the HDL-cholesterol,
LDL-cholesterol, VLDL-cholesterol and total cholesterol
levels were reduced in GPR146 deficient mice. The latter
study suggests that GPR146 may be a new therapeutic target
to treat hypercholesterolemia and atherosclerotic cardiovascu-
lar disease, whereby the cholesterol levels are too high and
build up in the artery wall [51].

We identified a causal relationship between mRNAs and
white blood cell fractions. CEBPE was found to be causally
associated with almost all white blood cell fractions. CEBPE
is essential for functional maturation of granulocyte–
monocyte progenitor cells [55]. However, strong pleiotropy
was observed, which indicates that a single genetic variant
influences multiple traits.

In addition, 20 mRNAs were causally associated with red
blood cell traits. However, in these groups we also observed
the largest reverse causality. This suggests that differences in
blood cell fractions affects gene expression in the MOD clus-
ter. Nonetheless, we observed minimal differences in white
blood cell fractions between the clusters and adjusted for
them, although the differences may be more prominent in
specific blood cell subtypes.

We previously looked at plasma metabolomic, lipidomic
and proteomic data in the five clusters [3]. We showed that
the insulin-resistant cluster (SIRD) showed the most aber-
rant molecular signature with the highest lipid levels.
However, we did not observe such an enrichment in the
SIRD cluster in the current study. We also showed previ-
ously that the obesity-related cluster has a similar molecular
signature to the SIRD cluster, but with higher cytokine
levels. Interestingly, growth hormone receptor, which we
previously showed to be upregulated in the MOD cluster,
has been shown to interact with PTPN11 [56, 57], which
was differentially expressed in the MOD cluster in the
current study. In addition, the lipid profile and differentially
expressed proteins strongly reduced after adjustment for
BMI, which is in line with our findings. This study shows
that clustering individuals with type 2 diabetes can identify
underlying novel biological insights into the diverse path-
ophysiological mechanisms and underlying phenotypes of
the clusters, which we show also occurs in circulating blood

cells. Here we show that obesity or higher BMI is the driv-
ing force behind the differentially expressed RNAs in the
circulating blood cells. However, based on the findings by
Huan et al, where they found mRNA expression levels
associated with BMI, 110 mRNAs overlap with the 175
mRNAs found to be differentially expressed in the MOD
cluster in the current study [28]. Moreover, 65 mRNAs did
not overlap between the BMI-associated mRNAs from
Huan et al and the 175 mRNAs found to be differentially
expressed in this study, and therefore they seem to be type 2
diabetes MOD cluster-specific.

GPR15 was downregulated in the MDH cluster. It has
been described that tobacco smoking is a strong inducer
of GPR15 expression in peripheral blood [58]. In the
MDH cluster on average fewer individuals smoke than
the other clusters, which was associated with downregu-
lated expression of GPR15. Therefore, it seems that low
GPR15 expression seen in the MDH cluster results from
the lower smoking levels in this group. Individuals in the
MOD cluster have on average the highest BMI, which
could be the reason for the higher numbers of differently
expressed RNAs in that cluster. We found different
mRNAs to have a causal effect on multiple lipid metabo-
lism traits such as total cholesterol, LDL-cholesterol and
HDL-cholesterol; although this might seem to indicate
that differentially expressed mRNAs in the MOD cluster
are not only driven by the high BMI, this difference was
completely eliminated after adjustment for BMI.

We show that the diabetes subgroup comprised people with
a high BMI (the MOD cluster) have an altered blood tran-
scriptome profile compared with the other clusters, which
supports the idea of a different underlying pathophysiological
process for each cluster. It has been suggested that clustering
individuals with type 2 diabetes based on the five variables
may not give a greater clinical utility than modelling clinical
features directly [59]. Indeed, in part, the observed changes
will be driven by the high BMI in the cluster. Nonetheless, we
and others have shown that the other clusters also have their
own genetic, metabolomic, proteomic and epigenetic signa-
tures [3, 60, 61]. Despite its caveats, the clusters may help to
further stratify people with diabetes and provide a more holis-
tic view of type 2 diabetes [62].

This study has several strengths and weaknesses. Strengths
include the use of a well phenotyped cohort. The external
validation of the results found in this study, which further
establishes the heterogeneity of these type 2 diabetes clusters,
is also a strength. A weakness is that the sample size for each
of the clusters was relatively small to detect small differences
between clusters. In the SIDD cluster, we only had enough
power to detect larger effect sizes. However, we did not see a
relationship between the number of individuals in a cluster
and the number of differentially expressed RNAs. Another
potential weakness was the use of a relative complex tissue,
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where results may be driven by differences in blood cell frac-
tions. However, we mitigated this by adjusting for blood cell
composition based on measured blood cell fractions. We
performed MR, which is independent of the confounders
that influence whole blood gene expression. Also, we
observed that a large number of the causal associations
are based on one instrument, which is less reliable then
using multiple instruments. However, we mainly looked
at causal associations based on two or more instruments,
which increases reliability, explained variance and power.
In addition, we used colocalization analysis as a sensitivity
analyses for the significant MR results.

Conclusion In the current study we identified 11 lncRNAs and
175 mRNAs to be differentially expressed in the MOD clus-
ter. Strong correlation was observed between lncRNAs and
mRNAs differentially expressed in the MOD cluster.
Differentially expressed genes were validated for the large
part in the IMI DIRECT study. Multiple mRNAs are
suggested to have a causal effect on multiple traits linked to
anthropometrics, lipid metabolism and blood cell fractions.
Together, our results show that individuals in theMOD cluster
show aberrant RNA expression of genes that have a suggested
causal role on multiple diabetes-relevant traits.
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Acknowledgements We thank M. Nannings (DCS West Friesland, Hoorn,
the Netherlands) for the excellent technical assistance and P. van ’t Hof
(Sequencing Analysis Support Core, Leiden University Medical Center, the
Netherlands) for bioinformatics support. We thank all the participants and
study centre staff in IMI DIRECT for their contribution to the study.

Data availability Individual level data will be available upon request by
contacting the corresponding author but access to data must be granted by
the respective steering committee.

Funding This work has been funded by BBMRI-NL (Complementary
project, CP2013-69), ZonMW Priority Medicine Elderly (grant no.
113102006 to LMtH). RCS, LMtH and JWJB received support from
the Innovative Medicines Initiative 2 Joint Undertaking under grant
agreement no. 115881 (RHAPSODY). This Joint Undertaking receives
support from the European Union’s Horizon 2020 research and innova-
tion programme and European Federation of Pharmaceutical Industries
and Associations (EFPIA) and is supported by the Swiss State Secretariat
for Education‚ Research and Innovation (SERI) under contract no.
16.0097-2. The work leading to this publication has received support
from the Innovative Medicines Initiative Joint Undertaking under grant
agreement no. 115317 (DIRECT), resources of which are composed of
financial contribution from the European Union's Seventh Framework
Programme (FP7/2007-2013) and EFPIA companies’ in kind contribu-
tion. Information on the project can be found at https://www.direct-
diabetes.org/. RB and AJvZ were supported by funding of the European
Foundation for the Study of Diabetes. The opinions expressed and
arguments employed herein do not necessarily reflect the official views
of these funding bodies. JAdK was supported by the Medical Genomics
research theme at Leiden University Medical Centre.

Authors’ relationships and activities JWJB is a member of the Editorial
Board of Diabetologia. The authors declare that there are no other rela-
tionships or activities that might bias, or be perceived to bias, their work.

Contribution statement JAdK, LM’tH and RCS designed the study and
drafted the manuscript. JAdK and RCS performed the analyses. JWJB,
PJME and LM’tH contributed to the data acquisition and project logistics.
HM was involved in the preprocessing of the RNA sequencing data. All
authors contributed to the data interpretation. All authors critically revised
the manuscript and approved the final version. JAdK and RCS are the
guarantors of the work.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ahlqvist E, Storm P, Karajamaki A et al (2018) Novel subgroups of
adult-onset diabetes and their association with outcomes: a data-
driven cluster analysis of six variables. Lancet Diabetes
Endocrinol 6(5):361–369. https://doi.org/10.1016/S2213-8587(18)
30051-2

2. Slieker RC, Donnelly LA, Fitipaldi H et al (2021) Replication and
cross-validation of type 2 diabetes subtypes based on clinical vari-
ables: an IMI-RHAPSODY study. Diabetologia 64(9):1982–1989.
https://doi.org/10.1007/s00125-021-05490-8

3. Slieker RC, Donnelly LA, Fitipaldi H et al (2021) Distinct molec-
ular signatures of clinical clusters in people with type 2 diabetes: an
IMI-RHAPSODY study. Diabetes 70(11):2683–2693. https://doi.
org/10.2337/db20-1281

4. Zhang P, Wu W, Chen Q, Chen M (2019) Non-coding RNAs and
their integrated networks. J Integr Bioinform 16(3):20190027.
https://doi.org/10.1515/jib-2019-0027

5. Zhang X, Wang W, ZhuW et al (2019) Mechanisms and functions
of long non-coding RNAs at multiple regulatory levels. Int J Mol
Sci 20(22):5573. https://doi.org/10.3390/ijms20225573

6. Leung A, Natarajan R (2018) Long noncoding RNAs in diabetes
and diabetic complications. Antioxid Redox Signal 29(11):1064–
1073. https://doi.org/10.1089/ars.2017.7315

7. Hu M, Ma Q, Liu B et al (2022) Long non-coding RNAs in the
pathogenesis of diabetic kidney disease. Front Cell Dev Biol 10:
845371. https://doi.org/10.3389/fcell.2022.845371

8. Tanwar VS, Reddy MA, Natarajan R (2021) Emerging role of long
non-coding RNAs in diabetic vascular complications. Front
Endocrinol (Lausanne) 12:665811. https://doi.org/10.3389/fendo.
2021.665811

9. van der Heijden AA, Rauh SP, Dekker JM et al (2017) The Hoorn
Diabetes Care System (DCS) cohort. A prospective cohort of
persons with type 2 diabetes treated in primary care in the
Netherlands. BMJ Open 7(5):e015599. https://doi.org/10.1136/
bmjopen-2016-015599

1068

https://doi.org/10.1007/s00125-023-05886-8
https://doi.org/10.1007/s00125-023-05886-8
https://doi.org/
https://doi.org/
https://doi.org/10.1016/S2213-8587(18)30051-2
https://doi.org/10.1016/S2213-8587(18)30051-2
https://doi.org/10.1007/s00125-021-05490-8
https://doi.org/10.2337/db20-1281
https://doi.org/10.2337/db20-1281
https://doi.org/10.1515/jib-2019-0027
https://doi.org/10.3390/ijms20225573
https://doi.org/10.1089/ars.2017.7315
https://doi.org/10.3389/fcell.2022.845371
https://doi.org/10.3389/fendo.2021.665811
https://doi.org/10.3389/fendo.2021.665811
https://doi.org/10.1136/bmjopen-2016-015599
https://doi.org/10.1136/bmjopen-2016-015599


Diabetologia  (2023) 66:1057–1070

10. Slieker RC, van der Heijden A, van Leeuwen N et al (2018) HbA1c

is associated with altered expression in blood of cell cycle- and
immune response-related genes. Diabetologia 61(1):138–146.
https://doi.org/10.1007/s00125-017-4467-0

11. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast
universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://
doi.org/10.1093/bioinformatics/bts635

12. HTSeq. Available from https://htseq.readthedocs.io/en/master/.
Accessed 31 January 2023

13. GENCODE. Available from https://www.gencodegenes.org/.
Accessed 31 January 2023

14. Võsa U, Claringbould A, Westra HJ et al (2021) Large-scale cis-
and trans-eQTL analyses identify thousands of genetic loci and
polygenic scores that regulate blood gene expression. Nat Genet
53(9):1300–1310. https://doi.org/10.1038/s41588-021-00913-z

15. IEU OpenGWAS. Available from https://gwas.mrcieu.ac.uk/.
Accessed 20 April 2022

16. Brion MJ, Shakhbazov K, Visscher PM (2013) Calculating statis-
tical power in Mendelian randomization studies. Int J Epidemiol
42(5):1497–1501. https://doi.org/10.1093/ije/dyt179

17. Zhang X, Veturi Y, Verma S et al (2019) Detecting potential plei-
otropy across cardiovascular and neurological diseases using
univariate, bivariate, and multivariate methods on 43,870 individ-
uals from the eMERGE network. Pac Symp Biocomput 24:272–
283

18. Bone WP, Siewert KM, Jha A et al (2021) Multi-trait association
studies discover pleiotropic loci between Alzheimer's disease and
cardiometabolic traits. Alzheimers Res Ther 13(1):34. https://doi.
org/10.1186/s13195-021-00773-z

19. Koivula RW, Forgie IM, Kurbasic A et al (2019) Discovery of
biomarkers for glycaemic deterioration before and after the onset
of type 2 diabetes: descriptive characteristics of the epidemiological
studies within the IMI DIRECT Consortium. Diabetologia 62(9):
1601–1615. https://doi.org/10.1007/s00125-019-4906-1

20. Koivula RW, Heggie A, Barnett A et al (2014) Discovery of
biomarkers for glycaemic deterioration before and after the onset
of type 2 diabetes: rationale and design of the epidemiological
studies within the IMI DIRECT Consortium. Diabetologia 57(6):
1132–1142. https://doi.org/10.1007/s00125-014-3216-x

21. Valiathan R, AshmanM, Asthana D (2016) Effects of ageing on the
immune system: infants to elderly. Scand J Immunol 83(4):255–
266. https://doi.org/10.1111/sji.12413

22. Aminzadeh Z, Parsa E (2011) Relationship between age and periph-
eral white blood cell count in patients with sepsis. Int J Prev Med
2(4):238–242

23. Johannsen NM, Priest EL, Dixit VD, Earnest CP, Blair SN, Church
TS (2010) Association of white blood cell subfraction concentration
with fitness and fatness. Br J Sports Med 44(8):588–593. https://
doi.org/10.1136/bjsm.2008.050682

24. Furuncuoglu Y, Tulgar S, Dogan AN, Cakar S, Tulgar YK,
Cakiroglu B (2016) How obesity affects the neutrophil/
lymphocyte and platelet/lymphocyte ratio, systemic immune-
inflammatory index and platelet indices: a retrospective study.
Eur Rev Med Pharmacol Sci 20(7):1300–1306

25. Bauer M, Fink B, Seyfarth HJ, Wirtz H, Frille A (2017) Tobacco-
smoking induced GPR15-expressing T cells in blood do not indi-
cate pulmonary damage. BMC Pulm Med 17(1):159. https://doi.
org/10.1186/s12890-017-0509-0

26. Koks G, Uudelepp ML, Limbach M, Peterson P, Reimann E, Koks
S (2015) Smoking-induced expression of the GPR15 gene indicates
its potential role in chronic inflammatory pathologies. Am J Pathol
185(11):2898–2906. https://doi.org/10.1016/j.ajpath.2015.07.006

27. Koks S, Koks G (2017) Activation of GPR15 and its involvement
in the biological effects of smoking. Exp Biol Med (Maywood)
242(11):1207–1212. https://doi.org/10.1177/1535370217703977

28. Huan T, Liu C, Joehanes R et al (2015) A systematic heritability
analysis of the human whole blood transcriptome. Hum Genet
134(3):343–358. https://doi.org/10.1007/s00439-014-1524-3

29. Pereira SS, Alvarez-Leite JI (2014) Low-grade inflammation,
obesity, and diabetes. Curr Obes Rep 3(4):422–431. https://doi.
org/10.1007/s13679-014-0124-9

30. Abdelaal M, le Roux CW, Docherty NG (2017) Morbidity and
mortality associated with obesity. Ann Transl Med 5(7):161.
https://doi.org/10.21037/atm.2017.03.107

31. Lopez-Urrutia E, Bustamante Montes LP, Ladron de Guevara
Cervantes D, Perez-Plasencia C, Campos-Parra AD (2019)
Crosstalk between long non-coding RNAs, Micro-RNAs and
mRNAs: deciphering molecular mechanisms of master regulators
in cancer. Front Oncol 9:669. https://doi.org/10.3389/fonc.2019.
00669

32. Zha K, Ye Q (2021) A novel mutation in the KCNH2 gene associ-
ated with long QT syndrome: A case report. Ann Clin Lab Sci
51(2):258–261

33. Ono M, Burgess DE, Schroder EA et al (2020) Long QT syndrome
type 2: emerging strategies for correcting class 2 KCNH2 (hERG)
mutations and identifying new patients. Biomolecules 10(8):1144.
https://doi.org/10.3390/biom10081144s

34. Haddock RE, Grayson TH, Morris MJ, Howitt L, Chadha PS,
Sandow SL (2011) Diet-induced obesity impairs endothelium-
derived hyperpolarization via altered potassium channel signaling
mechanisms. PLoS One 6(1):e16423. https://doi.org/10.1371/
journal.pone.0016423

35. Gasecka A, Rogula S, Szarpak L, Filipiak KJ (2021) LDL-
cholesterol and platelets: insights into their interactions in athero-
sclerosis. Life (Basel) 11(1):39. https://doi.org/10.3390/
life11010039

36. Jiménez-González V, Ogalla-Garcia E, Garcia-Quintanilla M,
Garcia-Quintanilla A (2019) Deciphering GRINA/Lifeguard1:
nuclear location, Ca2+ homeostasis and vesicle transport. Int J
Mol Sci 20(16):4005. https://doi.org/10.3390/ijms20164005

37. Li S, Armstrong CM, Bertin N et al (2004) A map of the interac-
tome network of the metazoan C. elegans. Science 303(5657):540–
543. https://doi.org/10.1126/science.1091403

38. Simonis N, Rual JF, Carvunis AR et al (2009) Empirically
controlled mapping of the Caenorhabditis elegans protein-protein
interactome network. Nat Methods 6(1):47–54. https://doi.org/10.
1038/nmeth.1279

39. Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F (2004) SREBP
transcription factors: master regulators of lipid homeostasis.
Biochimie 86(11):839–848. https://doi.org/10.1016/j.biochi.2004.
09.018

40. Bertolio R, Napoletano F, Mano M et al (2019) Sterol regulatory
element binding protein 1 couples mechanical cues and lipid metab-
olism. Nat Commun 10(1):1326. https://doi.org/10.1038/s41467-
019-09152-7

41. Rome S, Lecomte V, Meugnier E et al (2008) Microarray analyses
of SREBP-1a and SREBP-1c target genes identify new regulatory
pathways in muscle. Physiol Genomics 34(3):327–337. https://doi.
org/10.1152/physiolgenomics.90211.2008

42. Reed BD, Charos AE, Szekely AM, Weissman SM, Snyder M
(2008) Genome-wide occupancy of SREBP1 and its partners
NFY and SP1 reveals novel functional roles and combinatorial
regulation of distinct classes of genes. PLoS Genet 4(7):
e1000133. https://doi.org/10.1371/journal.pgen.1000133

43. Inoue J, Sato R,MaedaM (1998)Multiple DNA elements for sterol
regulatory element-binding protein and NF-Y are responsible for
sterol-regulated transcription of the genes for human 3-hydroxy-3-
methylglutaryl coenzyme A synthase and squalene synthase. J
Biochem 123(6):1191–1198. https: / /doi.org/10.1093/
oxfordjournals.jbchem.a022060

1069

https://doi.org/10.1007/s00125-017-4467-0
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://htseq.readthedocs.io/en/master/
https://www.gencodegenes.org/
https://doi.org/10.1007/s00125-023-05886-8
https://gwas.mrcieu.ac.uk/
https://doi.org/10.1093/ije/dyt179
https://doi.org/10.1186/s13195-021-00773-z
https://doi.org/10.1186/s13195-021-00773-z
https://doi.org/10.1007/s00125-019-4906-1
https://doi.org/10.1007/s00125-014-3216-x
https://doi.org/10.1111/sji.12413
https://doi.org/10.1136/bjsm.2008.050682
https://doi.org/10.1136/bjsm.2008.050682
https://doi.org/10.1186/s12890-017-0509-0
https://doi.org/10.1186/s12890-017-0509-0
https://doi.org/10.1016/j.ajpath.2015.07.006
https://doi.org/10.1177/1535370217703977
https://doi.org/10.1007/s00439-014-1524-3
https://doi.org/10.1007/s13679-014-0124-9
https://doi.org/10.1007/s13679-014-0124-9
https://doi.org/10.21037/atm.2017.03.107
https://doi.org/10.3389/fonc.2019.00669
https://doi.org/10.3389/fonc.2019.00669
https://doi.org/10.3390/biom10081144s
https://doi.org/10.1371/journal.pone.0016423
https://doi.org/10.1371/journal.pone.0016423
https://doi.org/10.3390/life11010039
https://doi.org/10.3390/life11010039
https://doi.org/10.3390/ijms20164005
https://doi.org/10.1126/science.1091403
https://doi.org/10.1038/nmeth.1279
https://doi.org/10.1038/nmeth.1279
https://doi.org/10.1016/j.biochi.2004.09.018
https://doi.org/10.1016/j.biochi.2004.09.018
https://doi.org/10.1038/s41467-019-09152-7
https://doi.org/10.1038/s41467-019-09152-7
https://doi.org/10.1152/physiolgenomics.90211.2008
https://doi.org/10.1152/physiolgenomics.90211.2008
https://doi.org/10.1371/journal.pgen.1000133
https://doi.org/10.1093/oxfordjournals.jbchem.a022060
https://doi.org/10.1093/oxfordjournals.jbchem.a022060


Diabetologia  (2023) 66:1057–1070

44. Pai JT, Guryev O, Brown MS, Goldstein JL (1998) Differential
stimulation of cholesterol and unsaturated fatty acid biosynthesis
in cells expressing individual nuclear sterol regulatory element-
binding proteins. J Biol Chem 273(40):26138–26148. https://doi.
org/10.1074/jbc.273.40.26138

45. Amemiya-Kudo M, Shimano H, Hasty AH et al (2002)
Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to
different target promoters of lipogenic and cholesterogenic genes.
J Lipid Res 43(8):1220–1235

46. Ishimoto K, Tachibana K, Hanano I et al (2010) Sterol-regulatory-
element-binding protein 2 and nuclear factor Y control human
farnesyl diphosphate synthase expression and affect cell prolifera-
tion in hepatoblastoma cells. Biochem J 429(2):347–357. https://
doi.org/10.1042/BJ20091511

47. Ericsson J, Jackson SM, Edwards PA (1996) Synergistic binding of
sterol regulatory element-binding protein and NF-Y to the farnesyl
diphosphate synthase promoter is critical for sterol-regulated
expression of the gene. J Biol Chem 271(40):24359–24364.
https://doi.org/10.1074/jbc.271.40.24359

48. Abate M, Laezza C, Pisanti S et al (2017) Deregulated expression
and activity of farnesyl diphosphate synthase (FDPS) in glioblasto-
ma. Sci Rep 7(1):14123. https://doi.org/10.1038/s41598-017-
14495-6

49. Griffin S, Preta G, Sheldon IM (2017) Inhibiting mevalonate path-
way enzymes increases stromal cell resilience to a cholesterol-
dependent cytolysin. Sci Rep 7(1):17050. https://doi.org/10.1038/
s41598-017-17138-y

50. Ha NT, Lee CH (2020) Roles of farnesyl-diphosphate
farnesyltransferase 1 in tumour and tumour microenvironments.
Cells 9(11):2352. https://doi.org/10.3390/cells9112352

51. Yu H, Rimbert A, Palmer AE et al (2019) GPR146 deficiency
protects against hypercholesterolemia and atherosclerosis. Cell
179(6):1276–128
e1214. https://doi.org/10.1016/j.cell.2019.10.034

52. Willer CJ, Schmidt EM, Sengupta S et al (2013) Discovery and
refinement of loci associated with lipid levels. Nat Genet 45(11):
1274–1283. https://doi.org/10.1038/ng.2797

53. Liu DJ, Peloso GM, Yu H et al (2017) Exome-wide association
study of plasma lipids in >300,000 individuals. Nat Genet 49(12):
1758–1766. https://doi.org/10.1038/ng.3977

54. Klarin D, Damrauer SM, Cho K et al (2018) Genetics of blood
lipids among ~300,000 multi-ethnic participants of the Million

Veteran Program. Nat Genet 50(11):1514–1523. https://doi.org/
10.1038/s41588-018-0222-9

55. Shyamsunder P, ShanmugasundaramM,Mayakonda A et al (2019)
Identification of a novel enhancer of CEBPE essential for granulo-
cytic differentiation. Blood 133(23):2507–2517. https://doi.org/10.
1182/blood.2018886077

56. Moutoussamy S, Renaudie F, Lago F, Kelly PA, Finidori J (1998)
Grb10 identified as a potential regulator of growth hormone (GH)
signaling by cloning of GH receptor target proteins. J Biol Chem
273(26):15906–15912. https://doi.org/10.1074/jbc.273.26.15906

57. Stofega MR, Herrington J, Billestrup N, Carter-Su C (2000)
Mutation of the SHP-2 binding site in growth hormone (GH) recep-
tor prolongsGH-promoted tyrosyl phosphorylation of GH receptor,
JAK2, and STAT5B. Mol Endocrinol 14(9):1338–1350. https://
doi.org/10.1210/mend.14.9.0513

58. Bauer M, Hackermuller J, Schor J et al (2019) Specific induction of
the unique GPR15 expression in heterogeneous blood lymphocytes
by tobacco smoking. Biomarkers 24(3):217–224. https://doi.org/
10.1080/1354750X.2018.1539769

59. Dennis JM, Shields BM, Henley WE, Jones AG, Hattersley AT
(2019) Disease progression and treatment response in data-driven
subgroups of type 2 diabetes compared with models based on
simple clinical features: an analysis using clinical trial data.
Lancet Diabetes Endocrinol 7(6):442–451. https://doi.org/10.
1016/S2213-8587(19)30087-7

60. Mansour Aly D, Dwivedi OP, Prasad RB et al (2021) Genome-
wide association analyses highlight etiological differences underly-
ing newly defined subtypes of diabetes. Nat Genet 53(11):1534–
1542. https://doi.org/10.1038/s41588-021-00948-2

61. Schrader S, Perfilyev A, Ahlqvist E et al (2022) Novel Subgroups
of type 2 diabetes display different epigenetic patterns that associate
with future diabetic complications. Diabetes Care 45(7):1621–
1630. https://doi.org/10.2337/dc21-2489

62. Ahlqvist E, Tuomi T, Groop L (2019) Clusters provide a better
holistic view of type 2 diabetes than simple clinical features.
Lancet Diabetes Endocrinol 7(9):668–669. https://doi.org/10.
1016/S2213-8587(19)30257-8

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

1070

https://doi.org/10.1074/jbc.273.40.26138
https://doi.org/10.1074/jbc.273.40.26138
https://doi.org/10.1042/BJ20091511
https://doi.org/10.1042/BJ20091511
https://doi.org/10.1074/jbc.271.40.24359
https://doi.org/10.1038/s41598-017-14495-6
https://doi.org/10.1038/s41598-017-14495-6
https://doi.org/10.1038/s41598-017-17138-y
https://doi.org/10.1038/s41598-017-17138-y
https://doi.org/10.3390/cells9112352
https://doi.org/10.1016/j.cell.2019.10.034
https://doi.org/10.1038/ng.2797
https://doi.org/10.1038/ng.3977
https://doi.org/10.1038/s41588-018-0222-9
https://doi.org/10.1038/s41588-018-0222-9
https://doi.org/10.1182/blood.2018886077
https://doi.org/10.1182/blood.2018886077
https://doi.org/10.1074/jbc.273.26.15906
https://doi.org/10.1210/mend.14.9.0513
https://doi.org/10.1210/mend.14.9.0513
https://doi.org/10.1080/1354750X.2018.1539769
https://doi.org/10.1080/1354750X.2018.1539769
https://doi.org/10.1016/S2213-8587(19)30087-7
https://doi.org/10.1016/S2213-8587(19)30087-7
https://doi.org/10.1038/s41588-021-00948-2
https://doi.org/10.2337/dc21-2489
https://doi.org/10.1016/S2213-8587(19)30257-8
https://doi.org/10.1016/S2213-8587(19)30257-8

	Altered...
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Methods
	Results
	Discussion
	References


