
ARTICLE

Investigating the causal relationships between excess adiposity
and cardiometabolic health in men and women

Pascal M. Mutie1
& Hugo Pomares-Milan1

& Naeimeh Atabaki-Pasdar1 & Daniel Coral1 & Hugo Fitipaldi1 &

Neli Tsereteli1 & Juan Fernandez Tajes1 & Paul W. Franks1,2 & Giuseppe N. Giordano1

Received: 11 February 2022 /Accepted: 23 August 2022 /Published online: 12 October 2022
# The Author(s) 2022

Abstract
Aims/hypothesis Excess adiposity is differentially associated with increased risk of cardiometabolic disease in men and women,
according to observational studies. Causal inference studies largely assume a linear relationship between BMI and cardiomet-
abolic outcomes, which may not be the case. In this study, we investigated the shapes of the causal relationships between BMI
and cardiometabolic diseases and risk factors. We further investigated sex differences within the causal framework.
Methods To assess causal relationships between BMI and the outcomes, we used two-stage least-squares Mendelian randomisation
(MR), with a polygenic risk score for BMI as the instrumental variable. To elucidate the shapes of the causal relationships, we used a
non-linear MR fractional polynomial method, and used piecewise MR to investigate threshold relationships and confirm the shapes.
Results BMI was associated with type 2 diabetes (OR 3.10; 95% CI 2.73, 3.53), hypertension (OR 1.53; 95% CI 1.44, 1.62) and
coronary artery disease (OR 1.20; 95%CI 1.08, 1.33), but not chronic kidney disease (OR 1.08; 95%CI 0.67, 1.72) or stroke (OR
1.08; 95% CI 0.92, 1.28). The data suggest that these relationships are non-linear. For cardiometabolic risk factors, BMI was
positively associated with glucose, HbA1c, triacylglycerol levels and both systolic and diastolic BP. BMI had an inverse causal
relationship with total cholesterol, LDL-cholesterol and HDL-cholesterol. The data suggest a non-linear causal relationship
between BMI and BP and other biomarkers (p<0.001) except lipoprotein A. The piecewise MR results were consistent with
the fractional polynomial results. The causal effect of BMI on coronary artery disease, total cholesterol and LDL-cholesterol was
different in men and women, but this sex difference was only significant for LDL-cholesterol after controlling for multiple testing
(p<0.001). Further, the causal effect of BMI on coronary artery disease varied by menopause status in women.
Conclusions/interpretation We describe the shapes of causal effects of BMI on cardiometabolic diseases and risk factors, and
report sex differences in the causal effects of BMI on LDL-cholesterol. We found evidence of non-linearity in the causal effect of
BMI on diseases and risk factor biomarkers. Reducing excess adiposity is highly beneficial for health, but there is greater need to
consider biological sex in the management of adiposity.
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Introduction

Cardiometabolic diseases (CMDs) are among the top ten
causes of death and are associated with increased healthcare
costs globally, making their relationship with adiposity a
major public health concern [1–4]. Excess adiposity is associ-
ated with increased risk of CMDs, as well as increased risk of
all-cause mortality [5–8]. The BMI category at lowest risk of
early death is 20–25 kg/m2 in populations of European ances-
try, with average health worsening significantly within the
‘overweight’ category, and deteriorating further as BMI
increases [9]. Both observational studies and some causal
inference studies suggest that BMI has a J-shaped relationship
with all-cause and cardiovascular mortality [5, 10].

Observational studies often suffer from residual confound-
ing and reverse causality, as do the relational shapes they
describe. For example, the highmortality rate observed in some
people with lower BMI (J-shaped relationship) is probably
caused by the chronic disease cachexia [11]. While causal rela-
tionships between adiposity and CMDs have been determined
previously, most studies assume these relationships are linear
[12–15]. In addition, observational studies have shown that sex
confers differential CMD risk profiles in men and women, but
extensive investigation of such differences within a causal
framework is lacking [16–19]. Therefore, understanding the
nature of causal relationships between excess adiposity,
CMDs and any sex differences therein may help to refine
public health interventions [20].

Patterns of causal associations between excess adiposity
and cardiometabolic outcomes remain understudied; given

the shapes reported in observational studies, we hypothesised
that adiposity has non-linear causal effects on cardiometabolic
outcomes, with sex differences within this causal framework.
The purpose of this study was to elucidate the nature of causal
effects and explore the sex differences in the effects of BMI on
CMDs (coronary artery disease [CAD], type 2 diabetes,
chronic kidney disease [CKD], stroke and hypertension). We
further extended these investigations to risk factor biomarkers:
glycaemic markers (glucose, HbA1c), lipids (triacylglycerols,
total cholesterol, LDL-cholesterol and HDL-cholesterol),
lipoprotein A (LPA), urea and BP.

Methods

Population

We used individual-level data from the UK Biobank, a cohort
of approximately 500,000 participants of mixed ancestries
assessed across 22 centres in the UK. For this study, we select-
ed individuals of white European descent only (n=409,584). In
summary, participants aged 40–69 years were enrolled between
2006 and 2010, and standard anthropometric measurements
were taken, in addition to biological samples (urine, blood
and saliva); socio-demographic, lifestyle and other health deter-
mining factors were recorded. The UK Biobank study received
approval from the Multi-centre Research Ethics Committee
(reference 16/NW/0274), and all participants gave informed
consent [21]. Information about recruitment and data collection
has been provided elsewhere [22]. The current analysis is based
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on application number 57232 to the UKBiobank resource. Use
of UK Biobank data for the analysis described here was
approved by the Swedish Ethics Approval Authority (applica-
tion number 2021-03174).

Outcome variables

Disease outcomes For each of the disease outcomes (type 2
diabetes, hypertension, stroke, CAD and CKD), information
was obtained from ICD-9 (http://www.icd9data.com/2007/
Volume1/default.htm) and ICD-10 (http://apps.who.int/
classifications/icd10/browse/2016/en) diagnosis codes for
both prevalent and incident disease, self-reported diagnoses,
enrolment interview reports and self-reported medication data.
We excluded participants whose reported age of type 2 diabe-
tes diagnosis was 20 years old or less, as it was deemed to be
probable type 1 diabetes. For cardiovascular disease (CAD,
stroke and hypertension) and CKD, we additionally used
information regarding surgical operations, plus interventional
procedures related to each disease fromOPCS4 codes (https://
classbrowser.nhs.uk/#/), self-reported surgical procedures,
and details of vascular diseases diagnosed by a doctor, which
contained specific coding for each disease outcome.
Additional information was obtained from medication data
for both men and women, based on self-reported data collect-
ed at enrolment. Details of codes and data fields used for each
disease are provided in electronic supplementary material
(ESM) Table 1.

Disease-risk biomarkers The disease-risk biomarkers that we
included were glucose, HbA1c, triacylglycerols, cholesterol
(total, HDL and LDL), urea and LPA, plus systolic BP
(SBP) and diastolic BP (DBP). This information was obtained
from the blood biochemistry categories of the UK Biobank,
details of which are provided in ESM Table 2. For BP, we
added 15 and 10 mmHg, respectively, to the values for SBP
and DBP in participants taking BP medication [23].

Genetic data

Details of enrolment and genetic data handling have been
extensively explained by Bycroft et al [22]. For this project,
we used version 3 of the imputed genotypes data from the UK
Biobank. We excluded SNPs and individuals with a genotype
call rate <99%, SNPs with a Hardy–Weinberg equilibrium p
value <1×10−10, those with an imputation score <80%, any
duplicated SNPs, and SNPs with a minor allele frequency
<0.01. Using quality control results provided by UK
Biobank, we further excluded individuals deemed outliers
for heterozygosity (indicating poor sample quality or contam-
ination), those with sex ambiguity and aneuploidy, and one of
any pair of related individuals (up to third-degree relatedness,

kinship coefficient 0.0442–0.0882). After further exclusion of
participants with missing anthropometric measurements or
HbA1c beyond detectable ranges (>184 mmol/mol or 19%),
our final sample comprised 333,582 individuals (ESM Fig. 1).

Computing the BMI polygenic risk score

We used genome-wide association study (GWAS) summary
statistics from the latest GIANT meta-analysis of BMI
GWASs (excluding participants from the UK Biobank), and
selected only genetic variants that were associated with BMI
at a genome-wide significance level (p5×10−8): n=1560 SNPs
[24]. Individual genetic data were obtained from the UK
Biobank. A BMI polygenic risk score (PRS; PRSBMI) was
calculated by weighting each SNP by its effect size from
GWAS summary data and then summing these values for all
SNPs for each individual in our sample. Prior to PRSBMI

calculation, clumping restricted to r2=0.2 and a 250 kb
window was performed to ensure that only SNPs that are not
in linkage disequilibrium were used. After this quality control
step, there were 89 uncorrelated BMI SNPs available for use
in generating the PRSBMI. All PRSBMI calculations were
performed using PRSice-2 software [25]. To reduce the
chances of horizontal pleiotropy between PRSBMI and the
various diseases and risk factors, we selected BMI SNPs
specific to each trait. This was done by excluding any SNPs
that were associated with the respective trait at genome-wide
significance from the BMI SNPs by comparing with GWAS
summary data for the trait. We then computed a trait-specific
PRSBMI (for instance, a PRSBMI for CAD analysis that used
BMI SNPs that were not associated with CAD) for use in
downstream analyses involving that specific trait.

Statistical analysis

Causal effect assessment We used two-stage least-squares
(2SLS) Mendelian randomisation (MR), with PRSBMI as the
genetic instrumental variable, to estimate causal effects of BMI
on cardiometabolic traits. Prior to analysis, BMI was trans-
formed in the same way as in the discovery GWAS by Locke
et al [24]. Specifically, the effects of age, age squared, smoking
status, alcohol consumption, UK Biobank assessment centre
and the Townsend Deprivation Index were regressed out sepa-
rately for men and women. Residuals from each of the models,
men and women, were then inverse normal-transformed to
create a main exposure variable representing BMI.

In the first stage, the exposure was regressed on the
PRSBMI in a linear model, adjusting for genotyping array
and the first ten genetic principal components characterising
the population substructure. Thereafter, fitted values were
generated and used in the second stage of 2SLS, where logis-
tic and linear regression models were used for binary and
continuous traits respectively, with the fitted values as the
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exposure, adjusting for the same covariates as in the first stage.
The regression coefficients of these fitted values in the second
stage represent an estimate of the causal effect of BMI on the
outcome [26]. We ran 2SLS models for each disease outcome
and each biomarker, and also performed sex-stratified
analyses.

Continuous outcomes were scaled so that the results repre-
sent a change in SD units of outcome per unit change in BMI.
Cochran’sQ test was used to assess sex differences in the sex-
stratified analysis. To estimate the causal effect of BMI on any
CMD, we used both fixed and random effects meta-analysis,
and considered the combined outcome as the likelihood of any
CMD. We performed 15 main hypothesis tests (for the five
disease outcomes and ten disease-risk biomarkers) and 30 sex-
stratified tests; therefore, the Bonferroni-corrected signifi-
cance level was set at p=0.001 (0.05/45).

Determining the shape of the causal relationships To describe
the shape of the causal relationships between BMI and each of
the traits, we used a non-linearMR fractional polynomials meth-
od [27]. Themethod involves calculating the local average caus-
al effect (LACE) in quantiles based on the instrumental variable-
free distribution of the exposure. These LACE estimates are then
meta-regressed against the means of the exposure in each
quantile, and tests of non-linearity are applied to test the null
hypothesis that the resultant non-linear model is no different
from a linear model. We used 100 quantiles in each assessment,
as a high number of quantiles provides greater resolution in
fractional polynomials [27]. To obtain a deeper understanding
of causal shapes, we also performed piecewise MR to investi-
gate whether any of the relationships had a threshold effect and
to confirm the results of the non-linearity tests. Unlike fractional
polynomial MR, this method does not smooth over the different
quantiles. Instead, it fits a linear model in each quantile, with the
slope representing the LACE. For each trait, we also conducted
sex-stratified analysis. All analyses were performed using R
software version 3.6.2 (https://www.R-project.org/).

Sensitivity analyses

To address potential bias due to extreme values, varying
incompleteness of phenotype data (e.g. LPA) and effects of
factors such as menopause and waist–hip ratio, we performed
several sensitivity analyses as follows: (1) using complete
cases only; (2) excluding outliers of BMI, defined using
Tukey’s lower and upper fences [28]; (3) including residuals
from the first stage in the second stage (two-stage residual
inclusion, 2SRI); (4) adjusting for lipid-lowering medication
and waist–hip ratio; (5) excluding premenopausal or postmen-
opausal women, stratifying women bymenopause status (self-
reported or by age cut-point of 55 years), and stratifying both
men and women by age; and (6) using a G-estimator method

[29] to calculate causal estimates. All sensitivity analyses were
also sex-stratified where applicable.

In 2SRI, the residuals are included as a control function to
minimise bias of the standard 2SLS, especially when the effect
measure is non-linear. The G-estimator gives a consistent esti-
mate of the causal effect that varies the least. The causal effect
estimates obtained using these methods should therefore not
differ substantially from each other. We finally used two-
sample MR to assess bidirectional causation.

Results

Participants’ characteristics are shown in Table 1. The dataset
included slightly more women (n=179,522, 53.8%) than men

Table 1 Participant characteristics (n=333,582)

Characteristic Men Women

Proportion 46.2 53.8

Age (years) 57.1 (8.1) 56.7 (7.9)

BMI (kg/m2) 27.8 (4.2) 27.0 (5.1)

Townsend deprivation index −1.59 (2.9) −1.53 (3.0)
Smoking status

Never 41.2 58.8

Previous 51.1 48.9

Current 53.7 46.3

Alcohol intake status

Never 24.7 75.3

Previous 43.0 57.0

Current 46.8 53.2

Mortality 60.0 40.0

CMDs

CAD 67.4 32.6

Type 2 diabetes 61.5 38.5

Stroke 61.3 38.7

CKD 55.2 44.8

Hypertension 53.7 46.3

Biomarkers

SBP (mmHg) 145.0 (19.4) 138.0 (21.2)

DBP (mmHg) 86.6 (11.0) 82.4 (11.1)

Glucose (mmol/l) 5.2 (1.4) 5.1 (1.0)

HbA1c (mmol/mol) 36.3 (7.3) 35.7 (5.7)

HbA1c (%) 6.1 (1.9) 6.0 (1.7)

Cholesterol (mmol/l) 5.5 (1.1) 5.9 (1.1)

HDL-cholesterol (mmol/l) 1.3 (0.3) 1.6 (0.4)

LDL-cholesterol (mmol/l) 3.5 (0.9) 3.6 (0.9)

Triacylglycerols (mmol/l) 2.0 (1.2) 1.6 (0.9)

LPA (mmol/l) 43.4 (49.3) 44.6 (49.5)

Urea (mmol/l) 5.6 (1.4) 5.3 (1.3)

Continuous variables are presented as mean (SD) and categorical vari-
ables as percentages
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(n=154,060, 46.2%). On average, women had slightly lower
BMI (27.0±5.1 kg/m2) compared with men (27.8±4.2 kg/m2).
There was no difference in the mean age, men 57.1±8.1 years,
women 56.7±7.9 years. Men had higher baseline mean BP
(SBP=145±19.4 mmHg; DBP=86.6±11.0 mmHg) compared
with women (SBP=138±21.2 mmHg; DBP=82.4±11.1
mmHg), and a higher prevalence of CMDs (e.g., 67.4% in
men vs 32.6% in women for CAD). Differences in anthropo-
metric measures and disease prevalence persisted across age
groups (ESM Figs 2 and 3).

In the 2SLS analyses, BMI was associated with type 2
diabetes (OR 3.10; 95% CI 2.73, 3.53; p=1.38×10−67), hyper-
tension (OR 1.53; 95% CI 1.44, 1.62; p=8.92×10−44) and
CAD (OR 1.20; 95% CI 1.08, 1.33; p=6.86×10−4), but not
CKD (OR 1.08; 95% CI 0.67, 1.72; p=0.76) or stroke
(OR=1.08; 95% CI 0.92, 1.28; p=0.34) (Table 2).

For disease-risk biomarkers (coefficients expressed in
SD units), urea (β=0.05; 95% CI 0.01, 0.08; p=0.01) and
LPA levels (β=0.02; 95% CI −0.02, 0.05, p=0.31) were not
significantly associated with BMI, after correcting for
multiple testing (pBonferroni=0.001). A positive causal effect
of BMI was observed for glucose (β=0.16; 95% CI 0.13,
0.20; p=4.90×10−24), HbA1c (β=0.22; 95% CI 0.19, 0.26,
p=2.30×10−34), and triacylglycerol levels (β=0.13; 95% CI
0.09, 0.16, p=2.38×10−13). BMI had an inverse causal rela-
tionship with total cholesterol (β=−0.18; 95% CI −0.21,
−0.14, p=1.37×10−24), LDL-cholesterol (β=−0.10; 95% CI
−0.14, −0.07, p=9.59×10−10) and HDL-cholesterol

(β=−0.26; 95% CI −0.30, −0.22, p=4.36×10−35). The effect
of BMI on DBP variation (β=0.15; 95% CI 0.12, 0.19,
p=1.30×10−18) was almost twice the effect on SBP variation
(β=0.09; 95% CI 0.06, 0.12, p=2.31×10−7) (Table 2).

Sex-stratified analyses

As shown in Table 2, the causal effect of BMI on CAD in
women was not statistically significant (OR=0.97; 95% CI
0.81, 1.18, p=0.78), but it was in men (OR=1.30; 95% CI
1.15, 1.47, p=2.55×10−5) (p value for sex difference=0.01;
however, this was not significant after accounting for multiple
testing, p<0.001, Table 3). No significant differences between
sexes were observed for the causal effects of BMI on type 2
diabetes, stroke, hypertension or CKD.

Of the biomarkers, LDL-cholesterol was not significantly
associated with BMI in women (β=−0.05; 95% CI −0.09,
0.00, p=0.05), but it was in men (β=−0.17; 95% CI −0.21,
−0.12, p=4.79×10−11), and this sex difference was significant
even after adjusting for multiple testing (pBonferroni=0.001).
The causal effect of BMI on total cholesterol in men
(β=−0.23; 95% CI −0.28, −0.18, p=3.96×10−19), was almost
double the effect seen in women (β=−0.13, 95% CI −0.18,
−0.08, p=5.13×10−8), but the sex difference did not persist
after correcting for multiple testing (pBonferroni=0.001). In
men, urea was not significantly associated with BMI
(β=0.02; 95% CI −0.03, 0.07, p=0.37); however, a positive
association was observed in women (β=0.06; 95% CI 0.02,

Table 2 Estimates of causal relationships between BMI and cardiometabolic outcomes using 2SLS MR in the UKB

Combined Men Women

Trait OR/β (95% CI) p value OR/β (95% CI) p value OR/β (95% CI) p value

CMDs

CAD 1.20 (1.08, 1.33) 6.86×10−4 1.30 (1.15, 1.47) 2.55×10−5 0.97 (0.81, 1.18) 0.78

Type 2 diabetes 3.10 (2.73, 3.53) 1.38×10−67 2.85 (2.43, 3.33) 2.61×10−38 3.51 (2.84, 4.33) 2.99×10−31

Stroke 1.08 (0.92, 1.28) 0.34 1.14 (0.92, 1.40) 0.23 1.00 (0.77, 1.30) 0.98

CKD 1.08 (0.67, 1.72) 0.76 1.13 (0.62, 2.06) 0.69 0.99 (0.47, 2.06) 0.97

Hypertension 1.53 (1.44, 1.62) 8.92×10−44 1.50 (1.38, 1.63) 1.49×10−22 1.55 (1.42, 1.70) 9.28×10−23

Biomarkers

DBP 0.15 (0.12, 0.19) 1.30×10−18 0.13 (0.09, 0.18) 4.91×10−8 0.17 (0.12, 0.22) 7.25×10−12

SBP 0.09 (0.06, 0.12) 2.31×10−7 0.10 (0.06, 0.15) 2.71×10−5 0.07 (0.03, 0.12) 2.37×10−3

Glucose 0.16 (0.13, 0.20) 4.90×10−24 0.18 (0.13, 0.23) 6.76×10−12 0.15 (0.10, 0.20) 7.77×10−9

HbA1c 0.22 (0.19, 0.26) 2.30×10−34 0.23 (0.18, 0.28) 3.85×10−18 0.22 (0.17, 0.27) 4.09×10−18

Cholesterol −0.18 (−0.21, −0.14) 1.37×10−24 −0.23 (−0.28, −0.18) 3.96×10−19 −0.13 (−0.18, −0.08) 5.13×10−8

HDL-cholesterol −0.26 (−0.30, −0.22) 4.36×10−35 −0.32 (−0.37, −0.26) 3.66×10−28 −0.25 (−0.31, −0.20) 5.69×10−19

LDL-cholesterol −0.10 (−0.14, −0.07) 9.59×10−10 −0.17 (−0.21, −0.12) 4.79×10−11 −0.05 (−0.09, 0.00) 0.05

Triacylglycerols 0.13 (0.09, 0.16) 2.38×10−13 0.14 (0.09, 0.18) 3.76×10−8 0.12 (0.07, 0.17) 1.82×10−6

LPA 0.02 (−0.02, 0.05) 0.31 0.01 (−0.05, 0.05) 0.99 0.04 (−0.01, 0.09) 0.16

Urea 0.05 (0.01, 0.08) 0.01 0.02 (−0.03, 0.07) 0.37 0.06 (0.02, 0.11) 8.70×10−3
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0.11, p=8.70×10−3), although this was not significant after
Bonferroni correction. BMI was associated with DBP in both
men and women, but was associated with SBP in men only
(Tables 2 and 3).

Effect of BMI on any cardiometabolic disease outcome

In combined meta-analysis of the causal effect sizes of BMI
on CMD, BMI was significantly associated with increased
causal odds of any CMD (fixed effects OR 1.55; 95% CI
1.48, 1.62; p=8.23×10−78; random effects OR 1.48; 95% CI
1.00, 2.19; p=0.05). In men, BMI was also causally linked to
any CMD using both fixed and random effects, but in women
this association was only significant when considering fixed
effects (Fig. 1).

2SLS sensitivity analyses

In the combined analyses, results did not differ across the three
methods used to estimate causal effects (2SLS, 2SRI and G-
estimator) for any trait except BP, HbA1c and LPA levels,
where use of the G-estimator gave larger effect sizes with
wider 95% CIs (ESM Tables 3 and 4). Adjusting for lipid-
lowering medication or waist–hip ratio did not materially
change the results in either the main analysis or when exclud-
ing outliers for BMI (ESM Figs 4 and 5; ESM Tables 5 and 6).

A sex difference in effects of BMI on hypertension was
observed when comparing men to premenopausal women,
but this was not significant after accounting for multiple test-
ing (pBonferroni=0.001). Significant sex differences were

observed for the relationship between BMI and LDL-
cholesterol after multiple testing correction, but not when
comparing men to postmenopausal women (ESM Table 7).
In the age-stratified analyses (i.e., <55 years or 55 years and
above), BMI was associated with CAD across all groups in
men and in premenopausal (self-reported) women only. The
causal effect of BMI was statistically significant in all groups
for hypertension and type 2 diabetes, but not stroke or CKD
(ESM Fig. 6 and ESM Table 8). Analyses performed to assess
bidirectional causation did not yield results supporting such
relationships. The association between SBP and BMI had a
null effect size, while that between DBP and BMI suffered
from horizontal pleiotropy (ESM Table 9).

Shapes of causal relationships

From the non-linear MR fractional polynomials (FP), there
was evidence to support a non-linear causal effect of BMI
on CAD and type 2 diabetes. In both cases, a quadratic model
was better than a linear one (pQuadratic=0.02 and 0.004, respec-
tively). For type 2 diabetes, a fractional polynomial of one
degree was a better fit than a linear model (pFP=0.01). CAD
and type 2 diabetes showed LACE heterogeneity across
quantiles (PHet=0.03 and 0.003, respectively). In men, the
causal effect of BMI was non-linear in type 2 diabetes, with
a quadratic model being better than a linear model
(pQuadratic=0.02). In women, non-linear models were a better
fit of the data for CAD, type 2 diabetes and hypertension
(pCochranQ=0.002, 0.02 and 0.02, respectively). This evidence
did not pass the multiple testing threshold (pBonferroni=0.001).

Table 3 Cochran’s Q test of the
difference between men and
women for causal effects of BMI
on cardiometabolic traits

Trait Men vs all women Men vs premenopausal
women

Men vs postmenopausal
women

CMDs

CAD 0.011 0.115 0.006

Type 2 diabetes 0.121 0.325 0.541

Stroke 0.440 0.434 0.139

CKD 0.783 0.615 0.570

Hypertension 0.578 0.003 0.542

Biomarkers

DBP 0.333 0.083 0.710

SBP 0.369 0.102 0.157

Glucose 0.355 0.729 0.098

HbA1c 0.893 0.286 0.481

Cholesterol 0.005 0.001 0.067

HDL-cholesterol 0.111 0.913 0.009

LDL-cholesterol 5.94×10−4 2.31×10−4 0.032

Triacylglycerols 0.600 0.136 0.077

LPA 0.328 0.897 0.201

Urea 0.239 0.268 0.467
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However, in the stratified analyses, triangulated evidence
suggested BMI had a non-linear causal association with
CKD in both men and women (see Fig. 2).

There was no statistically significant evidence to support a
non-linear causal relationship between BMI and LPA, DBP,
SBP and urea after correcting for multiple testing

(pBonferroni=0.001), but the results were significant for
glycaemic and lipid biomarkers. In men, there was statistically
significant evidence, accounting for multiple testing, to
support a non-linear causal association between BMI and
HbA1c, HDL-cholesterol, LDL-cholesterol, triacylglycerols
and total cholesterol, a pattern that was also observed in

Fixed effects

Random effects

CKD

Stroke

CAD

Hypertension

T2D

0.5 1.0 1.5 2.0 2.5 3.0
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Fig. 1 Forest plots of a summary
meta-analysis combining the
causal effect estimates of BMI on
CMDs in (a) men, (b) women,
and (c) all participants. The
common outcome in both fixed
and random effect lines represents
any CMD. T2D, type 2 diabetes
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women (see Tables 4 and 5, Figs 3 and 4, and ESM Figs 7–9).
The piecewise MR results were consistent with these results;
however, interpretation of the plots can be difficult, especially
at the tails of the effect estimate distribution, where the linear
segments are unrestricted and thus extrapolate to the most
extreme values (ESM Fig. 10).

Discussion

In this study, we investigated the shapes of causal relation-
ships between BMI, CMDs and biomarkers of disease risk.
We further investigated sex differences within the causal
framework, and estimated the causal effect of BMI on each
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Fig. 2 Plots showing the
estimated shapes of the causal
relationships between BMI and
CMDs in combined analyses
(a–e), men (f–j) and women
(k–o). Shape estimates are derived
from the function of fractional
polynomials that best fits the data.
The solid black line represents the
function curve, the blue band
represents 95% CI, the red dot
represents the reference BMI of 25
kg/m2, and the dashed line
represents the null effect size. The
plots have been cropped to depict
estimated causal associations for
BMI up to 40 kg/m2 and OR up to
3.0 for ease of comparison. The
uncropped plot is presented in
ESM Fig. 7. HTN, hypertension;
T2D, type 2 diabetes
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CMD studied. The estimates from combined analyses showed
that BMI is significantly associated with type 2 diabetes, CAD
and hypertension, but not CKD or stroke; it is also associated
with all assessed biomarkers except LPA and urea levels after

controlling for multiple testing. In men, BMI associations
mirrored those of the unstratified analyses, but BMI was not
causally associated with CAD, LDL-cholesterol or SBP in
women. BMI was causally associated with increased odds of

Table 4 Tests for shapes of
causal relationships between BMI
and cardiometabolic phenotypes

Non-linearity tests Heterogeneity tests

Trait pFP degree pFP non-linearity pQuadratic pCochranQ pCochranQ pTrend

CMDs

CAD 0.18 0.10 0.02 0.36 0.03 0.53

Type 2 diabetes 0.28 0.01 4.25×10−3 0.60 3.07×10−3 0.30

Stroke 0.99 0.74 0.79 0.10 0.04 0.24

CKD 0.26 0.44 0.50 0.51 0.02 0.05

Hypertension 0.15 1.00 0.83 0.73 0.05 0.41

Biomarkers

DBP 0.38 9.12×10−3 3.33×10−3 0.24 4.53×10−2 6.21×10−2

SBP 0.97 3.62×10−2 4.12×10−2 0.48 5.61×10−2 8.30×10−2

Glucose 1.96×10−2 2.16×10−4 2.17×10−5 0.24 0.13 0.46

HbA1c 3.27×10−3 7.25×10−8 9.54×10−10 1.38×10−4 0.14 1.36×10−2

Cholesterol 6.75×10−3 3.42×10−8 2.50×10−10 5.68×10−5 0.77 0.84

HDL-cholesterol 2.54×10−2 1.82×10−6 7.04×10−8 2.19×10−2 0.10 0.11

LDL-cholesterol 9.00×10−9 2.78×10−5 2.56×10−13 7.94×10−4 0.28 0.12

Triacylglycerols 8.76×10−8 4.07×10−5 2.36×10−9 2.61×10−5 0.15 0.73

LPA 0.97 0.47 0.71×10−1 0.74 0.27 0.10

Urea 0.50 2.28×10−3 3.33×10−3 0.48 0.26 0.62

Table 5 Tests for sex-stratified shapes of causal relationships between BMI and cardiometabolic phenotypes

Non-linearity tests Heterogeneity tests

pFP degree pFP non-linearity pQuadratic pCochranQ pCochranQ pTrend

Trait Men Women Men Women Men Women Men Women Men Women Men Women

CMDs

CAD 0.83 0.44 0.10 0.43 0.08 0.28 0.44 0.00 0.08 0.32 0.26 0.03

Type 2 diabetes 0.21 0.10 0.05 0.17 0.02 0.08 0.73 0.02 0.87 0.01 0.40 0.78

Stroke 0.85 0.54 0.44 0.70 0.34 0.55 0.75 0.51 0.10 0.38 0.40 0.31

CKD 0.06 1.00 0.01 4.68×10−3 0.06 0.01 0.00 0.00 0.49 0.19 0.06 0.56

Hypertension 0.27 0.20 0.23 0.08 0.10 0.08 0.21 0.03 0.04 0.64 0.56 0.04

Biomarkers

DBP 0.61 0.34 1.36×10−3 0.46 1.12×10−3 0.31 0.24 0.40 0.04 7.61×10−4 0.99 0.35

SBP 0.96 0.90 9.36×10−3 0.60 2.25×10−2 0.56 0.48 0.22 0.03 1.39×10−3 0.91 0.48

Glucose 0.01 0.82 2.34×10−3 0.25 1.32×10−3 0.22 0.39 0.67 0.38 0.41 0.07 0.63

HbA1c 0.01 0.33 2.77×10−5 9.13×10−4 3.69×10−7 3.11×10−4 0.04 0.00 0.06 0.07 0.72 0.40

Cholesterol 0.09 0.02 1.86×10−4 1.55×10−3 4.95×10−5 3.47×10−5 0.01 0.23 0.31 0.18 0.05 0.71

HDL-cholesterol 0.62 0.01 3.02×10−5 2.31×10−3 2.45×10−5 1.62×10−4 0.02 0.19 0.74 0.18 0.69 0.79

LDL-cholesterol 4.52×10−3 2.64×10−4 2.85×10−3 9.09×10−3 4.41×10−6 1.91×10−6 0.09 0.11 0.27 0.21 0.93 0.49

Triacylglycerols 8.05×10−4 1.24×10−3 1.16×10−3 0.05 3.34×10−7 2.36×10−3 0.12 0.34 0.72 0.71 0.18 0.04

LPA 0.16 0.86 0.55 0.58 7.37×10−2 0.51 0.75 0.74 0.84 0.42 0.92 0.85

Urea 0.05 0.75 4.23×10−2 0.23 1.43×10−3 0.43 0.13 0.96 0.02 0.08 0.84 0.67
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any CMD in both sex-combined and sex-stratified analyses,
when assuming fixed effects. When assuming random effects,
the association in women was no longer significant. Sex
differences persisted for causal effects of BMI on LDL-
cholesterol only (with threefold attenuation of effect towards
the null in women) after correcting for multiple testing. In
investigations of non-linearity, after triangulation, the data

support non-linear causal relationships between BMI and
glucose, HbA1c, HDL-cholesterol, LDL-cholesterol, triacyl-
glycerols and total cholesterol (corrected for multiple testing).
In sex-stratified analyses, triangulated evidence supported a
non-linear association between BMI and CKD, HbA1c,
HDL-cholesterol, LDL-cholesterol, triacylglycerols and total
cholesterol in both men and women.
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Fig. 3 Plots showing estimated
shape of the causal relationships
between BMI and selected
cardiometabolic biomarkers in
combined analyses (a–e), men
(f–j) and women (k–o). Shape
estimates are derived from the
function of fractional polynomials
that best fits the data. The solid
black line represents the function
curve, the green band represents
95% CI, the red dot represents the
reference BMI of 25 kg/m2, and
the dashed line represents the null
effect size. The plots have been
cropped to depict estimated
causal associations for BMI up to
40 kg/m2 and β between −2 and 2
for ease of comparison. The
uncropped plot is presented in
ESM Fig. 8. GLU, glucose; HDL,
HDL-cholesterol; LDL, LDL-
cholesterol; T_CHOL, total
cholesterol
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Causal associations between excess adiposity and cardio-
metabolic health have been reported previously, with results
that are largely consistent with ours [13, 14, 30]. In our
analysis, BMI was inversely associated with all cholesterol
types and directly associated with triacylglycerol levels. This
may reflect dyslipidaemic obesity, characterised by high levels
of triacylglycerols and NEFAs, decreased HDL-cholesterol

with HDL dysfunction (a shift towards proinflammation and
altered reverse cholesterol transport), and normal or slightly
increased LDL-cholesterol, attributed to altered metabolism
favouring hypertriglyceridaemia [31]. One study assessed sex
differences for causal effects of BMI in leading causes of death
including cardiometabolic diseases such as type 2 diabetes,
CAD and stroke [15]. In that study, BMI was causally related
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Fig. 4 Plots showing estimated
shape of the causal relationships
between BMI and selected
cardiometabolic biomarkers in
combined analyses (a–e), men
(f–j) and women (k–o). Shape
estimates are derived from the
function of fractional polynomials
that best fits the data. The solid
black line represents the function
curve, the green band represents
95% CI, the red dot represents the
reference BMI of 25 kg/m2, and
the dashed line represents the null
effect size. The plots have been
cropped to depict estimated
causal associations for BMI up to
40 kg/m2 and β between −2 and 2
for ease of comparison. The
uncropped plot is presented in
ESM Fig. 9. TG, triacylglycerol
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to the three diseases in men and women; the relationship with
type 2 diabetes, but not CAD or stroke, varied by sex. In our
study, BMI was not associated with stroke, and sex differences
in type 2 diabetes were not replicated; the inconsistent findings
between these studies may reflect our decision not to use sex-
specific SNP effect estimates.

We found that BMI was associated with CAD in men but not
all women. While some reasons for such findings may include
weak instruments or violations of MR assumptions (conditional
restriction), the ‘weak instrument test’was not suggestive of weak
instruments in our case (statistic=3015.08, p<2×10−16), and the
Durbin–Wu–Hausman test supported the instrumental variable
analysis as more consistent (p=1.04×10−6) than the ordinary
least-squares regression. It is possible that a BMI PRS that is
weighted using effect sizes from combinedGWASsmay not fully
capture general adiposity inwomen, or that general adiposity itself
is a poor predictor of CAD in all women. However, whenwomen
were grouped by menopause status, BMI was found to be signif-
icantly associatedwithCAD in premenopausal women only. This
possibly points to detrimental effects of excess adiposity, which
nullify the ‘protective effects’ of sex hormones [32]. In this cohort,
premenopausal women with obesity had more than twice the
prevalence of CAD compared with their non-obese counterparts
(ESMTable 10). The null association observed in postmenopaus-
al women may reflect dampened effects of general adiposity (or
the presence of other competing/stronger risk factors) on CAD
risk in this group. In two prospective studies of postmenopausal
women, central or truncal obesity was associated with CAD/
cardiovascular disease risk, but not general adiposity [33, 34].
We did not investigate different adiposity phenotypes, and the
relationship between such phenotypes and CAD warrants further
investigation within a causal framework.

Sexual dimorphism in lipid metabolism and the pathophysi-
ology of CMDs is well-established [35–37]. For example, obesi-
ty tends to peak about 10 years earlier in men (50–54 years)
compared with women (60–64 years). Even at the same BMI
and age or fitness levels, men have a worse cardiometabolic
health profile despite women having higher fat mass and lower
skeletal muscle mass [9, 35, 37, 38].Women tend to store excess
lipids in subcutaneous adipose tissue (which is considered to be
protective against CMDs), especially in the gluteal–femoral
region, while in men excess fat is more centrally distributed in
the visceral adipose tissue (which increases risk of CMDs).
These differences are diminished when perturbations in
oestrogen levels occur, as in the menopause (low levels) or when
taking oral contraceptives (supraphysiological levels) [37, 39].

While the observed sex differences do not stand after
correcting for multiple testing, except for LDL-cholesterol, they
are worth considering given the documented role of sexual
dimorphism in energy homeostasis and cardiometabolic health.
Further, despite mixed results from studies, sexual dimorphism
may have implications for weight loss interventions in men and
women with different levels of metabolic health [40–44].

Complications during pregnancy, such as gestational diabetes
and pre-eclampsia, confer additional risk for CMDs in women.
Furthermore, from our results, excess adiposity appears to be
detrimental to women both pre- and post menopause, while
men have a higher burden of CMD at an earlier age compared
with women of similar BMI. Such differences may have clin-
ical implications. For men, screening for CMD at an earlier age
and at a lower BMI threshold could identify people predisposed
to CMD earlier, who would benefit from timely interventions.
In women, targeted screening for CMD should take into
consideration obesity in premenopausal women.

Non-linear MR has been previously used to assess causal
relationships (e.g., the effect of alcohol on cardiovascular
disease [45] or BMI on socioeconomic status [46]), but there
is a dearth of literature on the nature of the causal effects of
BMI on cardiometabolic health between the sexes. In one study
focused on CKD, BMI was found to be causally associated
with CKD using summary data MR, with evidence of non-
linearity in the UKBiobank [47].We found such an association
in sex-stratified analyses only. This may be partly explained by
our selection of CKD cases, which was more detailed than the
previous study (ESMTable 1). Determining the shapes of caus-
al associations may help estimate the relative benefits of inter-
ventions at different levels of exposure. For instance, lowering
BMI from 40 to 25 kg/m2 would result in an approximately
twofold decrease in the causal risk of type 2 diabetes or a 50%
decrease in the causal risk of CAD, respectively (Fig. 2). Use of
causal estimates could therefore provide a powerful tool for
public health decision-making.

Causal inference studies using MR attempt to give an unbi-
ased estimate of a causal effect of a given exposure on an
outcome of interest, provided that the assumptions of MR are
not violated, and the instruments explain sufficient variance in
the exposures and/or outcomes of interest. Tomitigate potential
bias, we specifically used SNPs generated from GWASs that
did not overlap with the UK Biobank, as the latter dataset was
used in our primary analyses. We also performed sensitivity
analyses to assess whether the results would change, and chose
SNPs unrelated to each specific outcome to mitigate chances of
horizontal pleiotropy. Although other problems of MR, such as
canalisation, cannot be formally assessed, we believe that the
estimates provided in this study offer a glimpse into the differ-
ences in causal effects of BMI on CMD between men and
women, supporting further investigation.

Strengths

In this study, we used MR, which offers a powerful alternative
to assess causal relationships between exposures and outcomes
of interest [48]. Conventional MR methods assume a linear
relationship to estimate the population-averaged causal effect;
however, we tested those linear assumptions to offer better
insights for formulating public health policies and interventions
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[49]. Further, we used both fractional polynomials and piece-
wise linear MR to triangulate the evidence. We also had the
advantage of a large sample size from the UK Biobank.

Weaknesses

We used BMI as our sole measure of adiposity. BMI does not
account for differential adiposity, nor is it a reliable measure of
relative adiposity across different populations or ethnicities,
making it hard to generalise the findings. However, BMI has
been shown to be a reliable population-level measure for
assessing general adiposity.MR faces challenges of horizontal
pleiotropy and canalisation. While there is no formal method
to test the latter, we selected BMI SNPs that were not associ-
ated with each respective outcome assessed, hence reducing
the chances of horizontal pleiotropy. We also could not rule
out methodological limitations, in that there may be other
shapes, unavailable to us, that better fit these data.

Conclusion

In this analysis, BMI was found to be causally associated with
increased risk of type 2 diabetes, CAD and hypertension, but
not stroke or CKD, and was also associated with variation in
disease-risk biomarkers, except LPA and urea. Further, BMI
was causally associated with any CMDwhen considering fixed
effects, in combined and sex-stratified analyses. We found
evidence in support of a non-linear causal relationship between
BMI and glycaemic and lipid biomarkers, except LPA. The
adverse consequences of BMI on CAD risk are similar in
men and premenopausal women. However, although BMI
continues to confer increased CAD risk in men, it seems to
be no longer a strong risk factor in postmenopausal women.
These results further our understanding of the complex nature
of the causal relationships between BMI and CMD. It also
highlights the role of sex in CAD and lipid and glucose homeo-
stasis in the context of causal risk conferred by excess adipos-
ity, and underscores the need for consideration of sex in the
management of excess adiposity. Finally, reducing excess
adiposity remains highly beneficial in improving energy and
lipid metabolism, as well as reducing the risk of CMD.
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