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Abstract
Aims/hypothesis Type 2 diabetes is highly polygenic and influenced by multiple biological pathways. Rapid expansion in the
number of type 2 diabetes loci can be leveraged to identify such pathways.
Methods We developed a high-throughput pipeline to enable clustering of type 2 diabetes loci based on variant–trait associa-
tions. Our pipeline extracted summary statistics from genome-wide association studies (GWAS) for type 2 diabetes and related
traits to generate a matrix of 323 variants × 64 trait associations and applied Bayesian non-negative matrix factorisation (bNMF)
to identify genetic components of type 2 diabetes. Epigenomic enrichment analysis was performed in 28 cell types and single
pancreatic cells. We generated cluster-specific polygenic scores and performed regression analysis in an independent cohort
(N=25,419) to assess for clinical relevance.
Results We identified ten clusters of genetic loci, recapturing the five from our prior analysis as well as novel clusters related to
beta cell dysfunction, pronounced insulin secretion, and levels of alkaline phosphatase, lipoprotein A and sex hormone-binding
globulin. Four clusters related to mechanisms of insulin deficiency, five to insulin resistance and one had an unclear mechanism.
The clusters displayed tissue-specific epigenomic enrichment, notably with the two beta cell clusters differentially enriched in
functional and stressed pancreatic beta cell states. Additionally, cluster-specific polygenic scores were differentially associated
with patient clinical characteristics and outcomes. The pipeline was applied to coronary artery disease and chronic kidney disease,
identifying multiple overlapping clusters with type 2 diabetes.
Conclusions/interpretation Our approach stratifies type 2 diabetes loci into physiologically interpretable genetic clusters asso-
ciated with distinct tissues and clinical outcomes. The pipeline allows for efficient updating as additional GWAS become
available and can be readily applied to other conditions, facilitating clinical translation of GWAS findings. Software to perform
this clustering pipeline is freely available.
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Abbreviations
aBF Approximate Bayes factor
AMP-CMDKP Accelerating Medicines Partnership-

Common Metabolic Disease Knowledge
Portal

bNMF Bayesian non-negative matrix factorisation
cCRE Candidate cis-regulatory elements
ALP Alkaline phosphatase
CAD Coronary artery disease
CIR Corrected insulin response
CKD Chronic kidney disease
CRP C-reactive protein
DI Disposition index
FDR False discovery rate
GWAS Genome-wide association study
INShigh/low High/low insulin gene (INS) promoter

accessibility
ISI Insulin sensitivity index
Lp(a) Lipoprotein A
MGB Mass General Brigham
PC Principal component
PI Fasting proinsulin adjusted for fasting

insulin
pPS Partitioned polygenic score
SHBG Sex hormone-binding globulin

Introduction

Type 2 diabetes has variable contributions of insulin resis-
tance and beta cell dysfunction, and is influenced by multiple
risk factors, including genetics [1]. Untangling the heteroge-
neity of type 2 diabetes may improve the management of the
condition and facilitate precision medicine.

Hundreds of loci associated with type 2 diabetes have been
identified in large-scale genetic studies; however, translating
these findings to improved understanding of disease patho-
physiology has been challenging, largely owing to the abun-
dance of non-protein coding lead variants [2]. Recent studies
have leveraged genome-wide association study (GWAS)
summary statistics to connect genetic loci to possible disease
pathways by clustering loci based on shared patterns of asso-
ciations across multiple traits [3–6]. In our previous work [5],
Bayesian non-negative matrix factorisation (bNMF) soft clus-
tering analysis was performed on 94 genome-wide significant
type 2 diabetes variants manually curated from published
studies and their associations with 47 diabetes-related traits.
We identified five distinct genetic clusters, recognisable as
relating to mechanisms of type 2 diabetes pathogenesis. Five
similar clusters were independently identified by Mahajan
et al, along with a sixth cluster of ‘undetermined’ physiolog-
ical impact [4]. Of these five shared clusters, two related to
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beta cell dysfunction, and the other three to different mecha-
nisms of insulin resistance: obesity-mediated, abnormal
lipodystrophy-like fat distribution and altered hepatic lipid
metabolism [4, 5]. Clusters of SNPs can be used to generate
partitioned polygenic scores (pPSs), which have been associ-
ated with distinct cellular and clinical features [7–10],
supporting the notion that these clusters can point to genetic
subtypes with specific disease mechanisms.

With new type 2 diabetes loci continuously being
discovered and additional GWAS trait summary statistics
becoming available, we sought to expand our prior work,
which involved manual curation of type 2 diabetes loci. We
developed a high-throughput pipeline to enable extraction
of genetic variants and traits from multiple GWAS to be
used for cluster analysis to identify new genetic pathways
of disease.

Methods

Pipeline for input variant–trait association matrix for cluster-
ing An overview of pre-processing steps for variants and traits
used for generating the input matrix for variant–trait association
clustering analysis is illustrated in ESM Fig. 1, with additional
details in the ESMMethods. To obtain a comprehensive set of
independent genetic variants associated with type 2 diabetes,
we extracted variants reaching genome-wide significance
(p<5×10−8) from large-scale type 2 diabetes studies [2, 4,
11–15] in the Accelerating Medicines Partnership-Common
Metabolic Disease Knowledge Portal (AMP-CMDKP) [16]
(ESMTable 1) and performed stringent LD-pruning of variants
at r2<0.1 (ESM Table 2) as well as filtering and replacing of
multi-allelic, ambiguous (A/T or C/G), or poorly represented in
trait GWAS.

For trait selection, we utilised summary statistics available
for 75 GWAS of glycaemic, anthropometric traits, vital signs
and additional laboratory measures in the AMP-CMDKP or
UK Biobank [17] (ESM Table 3). Our goal was to let the
genetics guide trait-inclusion, and thus traits were used only
if the minimum p value across the final set of variants was
lower than a Bonferroni p value cut-off of 0.05/
N_final_variants (N=323). We then removed highly correlat-
ed traits (with |r|≥0.85) to reduce redundancy. We then used
GWAS summary statistics to generate a matrix of
standardised and scaled z scores, choosing the type 2 diabetes
risk-increasing allele for each variant (ESM Methods). This
pipeline was also used for coronary artery disease (CAD) and
chronic kidney disease (CKD) with six CAD GWAS [18–20]
and 39 CKD-related GWAS [12, 17, 21–24] queried.

bNMF clustering The variant–trait association matrix Z (m by
n, m: no. of variants, n: no. of traits) was constructed as above.

We then generated a non-negative input matrix X (2m by n) by
concatenating two separate modifications of the original Z
matrix: one containing all positive standardised z scores (zero
otherwise) and the other all negative standardised z scores
multiplied by −1. The bNMF procedure factorises X into two
matrices, W (2m by K) and HT (n by K), as X ~ WH with an
optimal rank K, corresponding to the association matrix of vari-
ants and traits to the number of clusters (ESM Methods) [5].
The key features for each cluster are determined by the most
strongly associated variants and traits, a natural output of the
bNMF approach. To define a set of strongest-weighted variants
and traits in each cluster, we employed a method to determine a
weight cut-off that maximised the signal-to-noise ratio (ESM
Fig. 2). For type 2 diabetes, the weight cut-off was 0.832.

Cluster associations with relevant phenotypes using GWAS
summary statisticsWe generated GWAS-partitioned polygen-
ic scores (GWAS pPSs) for each cluster utilising inverse-
variance weighted fixed effects meta-analysis of GWAS
summary statistics including the set of strongest-weighted vari-
ants above the weight cut-off for each cluster using the dmetar
package in R [25] (ESM Methods). For testing type 2 diabetes
cluster associations with cardiometabolic outcomes, the signif-
icance threshold was set to 0.05/(7×K), representing a
Bonferroni correction for K clusters and seven outcomes
(ESM Table 4).

Functional annotation and enrichment analysisAt each locus,
we calculated approximate Bayes factors (aBFs) for all variants
within 500 kb with r2≥0.1 with the index variant (100% cred-
ible set) using the approach ofWakefield [26] (ESMMethods).
We then calculated a posterior probability for each variant by
dividing the aBF by the sum of all aBFs in the credible set. We
obtained previously published 13-state ChromHMM [27] chro-
matin state calls for 28 cell types [28]. We also compiled candi-
date cis-regulatory elements (cCREs) for 14 cell types and
subtypes from published single-cell chromatin accessibility
datasets [29]. We assessed enrichment of annotations within
clusters by overlapping 100% credible set variants for signals
in each cluster with cell type epigenomic annotations (chroma-
tin states and cCREs). We also assessed epigenomic enrich-
ment in single-cell pancreatic tissue using a second method.
As previously described [30], we subset loci from the Beta cell
1 and 2 clusters, annotated variants using cCREs from INShigh

and INSlow beta cells, and applied fgwas (available from https://
github.com/joepickrell/fgwas) [31] in the fine-mapping mode
(ESM Methods).

pPS analysis in the Mass General Brigham Biobank The Mass
General Brigham (MGB) Biobank includes clinical and
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genetic data from patients across the MGB healthcare system
[32]. Approval for data analysis was obtained by the MGB
Institutional Review Board, study 2016P001018. Description
of data quality control is in the ESMMethods. We performed
individual-level analyses on 25,419 participants of European
ancestry based on self-reported ancestry and genetic principal
components (PCs). Type 2 diabetes pPSs for each cluster were
generated by multiplying a variant's genotype dosage by its
cluster weight, with only the top-weighted variants included,
as defined above. Logistic and linear regression were perform-
ed in R v3.6.2 (available from https://cran.r-project.org/bin/
windows/base/old/3.6.2/), adjusting for age, sex and ten
genetic PCs.

Results

Ten type 2 diabetes genetic clusters identified by high-
throughput approach We employed a high-throughput
pipeline to enable extraction of loci from GWAS summary
statistics files and generate a variant–trait association input
matrix for clustering analysis (ESM Methods, ESM Fig. 1).
From 13 type 2 diabetes GWAS, we extracted 21,666
genome-wide significant variants and performed stringent
LD-pruning and optimisation, resulting in 323 independent
type 2 diabetes variants (ESM Methods, ESM Table 2).
These variants guided selection of 64 traits, such that each trait
was significantly associated with at least one type 2 diabetes
variant. Soft clustering of the resulting 323 by 64 variant–trait
association matrix was performed using bNMF (ESM
Table 3).

The plurality of 1000 bNMF iteration results converged on
ten clusters (36.3%), which were the focus of downstream
analyses (ESM Tables 5, 6). The clusters were named based
on their top-weighted traits or similarity to clusters from our
previous work. The remaining bNMF iterations converged on
nested clusters (K=6: 0.3%, K=7: 1.1%, K=8: 8.3%, K=9:
26.6%, K=11: 22.6%, K=12: 4.4% and K=13: 0.4%). Six
clusters (Beta cell 1, Beta cell 2, Proinsulin, Obesity,
Lipodystrophy, Liver/lipid, as described below) appeared to
be captured in all iterations, based on inspection of shared top-
weighted variants and traits.

To interpret the ten type 2 diabetes clusters, we examined
their strongest-weighted loci and traits, as well as the aggre-
gate associations of cluster loci with the traits via GWAS pPS,
with the goal of relating the clusters to driving mechanisms
of type 2 diabetes: insulin deficiency and insulin resistance
(Fig. 1, ESM Table 7, ESM Fig. 3). Four of the clusters
(Beta cell 1, Beta cell 2, Proinsulin and Lipoprotein A) related
to insulin deficiency, with type 2 diabetes risk-increasing
alleles in each cluster collectively associated with reduced
fasting insulin and HOMA-B (GWAS pPS p values < 0.05).
Another five clusters (Obesity, Lipodystrophy, Liver/lipid,

ALP [alkaline phosphatase] negative, Hyper insulin secretion)
related to insulin resistance, with the type 2 diabetes risk
alleles in these clusters associated with increased fasting insu-
lin and HOMA-IR (GWAS pPS p values < 0.05). The remain-
ing cluster (SHBG [sex hormone-binding globulin]) was driv-
en by one type 2 diabetes allele that was not significantly
associated with fasting insulin, but had a positive direction
of effect (p = 0.36; Fig. 1, ESM Fig. 3, ESM Table 7).

Of the four clusters related to insulin deficiency (Beta cell
1, Beta cell 2, Proinsulin, Lipoprotein A), Beta cell 1 and Beta
cell 2 appeared to be a division of the single Beta cell cluster in
our previous work [5], with each containing top traits/loci
from that prior cluster (ESM Table 5), including several
well-known loci related to beta cell function (e.g. [33]). In
Beta cell 1, the top-weighted traits were decreased corrected
insulin response (CIR) and disposition index (DI), both indi-
cators of reduced pancreatic beta cell function; the strongest-
weighted loci includedMTNR1B, CDKAL1,HHEX, C2CD4A
and SLC30A8. Beta cell 2 cluster’s top-weighted traits and
loci included increased fasting proinsulin adjusted for fasting
insulin (PI), reduced HOMA-B and fasting insulin, and
TCF7L2, ADCY5, GCK, DGKB and GLIS3 (Table 1, Fig. 2,
ESM Tables 5, 6).

The Beta cell 1 and Beta cell 2 clusters differed from each
other with regard to the magnitude of their glycaemic trait asso-
ciations. The Beta cell 1 GWAS pPS (63 loci) had a more
marked association with reduced DI compared with Beta cell
2 (β=−0.05, p=3.69×10−61 vs β=−0.03, p=9.02×10−9), while
Beta cell 2 (28 loci) had a more marked association with
increased PI (β=0.02, p=9.81×10−43 vs β=0.006,
p=9.81×10−7) (Fig. 1, ESM Table 7). Proinsulin is a
prohormone precursor to insulin, and elevated PI levels indicate
defective proinsulin processing, particularly related to beta cell
stress [34]. The stronger association with increased PI for Beta
cell 2 vs Beta cell 1 could therefore indicate that Beta cell 2
relates more specifically to beta cell stress.

The Proinsulin cluster, also captured in our previous work,
had top-weighted traits of reduced PI and HOMA-B (Fig. 2,
ESMTables 5, 6). The top-weighted loci included two distinct
signals in the ARAP1/STARD10 region, which has previously
been functionally connected to impaired beta cell function in
mouse models where beta cell-selective deletion of Stard10
impaired insulin secretion [35]. In contrast to the other insulin
deficiency clusters, this cluster (18 loci) was significantly
associated with decreased PI (GWAS pPS p=3.51×10−36)
(ESM Table 7), potentially indicating a mechanism of lack
of proinsulin substrate for insulin synthesis and secretion.

The Lipoprotein A cluster was novel to the present analysis
and had the top-weighted trait, increased serum lipoprotein A
[Lp(a)], and single top-weighted locus, SLC22A3/LPA
(rs487152) (Fig. 2, ESM Tables 5, 6). SLC22A3/LPA contains
the gene LPA encoding Lp(a), and the type 2 diabetes-risk-
increasing allele of rs487152 was associated with increased
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Lp(a) levels (p=4.06×10−1586) (ESM Table 7), but the under-
lying mechanism relating to insulin deficiency is unknown.

Of the five clusters related to mechanisms of insulin resis-
tance (Obesity, Lipodystrophy, Liver/lipid, Hyper insulin
secretion, ALP negative), three (Obesity, Lipodystrophy,
and Liver/lipid) were captured in our previous work, but
gained additional loci (and traits) in this expanded analysis.

The Obesity cluster had most strongly weighted traits of
increased BMI, waist circumference, per cent body fat and C-
reactive protein (CRP), and key genetic signals included the
well-known obesity loci FTO and MC4R [36] (Fig. 2, ESM
Table 5, 6). The GWAS pPS for the Obesity cluster (35 loci)
identified significant associations with increased fasting insu-
lin (p=7.92×10−22), HOMA-IR (p=7.58×10−19), BMI
(p=1.87×10−1398), body fat (p=6.94×10−83), and CRP
(p=6.47×10−260), supporting a mechanism of obesity-
mediated insulin resistance.

The Lipodystrophy cluster had top-weighted traits and loci
suggestive of ‘lipodystrophy-like’ or fat distribution-mediated
insulin resistance as in our and other’s prior work [5, 37, 38];
these included decreased adiponectin, HDL-cholesterol and

modified Stumvoll insulin sensitivity index (ISI; adjusted for
age, sex and BMI), increased triglycerides and waist–hip ratio,
and IRS1, KLF14 and PPARG (Fig. 2, ESM Table 5, 6). The
GWAS pPS for the Lipodystrophy cluster (54 loci) was asso-
ciated with increased fasting insulin (p=3.16×10−43), HOMA-
IR (p=7.47×10−29) and triglycerides (p=1.18×10−612),
decreased ISI (p=1.84×10−38) and HDL-cholesterol
(p=5.19×10−535).

The Liver/lipid cluster was defined by decreased triglycer-
ides and γ-glutamyl transferase levels, andmultiple loci previ-
ously connected to hepatic lipid or glycogen metabolism,
including GCKR, HNF1A, PPP1R3B, TOMM40/APOE and
PNPLA3 (Fig. 2, ESM Table 5, 6) [39]. The GWAS pPS for
this cluster (11 loci) was associated with reduced triglycerides
(p=3.64×10−181) and interestingly also reduced CRP
(p=7.75×10−106) and white blood cell count (p=1.42×10−49).

The two remaining insulin resistance clusters (ALP nega-
tive and Hyper insulin secretion) were novel, containing driv-
ing traits and loci not part of our prior clusters (Fig. 2, ESM
Table 5, 6). The ALP negative cluster had decreased ALP
level as its top-weighted trait, and the ABO locus as the top-

All SNPs (247)

SHBG (1)

Hyper insulin secretion (32)

ALP negative (4)

Liver/lipid (11)

Lipodystrophy (54)

Obesity (35)

Lipoprotein A (1)

Proinsulin (18)

Beta cell 2 (28)

Beta cell 1 (63)

−0.10 −0.05 0.00 0.05

Beta (95% CI)

Trait

Fasting insulin

PI

DI

Fig. 1 Cluster associations with
metabolic traits using GWAS.
Forest plot showing standardised
effect sizes with 95%CI of cluster
pPS–trait associations derived
from GWAS summary statistics.
Three metabolic traits (fasting
insulin, PI and DI) that help
discriminate clusters are
displayed. The numbers in
parentheses next to cluster names
indicate the number of variants
included in the analysis in each
cluster. ‘All SNPs’ includes all
the variants that are top-weighted
in at least one cluster. Filled
points indicate p values <0.05
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weighted locus. The GWAS pPS in this cluster (4 loci) was
associated with decreased ALP (p=1.97×10−1431) and triglyc-
erides (p=4.49×10−247). The Hyper insulin secretion cluster
included top-weighted traits of increased DI and CIR, and loci
PPP1R3B, CNTN2, DTNB, SREBF1 and TNF. More than
87% of the loci in this cluster were not part of our prior work.
The Hyper insulin secretion GWAS pPS (32 loci) was asso-
c ia t ed wi th inc reased CIR (p=1 .16×10− 1 4 ) , DI
(p=2.89×10−14), BMI (p=1.01×10−26), and reduced HDL-
cholesterol (p=1.09×10−110) and SHBG (p=1.07×10−100).

The final cluster, SHBG, was novel to the current work and
not significantly associated with fasting insulin (GWAS pPS
p=0.36). The cluster was driven by a single trait and locus:
decreased SHBG levels and the SHBG locus (ESM Table 5,
6). The GWAS pPS in this cluster (1 locus) was significantly
associated with reduced SHBG (p=1.2×10−1784) and IGF-1
(p=4.12×10−13).

Type 2 diabetes clusters differ in tissue enrichment including
single-cell islets To acquire further evidence for the suspected
disease mechanisms represented by clusters and assess biolog-
ical differences between the clusters, we analysed the top-
weighted loci in each type 2 diabetes cluster for enrichment
of epigenomic annotations across 28 tissues (Fig. 3a, ESM
Table 8a). In line with expected mechanisms, the Beta cell
1, Beta cell 2 and Proinsulin clusters were significantly

enriched in pancreatic islet tissue (false discovery rate
[FDR]<0.05). The Liver/lipid and ALP negative clusters were
significantly enriched in liver tissue (FDR<0.01). The
Lipodystrophy cluster was strongly enriched in adipose tissue
(FDR<0.01). Additionally, both Beta cell 1 and 2 had enrich-
ment in adipose tissue and the brain hippocampus
(FDR<0.01). The Obesity cluster was most transcriptionally
enriched in human epidermal keratinocytes (NHEK) and
hASC-t3 pre-adipose cells, both at nominal significance
(p<0.05, FDR=0.11).

We also interrogated newly available chromatin profiles
from 14.3k pancreatic islet cells, which Chiou et al subsetted
based on their chromatin profiles [30]. In prior work, the islets
were found to have two epigenomic subsets, labelled Beta

Table 1 Overview of type 2 diabetes genetic clusters

Cluster Expected

physiological

impact

Key top-weighted traits Key top-weighted loci Suspected mechanism Note

Beta cell 1 (63) Insulin deficiency CIR (−), DI (−) MTNR1B, CDKAL1, HHEX, C2CD4A, ANK1,
ST6GAL1, SLC35C1, SLC30A8

Beta cell function,
glucose homeostasis

Beta Cell cluster from Udler et al 2018
[5] divided into 2 clusters

Beta cell 2 (28) Insulin deficiency PI (+), HOMA-B (−),
fasting insulin (−)

TCF7L2, SLC30A8, ADCY5, GCK, DGKB,
GLIS3, MTNR1B, C2CD4A

Beta cell function, insulin
processing

Beta Cell cluster from Udler et al 2018
[5] divided into 2 clusters

Proinsulin (18) Insulin deficiency PI (−), HOMA-B (−) ARAP1, STARD10 Insulin synthesis Recaptures Proinsulin cluster from
Udler et al 2018 [5]

Lipoprotein A (1) Insulin deficiency Lp(a) (+) SLC22A3/LPA Lp(a) metabolism New cluster in this study
Obesity (35) Insulin resistance BMI (+), waist C (+), %

body fat (+), CRP (+)
FTO, MC4R Obesity-mediated insulin

resistance
Recaptures Obesity cluster from Udler

et al 2018 [5]
Lipodystrophy (54) Insulin resistance Adiponectin (−), ISI (−),

HDL (−)
IRS, PPARG, KLF14 Fat distribution-mediated

insulin resistance
Recaptures Lipodystrophy cluster from

Udler et al 2018 [5]
Liver/lipid (11) Insulin resistance CRP (−), TG (−), GGT (−) GCKR, HNF1A, PPP1R3B, TOMM40,

PNPLA3
Liver/lipid metabolism Recaptures Liver/lipid cluster from

Udler et al 2018 [5]
ALP negative (4) Insulin resistance ALP (−) ABO ALP activity levels New cluster in this study
Hyper insulin secretion (32) Insulin resistance DI (+), CIR (+) PPP1R3B, CNTN2, DTNB, TNF, SREBF1 Insulin secretion,

inflammation
New cluster in this study

SHBG (1) Unclear SHBG (−) SHBG SHBG metabolism New cluster in this study

The numbers in parentheses next to cluster names indicate the numbers of top-weighted variants in each of the clusters

Decrease and increase are indicated by (−) and (+), respectively

adj., adjusted; GGT, γ-glutamyl transferase; waist C, waist circumference

�Fig. 2 Clusters of type 2 diabetes loci. Top-weighted loci and traits in
each of the ten clusters are represented in circular plots: (a) Beta cell 1, (b)
Beta cell 2, (c) Proinsulin, (d) Lipoprotein A, (e) Obesity, (f)
Lipodystrophy, (g) Liver/lipid, (h) ALP negative, (i) Hyper insulin
secretion, (j) SHBG. The length of the bars shows the weights. Green
bars represent top-weighted loci, red bars represent increased trait
association, and blue bars represent decreased trait association with
each cluster. A maximum of 35 elements (loci and traits) based on
highest weights are displayed in each cluster. The blue outline indicates
clusters associated with decreased fasting insulin levels, and the red
outline indicates clusters associated with increased fasting insulin
levels. adj, adjusted; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; GGT, γ-glutamyl transferase; RBC, red blood cell
count; MRV, mean reticulocyte volume; WBC, white blood cell count
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INShigh and Beta INSlow, indicating high or low insulin gene
(INS) promoter accessibility; the Beta INShigh islet cells had
enriched promoter accessibility for genes involved in insulin
secretion, whereas the Beta INSlow cells had enrichment for
stress-induced signalling response genes. When assessing
enrichment of our clusters, we found that our Beta cell 1
cluster was enriched only in Beta INShigh cells (p=0.0001,
FDR=0.0014), whereas our Beta cell 2 cluster was nominally
enriched in both Beta INShigh and Beta INSlow cells (p=0.025,
p=0.013, respectively, FDR=0.18 for both), (Fig. 3b, ESM
Table 8b). The same trend was observed in fgwas enrichment
analysis: Beta cell 1 was significantly enriched only in INShigh

[loge(enrichment) (95% CI): INShigh 2.32 (1.31, 3.12); INSlow

−0.36 (−1.79, 0.55)] whereas Beta cell 2 was significantly
enriched in both single-cell subsets [loge(enrichment) (95%
CI): INShigh 1.61 (0.22, 2.96); INSlow 2.11 (0.73, 3.46)]
(Fig. 3c). Together these results support the likelihood that
Beta cell 1 and Beta cell 2 clusters relate to distinct physio-
logical mechanisms, with Beta cell 2 potentially connected to
a stress-induced pancreatic state.

Also of interest within the pancreas single-cell data, the
Liver/lipid cluster was most enriched for alpha cells,
(p=0.007, FDR=0.099); alpha cells secrete glucagon, which
acts to release glucose from the glycogen stores in the liver,
providing further connection between these type 2 diabetes
loci and liver function (Fig. 3b).

Type 2 diabetes clusters are differentially associated with
clinical traits and outcomes To assess translation of the
clusters to individuals, we generated cluster pPSs in the
MGB Biobank (N=25,419). We first confirmed that clus-
ter pPSs were associated with expected traits in this study
population both in all individuals and in those with type 2
diabetes (ESM Table 9).

We next tested whether the cluster pPSs were associated
cardiometabolic outcomes related to type 2 diabetes using
GWAS summary statistics: CAD, CKD, eGFR, hyperten-
sion, ischaemic stroke and diabetic neuropathy (ESM
Table 4, Fig. 4a, ESM Fig. 4a). All ten type 2 diabetes
clusters were associated with at least one outcome. The
GWAS pPS results for eGFR highlighted the utility of
cluster-specific scores, with individual clusters having
more significant associations than the full set of type 2
diabetes SNPs: increased pPSs for the Liver/lipid, ALP
negative and SHBG clusters were associated with reduced
eGFR (p<5×10−4), whereas all cluster type 2 diabetes SNPs
together did not reach Bonferroni-corrected significance
(p=0.03, ESM Table 10). The most significant of these
GWAS pPSs were replicated using individual-data from

MGB Biobank: increased Obesity cluster pPS with
increased risk of hypertension, increased Lipodystrophy
cluster pPS with increased risk of CAD, and increased
Liver/lipid cluster pPS with reduced eGFR, in all individ-
uals with and without adjustment for type 2 diabetes status
(Fig. 4b, ESM Table 11).

Clusters from CAD and CKD share mechanistic pathways with
type 2 diabetes We applied our clustering pipeline to two
other metabolic diseases, CAD and CKD, identifying five
CAD clusters (219 loci): ALP negative, Lipoprotein A,
HDL negative, Cholesterol and Blood markers increased;
and five CKD clusters (70 loci): Blood markers increased,
Urea increased, Reduced haematopoiesis, Beta cell opposite
and Lipoprotein A (ESM Tables 12-15, ESM Fig. 5). Based
on inspection of constituent variants and traits in the clusters
of type 2 diabetes, CAD and CKD, the Lipoprotein A cluster
was shared by all three diseases. Similarly, the ALP negative
cluster was shared between type 2 diabetes and CAD, and the
Blood markers increased cluster between CAD and CKD.

Discussion

Novel approaches are needed to connect the currently identified
hundreds of type 2 diabetes loci to disease pathophysiology and
accommodate the rapid pace of new locus discovery. Here, we
describe expanded clustering of type 2 diabetes variants, using
a high-throughput pipeline for extracting and pre-processing
variants from multiple GWAS datasets and generating a
variant–trait association matrix. Applying bNMF soft cluster-
ing to this 323 by 64 type 2 diabetes variant–trait matrix, we
identify ten type 2 diabetes genetic clusters, which we show
have tissue epigenomic specificity and are associated with
distinct metabolic outcomes.

Importantly, among the ten clusters, we again capture the
five identified in our previous work of 94 type 2 diabetes
variants (Beta cell, Proinsulin, Obesity, Lipodystrophy,
Liver/lipid) [5], with the Beta cell cluster subdivided into
two distinct clusters, and also identified four novel clusters
related to pronounced insulin secretion, levels of ALP, Lp(a)
and SHBG. In contrast to our prior work, which involved
manual curation of publishedGWAS loci to generate the input
list of variants, the current approach allowed for use of
uncurated GWAS datasets and included newly available
datasets, more than tripling the number of input loci. Thus,
rediscovery of the previously identified clusters provides
strong validation of this high-throughput approach, with the
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newly identified clusters driven by traits or loci not available
in the prior analysis.

Three of the ten type 2 diabetes clusters identified in this
work (Beta cell 1, Beta cell 2 and Proinsulin) clearly relate to
pancreatic beta cell function, differing in part due to the direc-
tion or magnitude of the PI association. All three clusters were
enriched in pancreatic islet tissue in the epigenomics analysis.
Additionally, loci in the Beta cell 2 cluster had a unique signal
of enrichment for single beta cells predicted to be in a stressed
state [30]. The functional distinctions between these clusters

support our independent approach of phenotypically informed
type 2 diabetes locus clustering.

Three other type 2 diabetes clusters related to pathways of
insulin resistance (Obesity, Lipodystrophy, Liver/lipid) were
also captured in our prior work, but now gained additional loci
and traits. Loci in these clusters were most enriched for
enhancers in tissues for the suspected mechanisms: pre-adipo-
cytes, adipocytes and liver tissue, respectively. Interestingly
we also observed a significant association for the Liver/lipid
cluster with pancreatic alpha cells, which may relate to the
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liver activity of this cluster or could suggest a more direct role
for glucagon in diabetes development [40]. The distinction
between fat accumulation in the Obesity cluster and abnormal
fat compartmentalisation in the Lipodystrophy cluster may be
supported by the differential enhancer enrichment shown for
different developmental stages of the adipocyte lineage.

We also identified four new type 2 diabetes clusters from
this work, several of which were also captured in the cluster-
ing of CAD and CKD: ALP negative, Lipoprotein A, SHBG
and Hyper insulin secretion.

The ALP negative cluster (seen for type 2 diabetes and
CAD) was driven by reduced serum ALP levels and the
ABO locus. Isoform levels of ALP have been shown to vary
by blood group [41]. The ABO locus and blood type have
previously been connected to type 2 diabetes [42] and CAD
[43] risk, but the causal mechanisms are not fully understood.

The Lipoprotein A cluster (seen for type 2 diabetes, CAD
and CKD) included the top locus (SLC22A3/LPA tagged by
rs487152) and top biomarker Lp(a), pointing to a genetic path-
way leading to increased Lp(a) levels and increased risk of
type 2 diabetes, CAD and CKD. The relationship between

Lp(a) and cardiometabolic disease is complex, and genetic
interrogation of LPA has been complicated by the fact that
plasma concentration of Lp(a) is influenced by kringle IV type
2 repeats in addition to other genetic variation [44]. While
epidemiological studies have connected elevated Lp(a) levels
with increased risk of CAD and CKD [45, 46], an inverse
association has been reported for type 2 diabetes [47]. Our
genetic findings for type 2 diabetes therefore indicate that
there are likely to be multiple pathways impacting Lp(a) level
that may have differential effects on type 2 diabetes risk.

For the SHBG cluster (seen for type 2 diabetes), our results
point to a genetic pathway whereby alteration of the SHBG
locus leads to reduced SHBG levels and increased type 2
diabetes risk, which was consistent with previous epidemio-
logical and genetic studies indicating that low circulating
levels of SHBG were causally related to increased risk of type
2 diabetes in both sexes [48].

We assessed the impact of cluster pPSs in individuals,
finding that individuals with increased cluster pPS had signif-
icant associations with clinical traits and disease outcomes,
supporting prior findings for the original five clusters [8].
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ALP negative (4)

Liver/lipid (11)
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Obesity (35)
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Proinsulin (18)
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0.98 1.00 1.02 1.04 1.06

OR (95% CI)

ba

Fig. 4 Forest plot of cluster associations with outcomes using (a) GWAS
and (b) individual-level data fromMGBBiobank. (a) Forest plot showing
standardised effect sizes with 95% CI of cluster pPS–outcome associa-
tions derived from GWAS summary statistics. (b) Forest plot of associ-
ations of pPSs in individuals in theMGBBiobankwith clinical outcomes.

Three metabolic outcomes (type 2 diabetes, CAD and CKD, all unadjust-
ed for type 2 diabetes) are displayed. The numbers in parentheses next to
cluster names indicate the number of variants included in the analysis in
each cluster. Filled points indicate p values <0.05. GRS, genetic risk
score; T2D, type 2 diabetes
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While the effect sizes of the pPSs on clinical outcomes were
too small to be of clinical utility at the individual-level, the
results point to marked heterogeneity in type 2 diabetes
genetic associations with clinical features, suggesting
important physiological implications. For example, we
detect associations with CKD and eGFR for several of
the insulin-resistance-related clusters, but not with the
insulin-deficiency-related clusters. Our results are consis-
tent with the phenotype-based clustering finding in
Ahlqvist et al of the ‘severe insulin-resistant diabetes’
group having the highest risk of developing CKD [49]
and may have implications for preventing or treating
diabetic kidney disease.

The strengths of this study include the high-throughput
approach for pre-processing variants and traits from multiple
GWAS datasets in a semi-automated way. This method can be
readily applied to other diseases beyond type 2 diabetes to iden-
tify mechanisms of disease, and the code has beenmade publicly
available. We included here application of the pipeline to CAD
and CKD, demonstrating transferability of the approach and
potential sharedmechanisms of disease. Limitations include clus-
tering of only available phenotypes from GWAS. It is possible
that additional pathways exist that are not captured using the set
of traits included in the analysis. Additionally, due to methodo-
logical limitations and data availability we have focused on
GWAS from populations of European ancestry, although we
are actively pursuing application of this method in non-
European populations through additional efforts. It is worth
noting that bNMF generates weights for all included elements
in the matrix, and it is not known how best to determine a cut-off
threshold for cluster membership; we have applied a reasonable
strategy to maximise signal-to-noise ratio. Future work would
benefit from longitudinal analysis to assess the impact of clusters
throughout the disease course as well as further validation that
the genetic clusters map to predicted disease processes, as has
been done for one of the original clusters using cellular charac-
terisation [7].

In summary, we have identified ten robust genetic clusters
pointing to mechanistic pathways of type 2 diabetes using a
high-throughput clustering pipeline. These clusters displayed
tissue-specific enrichment patterns even within single-cell
pancreatic tissue subsets and could be used to generate pPSs
that stratify patients genetically with distinct associations with
clinical outcomes. We demonstrate that our approach can be
applied to other complex diseases, with identification of over-
lapping clusters between type 2 diabetes, CAD and CKD.
Thus, we contribute to further delineation of cardiometabolic
disease genetic pathways using a data-driven approach
informed by physiology.
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