
ARTICLE

The utility of a type 2 diabetes polygenic score in addition to clinical
variables for prediction of type 2 diabetes incidence in birth, youth
and adult cohorts in an Indigenous study population

Lauren E. Wedekind1,2
& Anubha Mahajan3,4

& Wen-Chi Hsueh1
& Peng Chen1,5

& Muideen T. Olaiya1,6 &

Sayuko Kobes1 & Madhumita Sinha1 & Leslie J. Baier1 & William C. Knowler1 & Mark I. McCarthy3,4,7 & Robert L. Hanson1

Received: 8 August 2022 /Accepted: 29 November 2022
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023

Abstract
Aims/hypothesis There is limited information on how polygenic scores (PSs), based on variants from genome-wide association
studies (GWASs) of type 2 diabetes, add to clinical variables in predicting type 2 diabetes incidence, particularly in non-
European-ancestry populations.
Methods For participants in a longitudinal study in an Indigenous population from the Southwestern USA with high type 2
diabetes prevalence, we analysed ten constructions of PS using publicly available GWAS summary statistics. Type 2 diabetes
incidence was examined in three cohorts of individuals without diabetes at baseline. The adult cohort, 2333 participants followed
from age ≥20 years, had 640 type 2 diabetes cases. The youth cohort included 2229 participants followed from age 5–19 years
(228 cases). The birth cohort included 2894 participants followed from birth (438 cases). We assessed contributions of PSs and
clinical variables in predicting type 2 diabetes incidence.
Results Of the ten PS constructions, a PS using 293 genome-wide significant variants from a large type 2 diabetes GWAS meta-
analysis in European-ancestry populations performed best. In the adult cohort, the AUC of the receiver operating characteristic
curve for clinical variables for prediction of incident type 2 diabetes was 0.728; with the PS, 0.735. The PS’s HRwas 1.27 per SD
(p=1.6 × 10−8; 95% CI 1.17, 1.38). In youth, corresponding AUCs were 0.805 and 0.812, with HR 1.49 (p=4.3 × 10−8; 95% CI
1.29, 1.72). In the birth cohort, AUCs were 0.614 and 0.685, with HR 1.48 (p=2.8 × 10−16; 95% CI 1.35, 1.63). To further assess
the potential impact of including PS for assessing individual risk, net reclassification improvement (NRI) was calculated: NRI for
the PSwas 0.270, 0.268 and 0.362 for adult, youth and birth cohorts, respectively. For comparison, NRI for HbA1c was 0.267 and
0.173 for adult and youth cohorts, respectively. In decision curve analyses across all cohorts, the net benefit of including the PS in
addition to clinical variables was most pronounced at moderately stringent threshold probability values for instituting a preven-
tive intervention.
Conclusions/interpretation This study demonstrates that a European-derived PS contributes significantly to prediction of type 2
diabetes incidence in addition to information provided by clinical variables in this Indigenous study population. Discriminatory
power of the PS was similar to that of other commonly measured clinical variables (e.g. HbA1c). Including type 2 diabetes PS in
addition to clinical variables may be clinically beneficial for identifying individuals at higher risk for the disease, especially at
younger ages.
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Abbreviations
DIAGRAM Diabetes Genetics Replication And Meta-

analysis consortium
DIAMANTE Diabetes Meta-Analysis of Trans-Ethnic

association studies consortium
FPG Fasting plasma glucose
GWAS Genome-wide association study
2hPG 2 h plasma glucose
MAF Minor allele frequency
NRI Net reclassification improvement
PS Polygenic score
pt Threshold probability

Introduction

Type 2 diabetes-associated genetic variants, derived from
genome-wide association studies (GWASs), have largely
been reproducible across populations. There is limited infor-
mation on how polygenic scores (PSs) based on these variants
add to clinical variables for predicting type 2 diabetes inci-
dence. Such prediction could help identify individuals at

increased risk of type 2 diabetes for targeted prevention
efforts.

Previous studies assessing contributions of a type 2 diabe-
tes PS for prediction of type 2 diabetes incidence have mostly
been conducted in European-ancestry populations [1, 2, 3, 4,
5, 6]. These studies, using PSs constructed from 15 variants to
over six million common variants, have generally found that
PSs were significantly associated with type 2 diabetes inci-
dence but contributed little beyond clinical variables to overall
prediction of type 2 diabetes [1, 2, 3, 4, 5, 6].

Previous studies were largely conducted in adults, but
the utility of PSs for prediction of subsequent type 2 diabe-
tes may be greater earlier in life (in youth or even at birth).
The present study employed a PS for prediction of type 2
diabetes incidence in an Indigenous population from the
Southwestern USA with a high prevalence of type 2 diabe-
tes and obesity, and in which long-term follow-up data are
available. In this population, the age-adjusted prevalence
of diabetes is approximately six times higher than in non-
Hispanic white people in the USA [7]. We aimed to
analyse how genetic and clinical variables could inform
strategies for screening and prevention in three cohorts of
individuals in different age groups (birth, youth and adult-
hood) at baseline.
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Methods

Study design and participants A longitudinal study of diabe-
tes (1965–2007) was conducted in an Indigenous study popu-
lation from the Southwestern USA; methods for this study
have been described previously [8]. Before participation,
volunteers were fully informed of the nature and purpose of
the study and adult participants provided written informed
consent, including consent for genetic studies; minor partici-
pants provided written assent. Protocols were approved by the
institutional review board of the National Institute of Diabetes
and Digestive and Kidney Diseases, and research was
conducted in accordance with the principles of the
Declaration of Helsinki.

Briefly, individuals at least 5 years old were invited for
health examinations every 2 years. At each exam, a 75 g oral
glucose tolerance test was administered with measurement of
HbA1c and fasting and 2 h plasma glucose (FPG, 2hPG).
Diabetes was diagnosed using 1997 American Diabetes
Association criteria (FPG ≥7.0 mmol/l, 2hPG ≥11.1 mmol/l
or clinical diagnosis) [9]. Height and weight were measured to
calculate BMI and birthweight was collected from clinical
information and Arizona state birth certificates. Participants
had not been directly asked to report parental diabetes; howev-
er, since many participants’ parents had also participated in
the study, we were able to approximate the information that
would be available in clinical encounters by using information
from direct examination in the parents. We defined parental
diabetes using three categories (yes, no or unknown) per
parent. Characteristics of participants are summarised in elec-
tronic supplementary material (ESM) Tables 1 and 2.

Genotypic dataOf the study participants, 7701 had genotypes
available from previous GWASs, generated using a custom
Axiom array designed to capture common variation in
members of this community (minor allele frequency (MAF)
≥0.05, or ≥0.01 for coding variants), using methods described
previously (Affymetrix, Santa Clara, CA, USA) [10]. Missing
and ungenotyped variants were imputed with whole genome
sequence data for 266 community members as a reference
panel using Impute 2, resulting in 6.6 million variants with
MAF >0.01 and imputation quality score >0.5 (median 0.95)
[11]. Previous work in this population suggests that a
population-specific reference panel is optimal for imputing
common variants, with little value from including samples
from outside populations [12]. Variants were excluded from
analyses if they had an imputation quality score <0.5 or MAF
<0.01 (ESM Method 1).

Study cohorts Of the 7701 individuals with genotypes avail-
able, we constructed three cohorts based on age at baseline

examination for those who had data for at least two exams
with availability of clinical variables. There were 2333 partic-
ipants followed from first examination in adulthood (age ≥20
years); 640 cases of type 2 diabetes occurred over 16,686
person-years of follow-up. There were 2229 participants
followed from first examination in youth (age 5–19 years);
228 cases of type 2 diabetes occurred over 17,803 person-
years of follow-up. There were 2894 participants with
birthweight data available who were considered to be follow-
ed from birth; 438 cases of type 2 diabetes occurred over
61,591 person-years of follow-up. Individuals were included
in multiple cohorts if suitable data were available.

Construction of type 2 diabetes PSs We compared associa-
tions of ten different constructions of type 2 diabetes PS,
derived fromGWASs conducted for populations from various
world regions. We used ‘pruning and thresholding’ methods
to select variants for the PS, selecting independent genome-
wide significant variants from the GWASs for other popula-
tions (ESM Tables 3–6). These PSs included the following,
each named for the meta-analysis from which it was derived:
Diabetes Genetics Replication And Meta-analysis consortium
(DIAGRAM) 2018 (constituting 293 variants derived from
European populations) [13], Asian Genetic Epidemiology
Network consortium (AGEN) 2020 (125 variants derived
from East Asian populations) [14] and Diabetes Meta-
Analysis of Trans-Ethnic association studies consortium
(DIAMANTE) 2022. The seven DIAMANTE PSs are
constructions of multi-ancestry PSs (287 variants) with
weights taken frommeta-analyses of populations representing
the following ancestry groups: multi-ancestry, African, East
Asian, European, Hispanic/Latino and South Asian [15], in
addition to a ‘population-specific weight’ PS from these same
DIAMANTE 2022 variants with weights derived from the
present population, using tenfold cross-validation to address
overfitting. Finally, we also derived a ‘population-specific
variant’ PS by selecting 287 type 2 diabetes-associated vari-
ants from the 515,692 variants typed in the type 2 diabetes
GWAS in the study population, using twofold cross-
validation (ESM Method 2). While PSs can be constructed
using a larger number of variants, by using less stringent
significance thresholds or accounting for linkage disequilibri-
um, applicability across populations with different linkage
disequilibrium patterns is uncertain. We, thus, employed the
widely used method of selecting significant variants.

We constructed each PS using imputed genotypes available
in the present study population. The products of the number of
risk alleles for each individual with the effect size (logarithm
of the OR) from the corresponding GWAS were summed
across variants. PSs were standardised across the entire study
population to have mean of 0 and SD of 1: HRs for PSs were
expressed in terms of SD of that PS.
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Statistical analyses Analyses were completed in SAS 9.4
(SAS Institute, Cary, NC, USA). For each cohort, individ-
uals were followed from inception (first examination with
clinical data available for youth and adult cohorts; birth for
birth cohort) until they developed type 2 diabetes or until
their last examination, whichever came first. We evaluated
the relative contributions of various combinations of clini-
cal variables and/or the PS in the following analyses: cumu-
lative incidence, survival, AUC of the receiver operating
characteristic curve, net reclassification improvement
(NRI) and decision curve. Cumulative incidence, survival,
decision curve and NRI analyses required calculation of the
predicted occurrence of type 2 diabetes at a specified
follow-up time for all individuals to ensure comparability:
a follow-up of 10 years was used for the adult and youth
cohorts, and 30 years for the birth cohort.

The variables available for the adult cohort included: age,
sex, parental diabetes, BMI, HbA1c, FPG, 2hPG and the type
2 diabetes PS [16]. Those for the youth cohort included: age,
sex, parental diabetes, modified BMI z score [17], HbA1c,
FPG, 2hPG and PS. Those for the birth cohort included: sex,
parental diabetes, birthweight and PS. This specific set of
clinical variables was chosen because the US Preventive
Services Task Force focuses on measures of obesity, family
history and hyperglycaemia in recommendations for screen-
ing and prevention of type 2 diabetes [18]. Most previous
studies have assessed prediction with control for a similar
set of clinical predictors as used here, but many studies have
also included measurement of lipids [1, 2, 3, 4, 5, 6].
Measurements of serum HDL and tr ig lycer ides/
triacylglycerols were available in a subset of the present
cohort (measured since 1993) and adjustment for these vari-
ables yielded similar results to those observed in primary anal-
yses (ESM Table 7).

Since HbA1c was only measured for examinations after
1989, we conducted additional analyses that did not require
HbA1c to allow for longer follow-up and greater sample size:
these analyses returned similar findings to analyses that
included HbA1c (ESM Table 8). Given the U-shaped relation-
ship between birthweight and type 2 diabetes in this popula-
tion [19], we analysed birthweight using two binary variables,
one denoting birthweight <3000 g and another denoting
birthweight >4000 g. We also conducted analyses that includ-
ed a continuous birthweight variable and its squared term to
capture the quadratic relationship between birthweight and
type 2 diabetes. While these analyses gave similar results,
the dichotomised birthweight variables yielded a better fit
according to Akaike’s information criterion.

We also conducted analyses including stated admixture as
a covariate; its inclusion returned virtually the same results as
without. To further control for population stratification, we
conducted additional analyses after adjustment of the PS for
the first ten genetic principal components derived from the

GWAS, with separate estimation of principal components in
each of the three target cohorts; results were similar to those of
the primary analyses (ESM Table 9). Previous studies in this
population demonstrated that genetic variants at KCNQ1
rs2237895 (risk allele frequency=0.49, OR 1.31; exhibits
parent-of-origin effects) [20] and ABCC8 rs1272388614 (risk
allele frequency=0.017, OR 2.02) [21] are significantly and
strongly associated with type 2 diabetes. We conducted
further analyses to assess the contributions of these genotypes
in addition to the type 2 diabetes PS for prediction of type 2
diabetes incidence.

Cumulative incidence and survival analyses We used Cox
proportional hazards regression to evaluate associations of
clinical variables and PS with type 2 diabetes incidence.
Cumulative incidence of type 2 diabetes was calculated as
the proportion of individuals that developed type 2 diabetes
over the specified follow-up time, using Breslow’s method
(PROC PHREG in SAS). To assess separate contributions of
PS and clinical risk, we calculated predicted cumulative inci-
dence according to different levels of PS and of clinical risk,
as determined by linear predictors from the clinical variables
in the proportional hazards model.

AUC analyses We compared the Harrell’s C statistic [22] of
models that included clinical variables alone with the C statis-
tic of those that included clinical variables and the PS. The C
statistic expresses the probability within a pair of individuals,
one who developed type 2 diabetes and one who did not, that
the individual who developed type 2 diabetes had a higher
predicted probability of doing so [23]. In the context of surviv-
al analysis (e.g. in the proportional hazards models used here),
the C statistic is equivalent to the AUC of the receiver oper-
ating characteristic curve [23], and we refer to it as ‘AUC’
throughout the manuscript.

NRI analyses Continuous-variable NRI quantifies the amount
of correct reclassification introduced by using a model with an
additional variable [24]. We analysed NRI by calculating the
net proportion of events reclassified correctly (assigned a
higher probability value) plus the net proportion of nonevents
reclassified correctly (assigned a lower probability value)
[25]. Confidence intervals for the NRI were calculated by a
bootstrap method.

Decision curve analyses We employed decision-analytic
methods to assess consequences of clinical decisions and
expected outcomes of alternative clinical management (i.e.
including various combinations of clinical variables with and
without the PS in prediction models). These analyses assume
that the threshold probability (pt) of developing type 2
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diabetes at which one would opt for an intervention is infor-
mative of how one weighs the relative benefits and harms of
true-positive and false-positive predictions, and the net benefit
of using a predictive model to select individuals above a given
pt is calculated accordingly [26]. We used extensions to deci-
sion curve methods for survival analysis to plot net benefit
across a range of pt values to evaluate for which pt ranges
and what corresponding proportion of the population the PS
had marginal net benefit [27].

Comparisons of associations of PSs among cohorts To
compare the effects of the PSs (e.g. HRs) among the different
age cohorts, a bootstrap analysis was conducted as previously
described [28]. In brief, the 4770 individuals whowere includ-
ed in at least one cohort were resampled 2000 times, and the
analyses were repeated for each iteration. The resulting differ-
ences in the logarithm of the HR between each pair of cohorts
and their standard errors were calculated and used to test
statistical significance of the differences. Since the availability
and predictive power of different clinical covariates may
affect the HR estimates, these analyses were conducted with-
out any covariates.

Results

Ten constructions of type 2 diabetes PSsAll ten PSs for type 2
diabetes, constructed using the overlap of published type 2
diabetes GWAS summary statistics and genotypes available
in this study population, had significant associations with type
2 diabetes incidence in the study population. HRs for the PSs
in models adjusted for clinical variables (age, sex, BMI, FPG,
HbA1c and parental diabetes for the adult cohort; age, sex,
modified BMI z score, FPG, HbA1c and parental diabetes for
the youth cohort; and sex, birthweight and parental diabetes
for the birth cohort) ranged from 1.13 to 1.27 per SD for the
adult cohort, from 1.19 to 1.49 for the youth cohort and from
1.27 to 1.48 for the birth cohort (ESM Table 10). The PS that
consistently had the strongest associations with type 2 diabe-
tes incidence (largest HRs) was constructed using the
DIAGRAM 2018 GWAS. Thus, for the rest of this text, we
present results for the DIAGRAM 2018 PS. Calibration plots
for models for this PS for each of the three cohorts show that
these models are well-calibrated (ESM Fig. 1). The
DIAMANTE 2022 multi-ancestry PS and the population-
specific variant PS also had strong associations with type 2
diabetes incidence, though not as strong (ESM Tables 10–12
and ESM Figs 2–7).

Association of PS with incidence of type 2 diabetes The best-
performing PS was significantly associated with type 2 diabe-
tes incidence in adult, youth and birth cohorts (Fig. 1). In the

adult cohort, 10 year cumulative incidence of type 2 diabetes
in the lowest decile of PS was 20.5%; in the highest, 42.5%
(unadjusted HR=1.31 per SD, p=6.9 × 10−11). In the youth
cohort, 10 year cumulative incidence of type 2 diabetes in the
lowest decile of PSwas 2.4%; in the highest, 21.5% (HR=1.59
per SD, p=6.8 × 10−12). In the birth cohort, 30 year cumula-
tive incidence of type 2 diabetes in the lowest decile of PS was
15.1%; in the highest, 37.3% (HR=1.47 per SD, p=1.7 ×
10−15). The clinical predictors were also strongly associated
with incidence of type 2 diabetes (ESM Fig. 8).

Survival analyses with adjustment for clinical predictors We
conducted survival analyses to assess associations of individ-
ual clinical variables and the PS with type 2 diabetes inci-
dence. In the adult cohort, in the model with clinical variables,
the HR of the PS was 1.27 per SD (p=1.6 × 10−8; 95% CI
1.17, 1.38; Table 1). In the youth cohort, in the model with
clinical variables, the HR of the PS was 1.49 (p=4.3 × 10−8;
95% CI 1.29, 1.72) (Table 2). In the birth cohort, in the model
with clinical variables, the HR of the PS was 1.48 (p=2.8 ×
10−16; 95% CI 1.35, 1.63) (Table 3). Adding 2hPG to adult
and youth cohorts’ models did not substantially alter the HRs
of the PS. In general, the HRs associated with clinical vari-
ables were only modestly affected with the addition of the PS.

AUC analyses We conducted AUC analyses to evaluate the
predictive accuracy of models containing combinations of
clinical variables and the PS. In the adult cohort, the AUC
for the model with age and sex was 0.590 (95% CI 0.566,
0.615); with the PS, 0.619 (95% CI 0.596, 0.643); the differ-
ence in AUC (i.e. ΔAUC) was 0.029 (p=0.003). In the youth
cohort, corresponding AUCs were 0.625 (95% CI 0.587,
0.663) and 0.682 (95% CI 0.648, 0.716); the ΔAUC was
0.057 (p=3.96 × 10−4). In the birth cohort, AUC for the model
with sex was 0.537 (95% CI 0.512, 0.562); with the PS, 0.638
(95% CI 0.610, 0.666); the ΔAUC was 0.101 (p<10−5).

Though the PS was strongly associated with incident type 2
diabetes, the improvement in AUC compared with clinical
variables alone was modest. In the adult cohort, AUC for the
full clinical model was 0.728 (95% CI 0.706, 0.750); with the
PS, 0.735 (95% CI 0.714, 0.757); and the ΔAUC was 0.007
(p=0.023) (Table 1). In the youth cohort, AUC for the full
clinical model was 0.805 (95% CI 0.778, 0.832); with the
PS, 0.812 (95% CI 0.785, 0.839); and the ΔAUC was 0.007
(p=0.173) (Table 2). For the birth cohort, the increment in
AUC with addition of the PS was greater: the AUC for the
model including clinical variables was 0.613 (95% CI 0.582,
0.644); with the PS, 0.685 (95% CI 0.657, 0.713); the ΔAUC
was 0.071 (p<10−5) (Table 3).

NRI analyses While AUC provides a measure of overall
predictive accuracy, it does not fully capture the extent to
which addition of a variable can affect individual risk
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estimates. To examine this, we calculated predicted cumula-
tive incidence of type 2 diabetes according to PS for various
levels of clinical risk. Across all cohorts, greater type 2 diabe-
tes PS and greater percentiles of clinical linear predictor were
both directly and separately associated with predicted cumu-
lative incidence of type 2 diabetes (Fig. 2).

To further quantify the contribution of each variable to
the model’s risk classification, we calculated the NRI of
each variable. NRI quantifies the extent to which type 2
diabetes cases and non-cases are consequently reclassified
upon inclusion of an additional variable. The NRI for
adding the PS to clinical variables was 0.270 (95% CI
0.149, 0.392; 0.092 for events, 0.178 for nonevents) in the
adult cohort (Table 1); in the youth cohort, 0.268 (95% CI
0.073, 0.464; 0.085 for events, 0.183 for nonevents)
(Table 2); in the birth cohort, 0.362 (95% CI 0.222,
0.502; 0.106 for events, 0.256 for nonevents) (Table 3). In
comparison, the NRI for HbA1c was 0.267 in the adult
cohort and 0.173 in the youth cohort.

Additional genotypic analyses The effects of some variants
strongly associated with type 2 diabetes in this Indigenous study
population were not captured in the DIAGRAM 2018 PS. To
address this, we assessed the contribution of genotypes for
KCNQ1 rs2237895 (which exhibits parent-of-origin effects)
and ABCC8 rs1272388614 in the adult cohort. For each geno-
type, associations were significant; however, they contributed
modestly to the model of clinical variables and the PS, as
assessed by AUC and NRI analyses (ESM Table 13).

Decision curve analyses We employed decision curve analy-
ses to estimate the net benefit of including the PS at a range of
threshold probabilities (i.e. minimum probabilities of disease
that would warrant intervention).When the costs of false-posi-
tives are low (i.e. as pt approaches 0), population-wide inter-
ventions may be favoured; thus, screening by clinical or
genetic means would have little net benefit. When false-
positive costs are higher (i.e. at higher pt values), net clinical
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Fig. 1 Cumulative incidence of
type 2 diabetes by decile of the
DIAGRAM2018 PS. The PS was
significantly associated with type
2 diabetes incidence in adult,
youth and birth cohorts. (a)
Cumulative incidence in the adult
cohort at 10 year follow-up; at 10
years, 504 individuals had
developed type 2 diabetes and
635 remained at risk. (b)
Cumulative incidence in the
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benefit can be increased by screening to target the intervention
to higher-risk individuals.

In the adult cohort, the net benefit of including the PS in
addition to clinical variables was most pronounced at pt
values 0.3 to 0.5 (up to 18% improvement); this
corresponded to 15–40% of the highest-risk individuals

selected for the intervention (Fig. 3). In the youth cohort,
the net benefit of including the PS was most pronounced at
pt values 0.05 to 0.35 (up to 21% improvement) (Fig. 3). In
the birth cohort, the net benefit of including the PS was
most pronounced at pt values 0.15 to 0.35 (up to 56%
improvement) (Fig. 3).
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Fig. 2 Predicted cumulative incidence of type 2 diabetes for the scaled
DIAGRAM 2018 PS and specified percentiles of the clinical linear
predictor. Cumulative incidence was calculated for various combinations
of the PS and clinical risk (based on the linear predictor derived from the
clinical variables in the models). Across all cohorts, greater type 2 diabe-
tes PS and greater percentiles of clinical linear predictor were both direct-
ly and separately associated with predicted cumulative incidence of type 2
diabetes. (a) Predicted cumulative incidence of type 2 diabetes over 10
years of follow-up in the adult cohort: clinical variables include age, sex,

parental diabetes, BMI, FPG, HbA1c. At 10 year follow-up, 504 individ-
uals had developed type 2 diabetes and 635 remained at risk. (b) Predicted
cumulative incidence of type 2 diabetes over 10 years of follow-up in the
youth cohort: clinical variables include age, sex, parental diabetes, modi-
fied BMI z score, FPG, HbA1c. At 10 year follow-up, 152 had developed
type 2 diabetes and 745 remained at risk. (c) Predicted cumulative inci-
dence of type 2 diabetes over 30 years of follow-up in the birth cohort:
clinical variables include sex, parental diabetes, birth weight. At 30 year
follow-up, 340 had developed type 2 diabetes and 474 remained at risk
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Discussion

PSs potentially have utility for identification of individuals
with higher risk of type 2 diabetes. Previous studies generally
reported significant associations between type 2 diabetes PS
and diabetes incidence and modest prediction improvement as

measured by AUC: ΔAUC from 0.005 to 0.02 [1, 2, 3, 4, 5, 6].
A limited number of studies include measures of reclassifica-
tion: continuous NRIs ranged from 0.044 to 0.285 [4, 5, 6].
Most previous studies have been done in European-ancestry
populations, but some have been done in non-European popu-
lations, including Korean [5], African American [29] and
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Fig. 3 Net benefit of predictive models with or without the DIAGRAM
2018 PS for type 2 diabetes prediction. For each model in each cohort, the
net benefit is plotted on the y-axis against the pt for implementing an
intervention on the x-axis. The proportion of the population that would
be selected at each pt is shown below the x-axis. (a) In the adult cohort,
the net benefit of including the PS in addition to clinical variables was most

pronounced at pt values 0.3–0.5 (up to 18% improvement); this
corresponded to 15–40% of the highest-risk individuals selected for the
intervention. (b) In the youth cohort, the net benefit of including the PS
was most pronounced at pt values 0.05–0.35 (up to 21% improvement). (c)
In the birth cohort, the net benefit of including the PSwasmost pronounced
at pt values 0.15–0.35 (up to 56% improvement). Bwt, birthweight
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Iranian [30]. Findings in these populations have generally
been similar to those in European-ancestry groups. In the
present study, the DIAGRAM 2018 PS was strongly statisti-
cally significant in predicting type 2 diabetes incidence in
adult, youth and birth cohorts in an Indigenous study popula-
tion from the Southwestern USA.

Results of AUC analyses are consistent with findings of
previous studies: improvement in prediction contributed by
the type 2 diabetes PS was statistically significant but modest.
However, ΔAUC does not fully capture the contribution of a
single variable to individual risk [31]. We calculated NRIs for
individual variables to address this limitation. NRIs for the PS
across all cohorts ranged from 0.2 to 0.3, which is considered
intermediate power for identifying type 2 diabetes risk [24],
and were comparable to those of commonly measured clinical
variables (e.g. HbA1c and FPG). Our findings are consistent
with the evidence that for most chronic diseases PSs generally
provide additional predictive information beyond that provid-
ed by traditional risk factors [32].

Implications of decision curve analyses Ultimately, clinical
utility may depend on how the type 2 diabetes PS affects the
decision to implement preventive interventions. Across adult,
youth and birth cohorts, results of our decision curve analyses
suggest modest increases in clinical benefit for using the PS at
moderately stringent pt values. There are few data on optimal
pt values for type 2 diabetes prevention: they depend upon
preferences of individual patients and clinicians, healthcare
system characteristics and the nature of the interventions
considered. Many clinicians would recommend lifestyle
prevention for individuals with impaired glucose regulation
(e.g. FPG ≥5.5 mmol/l or HbA1c ≥39 mmol/mol (5.7%)); in
the adult cohort, the prevalence of impaired glucose regulation
at baseline was 35%, and this would correspond to pt=0.32
(0.21–0.49 based on cumulative incidence). This is in the
range in which our analyses suggest meaningful, albeit
modest, improvement in clinical benefit from incorporating
the type 2 diabetes PS.

Decision curve analysis assumes that the intervention will
be equally effective regardless of how risk is determined.
There are limited data on how type 2 diabetes PS affects
response to preventive interventions. However, a study within
the Diabetes Prevention Program Outcomes Study suggested
that lifestyle and metformin interventions were both effective,
even in those with greater type 2 diabetes PS [33].

Construction of PSWhile all type 2 diabetes PSs we examined
were significantly associated with type 2 diabetes incidence
across all cohorts, the DIAGRAM 2018 PS, derived from
European-ancestry populations, performed slightly better than
the others. While we have previously shown modest hetero-
geneity in effects of established type 2 diabetes variants

between Europeans and this study population [7], the
DIAGRAM 2018 PS even out-performed a population-
specific variant PS with a comparable number of variants,
derived by twofold cross-validation in the present population
(n≈3850). The expectation is that a PS derived from a GWAS
in a more closely matched ancestry group would perform
better than one from a different ancestry group, if GWAS
sample sizes are equal [34], but PSs derived in a large
European-ancestry group can outperform ancestry-specific
PSs when the sample size available for deriving the
ancestry-specific PS is small [15]. In the present study, the
DIAGRAM 2018 PS likely performed well due to the large
sample size and extensive fine-mapping in the DIAGRAM
type 2 diabetes meta-analysis. Achieving adequate sample
sizes for GWASs to derive ancestry-specific PSs in
Indigenous study populations is challenging, but many
Indigenous populations have extensive linkage disequilibrium
which may facilitate the ability of PSs to capture causal vari-
ants [35]. While further work is needed to optimise type 2
diabetes PSs across diverse populations, the present study
suggests that PSs constructed using results of GWASs in larg-
er populations may be suitable for translation across study
populations in which well-powered GWASs are not available.
Studies in additional populations are needed.

Optimal age for preventive interventions Genetic effects of
the PSs with respect to type 2 diabetes incidence were greatest
in the youth and birth cohorts. This is consistent with the
hypothesis that genetic effects for many chronic diseases are
strongest earlier in life [36], and consistent with the finding
that familial recurrence risk of diabetes in this population is
higher when it occurs at younger ages [37]. The present find-
ings could also reflect the limited availability of phenotypic
data for study participants at birth or young ages. However,
when analysed without any clinical covariates, the HRs asso-
ciated for the birth cohort (HR=1.47) and the youth cohort
(HR=1.59) were significantly higher than that for the adult
cohort (HR=1.31); tests for differences in the HRs between
the adult and youth cohorts and adult and birth cohorts yielded
p=0.037 and p=0.006, respectively, while differences
between birth and youth cohorts were not significant
(p=0.15). The improvements in AUC and net benefit upon
adding the PS to clinical variables were greatest in the birth
cohort. The use of type 2 diabetes PS at birth could be partic-
ularly beneficial as phenotypic manifestations of risk (e.g.
hyperglycaemia and obesity) are less apparent. However,
some relevant clinical measures that may be readily obtained
at birth (e.g. birth length for calculation of adiposity measures)
were not available in the present study. In adults, there is
strong evidence that type 2 diabetes can be prevented by life-
style modification, pharmacologic treatment or bariatric
surgery, but there are few data on the efficacy of preventive
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efforts initiated in youth or infancy [38]. Thus, while our anal-
yses suggest that the type 2 diabetes PS has the strongest
contribution to prediction of type 2 diabetes incidence in the
birth cohort, adults may be a more appropriate target popula-
tion for preventive interventions in the near term.

Future research This study shows that type 2 diabetes PSs, as
currently constructed, can provide utility for assessing type 2
diabetes risk; as measured by NRI analyses, information from
the PS for classifying type 2 diabetes risk is comparable to that
from widely used clinical variables (e.g. HbA1c and BMI) in
this study population. Further optimisation of the PS is expect-
ed to provide better prediction in the future [30]. Such inves-
tigations could assess whether differences in population genet-
ic characteristics, obesity and incidence of type 2 diabetes are
paralleled by differences in performance of PSs. Results from
the present study were derived from an Indigenous population
from the Southwestern USA with a relatively high prevalence
of type 2 diabetes.

Beyond the scientific issues, however, technical, logistical
and cultural issues need consideration before PSs can be incor-
porated into clinical practice. For example, advances in labora-
tory methods and informatics are required to make PSs and risk
algorithms available to clinicians and patients. Health econom-
ics studies are needed to investigate which clinical settings and
constructions of type 2 diabetes PS would maximise net benefit
for prediction of type 2 diabetes incidence. With such knowl-
edge, more informed decisions about the use of genetic infor-
mation in prevention of type 2 diabetes could be made.
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