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Abstract
Aims/hypothesis MicroRNAs are being sought as biomarkers for the early identification of type 2 diabetes. This study aimed to
synthesise the evidence from microRNA–type 2 diabetes association studies and microRNA-regulated type 2 diabetes pathway
delineation studies that met stringent quality criteria to identify and validate microRNAs of both statistical and biological
significance as type 2 diabetes biomarkers.
Methods Eligible controlled studies onmicroRNA expression profiling of type 2 diabetes were retrieved from PubMed, ScienceDirect
and Web of Science. MicroRNA-regulated type 2 diabetes pathway delineation studies were conducted by integrating and cross-
verifying the data from miRTarBase, TransmiR, miRecords, TargetScanHuman, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) and the Retraction Watch database. Before meta-analysis, quality assessment was performed according to the corresponding
reporting guidelines for evidence-based medicine. To select the most statistically significant microRNAs, we conducted extensive
meta-analyses according to the latest methodology. Subgroup and sensitivity analyses were carried out to further examine the
microRNA candidates for their tissue specificity and blood fraction specificity and the robustness of the evidence. Signalling pathway
impact analysis of dysregulatedmicroRNAs identified frommeta-analyseswas performed to select biologically significantmicroRNAs
that were enriched in our newly built microRNA-regulated pathways.
Results Of the 404 differentially expressed microRNAs identified in the 156 controlled profiling studies with a combined sample
size of >15,000, only 60 were both consistently and significantly dysregulated in human type 2 diabetes. No microRNAs were
both consistently and significantly dysregulated in multiple tissues according to subgroup analyses. In total, 58 microRNAs were
found to be robust in sensitivity analyses. A total of 1966 pathway delineation studies were identified, including 3290
microRNA–target interactions, which were further combined with KEGG pathways, producing 225 microRNA-regulated path-
ways. Impact analysis found that 16 dysregulated microRNAs identified from extensive meta-analyses were statistically signif-
icantly enriched in the augmented KEGG type 2 diabetes pathway.
Conclusions/interpretation Sixteen microRNAs met the criteria for biomarker selection. In terms of both significance and
relevance, the order of priority for verification of these microRNAs is as follows: miR-29a-3p, miR-221-3p, miR-126-3p,
miR-26a-5p, miR-503-5p, miR-100-5p, miR-101-3p, mIR-103a-3p, miR-122-5p, miR-199a-3p, miR-30b-5p, miR-130a-3p,
miR-143-3p, miR-145-5p, miR-19a-3p and miR-311-3p.
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Abbreviations
DEM Differentially expressed microRNA
EB Empirical Bayes
KEGG Kyoto Encyclopedia of Genes and Genomes
MIAME Minimum Information About a Microarray

Experiment
MINSEQE Minimum Information for Publication of

Quantitative Real-time PCR Experiments
MIQE Minimum Information for Publication of

Quantitative Real-time PCR Experiments
mirAP MicroRNA-augmented pathways
PBMC Peripheral blood mononuclear cell
PI3K Phosphoinositide-3-kinase
REML Restricted maximum likelihood

Introduction

In 2021, 537 million adults were living with diabetes and 240
million people with diabetes were undiagnosed according to the
International Diabetes Federation [1]. Type 2 diabetes is

characterised by insulin resistance and beta cell dysfunction
[2]. Uncontrolled type 2 diabetes can lead to a number of seri-
ous health problems, including microvascular and macrovascu-
lar complications, which affect the heart, blood vessels, eyes,
kidneys and nerves [3] and cause a huge burden on healthcare
systems (at least US$966 billion in health expenditure in 2021)
[1]. Because of late diagnosis and intervention, the burden of
type 2 diabetes is getting heavier and heavier [4]. Earlier diag-
nosis of diabetes through molecular medicine approaches, such
as monitoring type 2 diabetes-specific microRNAs, would
enable earlier intervention in type 2 diabetes [5].

MicroRNAs are stable and endogenous non-coding RNAs
of approximately 22 nucleotides whose abnormal expression
is associated with disease [6, 7], including type 2 diabetes [5].
Our pilot study of microRNA biomarkers in type 2 diabetes
[8] found that studies on differentially expressed microRNAs
are heterogeneous and produce inconsistent results; thus, they
were subject to evaluation by evidence-based meta-analysis.
In meta-analysis the results across studies with similar proto-
cols and objectives are statistically synthesised, for example to
increase statistical power, obtain a more precise estimation of
effect sizes, explore heterogeneity or risks, and generalise the
results across studies [9, 10]. Our pilot study published in
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early 2015 introduced stringent quality assessment and used
the latest meta-analysis methods, replacing the obsolete vote-
counting method [8]. While many studies on type 2 diabetes
and other diseases have followed our approach, some meta-
analyses published since 2015 still have methodological
flaws. Our research protocol, published in 2021, reported a
5.5-fold increase from 2014 to 2020 in the number of
microRNA studies carried out on type 2 diabetes [11]. We
therefore performed this comprehensive meta-analysis to fill
the gaps and confirm which microRNAs are reliably associat-
ed with type 2 diabetes. To establish a genetic testing panel of
specific microRNAs for early type 2 diabetes diagnosis, we
assessed their deeper biological relevance by pathway
analysis after confirming their statistical significance.
Research indicates that popular pathway analysis tools, such
as the Database for Annotation, Visualization, and Integrated
Discovery (DAVID) [12] and DIANA–mirPath [13], are not
free from biases and inaccuracies [14]. We adopted a state-of-
the-art workflow for microRNA pathway analysis using
microRNA-augmented pathways (mirAP) to integrate
microRNA into signalling pathways and using impact
analysis to obtain information on pathway topology [15]. As
most of the current literature reporting experimentally validat-
ed microRNA–target interactions is based on mirAP from
mirTarBase version 4.5, rather than the latest version (version
9.0) [16], the data are outdated. In addition, problematic data
from retracted studies were found in mirTarBase, which had
not been processed during the generation of mirAP.
Therefore, we constructed new microRNA pathways with
microRNA–target interactions according to the latest data-
bases, including mirTarBase. New quality control criteria
were introduced to ensure the quality of the evidence, for
example to ensure that microRNA studies that have been
retracted or that have concerns over research integrity were
excluded.

Methods

The study protocol was registered in PROSPERO following the
PRISMA guidelines (registration number CRD42017081659)
and published in PLOS ONE in 2021 [11].

Search strategies PubMed, ScienceDirect and Web of Science
were searched for type 2 diabetes microRNA expression profil-
ing studies published between 1993 and 2020 using the terms:
(‘miRNA’, ‘diabetes’ and ‘expression’ in Title/Abstract) or
(‘miRNA’, ‘diabetes’ and ‘profil*’ in Title/Abstract) or
(‘microRNA’, ‘diabetes’ and ‘expression’ in Title/Abstract) or
(‘microRNA’, ‘diabetes’ and ‘profil*’ in Title/Abstract). The
last search was conducted on 27 July 2020. Human
microRNAs are usually expressed as ‘microRNA-*’ or
‘miR-*’ according to standard nomenclature. Those discovered

before the standard nomenclature was established will retain
their original names, such as let-7 [17]; thus, the Retraction
Watch database was searched in September 2021 using the
terms ‘miR*’ OR ‘microRNA*’ OR ‘let-7*’ in the title to filter
out retracted studies on microRNAs.

Eligibility criteria and study selection Eligible studies had to
meet the following inclusion criteria: (1) investigation of
differentially expressed microRNAs (DEMs) in people with
type 2 diabetes; (2) identification of DEMs in diabetic and
non-diabetic control samples; (3) reported microRNA detec-
tion technology; (4) reported criteria for selecting DEMs; (5)
reported sample sizes; and (6) not be retracted or have
concerns over research integrity. Studies on the identification
of DEMs in saliva or urine were excluded, as this study
focused on microRNAs in blood.

Data extraction and quality assessment The items collected
and recorded from eligible studies included study ID (i.e. first
author and year of publication), location of study, tissue types,
clinical information on type 2 diabetes (i.e. status, age, BMI,
HbA1c), sample size, microRNA detection platform used,
criteria used for selecting DEMs, and the list of DEMs and their
corresponding fold changes (if available). DEMs were aligned
with miRBase version 22 [18] to unify the names before quality
assessment. Quality assessment was performed according to the
reporting guidelines for the respective platform, that is, the
Minimum Information About a Microarray Experiment
(MIAME) guideline (version 2.0) [19], the Minimum
Information for Publication of Quantitative Real-time PCR
Experiments (MIQE) guideline [20] and the Minimum
Information About a high-throughput SEQuencing Experiment
(MINSEQE) guideline (https://www.fged.org/projects/minseqe,
accessed 2 September 2022) were used for evaluating
microarray, PCR and RNA-Seq studies, respectively. Six
domains were assessed with the MIAME or MIQE guideline
and five domains were assessed with the MINSEQE guideline
[11]. Domains were rated as low risk, unclear risk or high risk,
suggesting high reproducibility, ambiguous reproducibility and
low reproducibility, respectively.

Data analysis Extensive meta-analyses were performed in R
with the metafor package [21] under a random-effects model.
Both empirical Bayes (EB) estimation and restricted maximum
likelihood (REML) estimation were used to estimate the
outcomes of the meta-analyses. The outcomes were presented
as absolute values of loge (odds ratios) (logORs) with adjusted
p values and 95% CIs, based on the numbers of dysregulation
events in both type 2 diabetic and non-diabetic control samples.
MicroRNAs with logORs >0 or <0 were considered to be
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upregulated or downregulated, respectively. Bonferroni correc-
tion was used to adjust p values, and microRNAs identified by
both REML and EB estimation methods with adjusted p values
<0.05 were considered to be significant differentially expressed
microRNAs in this meta-analysis.

Subgroup and sensitivity analyses Subgroup analyses were
performed on tissue type (e.g. muscle, adipose tissue), blood
fraction (e.g. serum, plasma) and microRNA detection meth-
od (PCR-based and RNA-Seq) to investigate potential hetero-
geneity.When examining tissue type, the tissue type in studies
using different blood fractions was classified as blood, as
these studies aimed to investigate circulating microRNAs in
blood. Similarly, the tissue type in studies using whole pancre-
as or pancreatic islets was classified as pancreatic tissue.

Sensitivity analysis based on sample size was carried out to
test the robustness of the findings. Meta-analyses were repeat-
ed on studies with sample sizes ≥25 and ≥50.

Publication bias Publication bias is the phenomenon that a
study with positive results and/or statistically significant
outcomes is more likely to be published than a study with
negative results or non-statistically significant outcomes. This
bias can misinform and mislead researchers [22]. Funnel plots
were generated to visualise possible publication bias, and
Begg’s [23] and Egger’s [24] tests were carried out to detect
the significance of any publication bias. The trim-and-fill meth-
od [25], which estimates the lack of studies on one side of the
funnel plot, was performed to correct publication bias and only
microRNAs with statistically significant effect sizes after
correction were considered for selection as biomarkers.

MicroRNA pathway modelling and biomarker selection Few
microRNA pathway databases and pathway studies include
microRNA interactions that reveal microRNA-regulated path-
ways as the molecular mechanisms of disease. In this study we
used information on microRNA targets and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways to
build a new database of microRNA pathways and integrated
these pathways in accordance with their topology to select
potential microRNA biomarkers of type 2 diabetes.
Experimentally validated interactions between human
microRNAs and their target genes were downloaded from the
latest versions of themiRTarBase (version 9.0) [16], miRecords
(version 4.0) [26] and TransmiR (version 2.0) [27] databases
with PMIDs. MicroRNA names were aligned with names in
miRBase version 22 [18]. The top predicted microRNA–target
pairs were obtained from TargetScanHuman 8.0 [28], which
acted as a filter to select interactions that were consistent
between experiments and predictions. As mentioned

previously, the problematic data from retracted studies were
found in the above-mentioned experimentally validated data-
bases. We excluded the retracted studies in accordance with the
RetractionWatch database to ensure the quality of our database
of microRNA–target interactions. In other words, each of the
interactions had to be supported by at least two different infor-
mation sources (PMIDs) and two types of database (i.e. wet
experimentation and bioinformatics prediction) and to have
not been retracted (according to the RetractionWatch database)
or not be associated with concerns over research integrity. R
package ROntoTools [29] was adopted to obtain the latest
KEGG pathways, which were further combined with robust
microRNA–target interactions using mirIntegrator [30] to
produce microRNA-regulated pathways. Signalling pathway
impact analysis [31] of dysregulated microRNAs from meta-
analyses was performed to select biologically significant
microRNAs that were enriched in our newly built microRNA-
regulated pathways. Laterza et al [32] have demonstrated how
circulating microRNAs may indicate the physiological state at
tissue level. They are stable and can be detected by less invasive
techniques [33] and are specific to particular disease states [34].
Therefore, circulating microRNAs of statistical significance (in
different analyses) and biological relevance (especially
enriched in type 2 diabetes pathways) and detectable in blood
or blood fractions were prioritised for selection as type 2 diabe-
tes biomarkers.

Results

Included studies and their characteristics Figure 1 shows the
study selection process. A total of 5168 potentially relevant
records were identified from PubMed, ScienceDirect andWeb
of Science. After removal of duplicate publications and non-
research articles such as reviews, 1218 records remained, of
which 284 were identified for full-text assessment. During the
full-text assessment, 128 studies were excluded, for example
for not reporting cut-off criteria, sample sizes or direction of
dysregulation. As a result, 156 studies met the eligibility
criteria for meta-analysis, with a combined sample size of
>15,000. Of the 156 eligible studies (listed in electronic
supplementary material [ESM]Appendix), most reported only
type 2 diabetes microRNA expression profiles in humans;
approximately 30 studies were based on both individuals with
type 2 diabetes and animals models of diabetes. For the pres-
ent meta-analysis, only human data were used. Details of the
study characteristics are shown in ESM Table 1.

Quality assessment The MIAME guideline 2.0 [19],
MINSEQE guideline and MIQE guideline [20] were used to
assess study quality. Figure 2 shows the results of the quality
assessment process, mainly according to the domains of the
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MIAME guideline. The detailed quality assessment of the
individual studies is shown in ESM Table 2. The overall
assessment found that 85% of the included studies did not
report raw data on hybridisation, which was rated as high risk,
and only 17% and 23% of studies provided sufficient infor-
mation (for replicability and reproducibility) about annotation
of array design and experiment design, respectively (Fig. 2).

Meta-analysis of differentially expressed microRNAs The
outcomes from REML estimation of DEMs are presented in
the main text and ESM Tables 3–21, while the outcomes from
EB estimation are presented in ESMTables 22–35. Of the 404

DEMs reported in the 156 studies that compared type 2 diabet-
ic samples with non-diabetic control samples, 205 (51%) were
reported in at least two substudies. Among the 205 DEMs,
meta-analysis identified 60 statistically significant dysregulat-
ed DEMs (i.e. 31 upregulated and 29 downregulated), as
shown in ESM Table 3; the remaining 145 DEMs were of
no statistical significance (adjusted p>0.05). The most
frequently reported upregulated microRNA was miR-320a,
which was reported in 14 substudies (logOR 5.2885, 95%
CI 2.2857, 8.2914; adjusted p=4.96×10–2). The most
frequently reported downregulated microRNA was MiR-
30c-5p (logOR 7.4205, 95% CI 5.7924, 9.0485; adjusted
p=3.68×10–17), which was reported in six substudies.

Records retrieved (n=5168):

PubMed (n=1517)
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duplicates and non-research 
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Studies included for meta-
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No differentially expressed miRNAs (n=10)
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Fig. 1 Flow diagram of study
selection. T2D, type 2 diabetes
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Fig. 2 Quality assessment according to the MIAME guideline
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Subgroup analysis A total of 118 of 156 studies investigated
circulating microRNAs in plasma, serum, peripheral blood
mononuclear cells (PBMCs) or whole blood. Seven studies
investigated skeletal muscle tissue, five pancreatic tissue,
seven adipose tissue, five blood vessels, five heart, three foot
skin, two vitreous of the eye, two kidneys, one epithelial breast
cancer tissue, one bone cells, one liver and two gingival crevic-
ular fluid. Among the five pancreatic profiling studies, four
studies used pancreatic islets and one used pancreatic tissue.
Details are provided in ESM Table 1. Statistically significant
dysregulation of microRNAs in different tissue types is shown
in ESM Tables 4–9. In total, one statistically significant
microRNA was found in the pancreas, one in the kidney, two
in the heart, five in skeletal muscle, six in adipose tissue and 50
in blood. No statistically significantly dysregulated
microRNAs were identified in foot skin, vitreous and gingival
crevicular fluid. In addition, no statistically significantly
dysregulated microRNAs were identified in multiple tissues.

In subgroup analysis of blood fractions, 15 studies extracted
RNA from PBMCs, 39 studies used serum as the RNA source,
43 studies focused on plasma RNA and 26 studies used whole
blood as the RNA source. Subgroup analysis identified 12, 38,
25 and 25 statistically significantly dysregulated microRNAs
in PBMCs, serum, plasma and whole blood, respectively
(ESMTables 10–13). ESMTable 14 shows that 87 statistically
significant microRNAs were identified from the four RNA
sources. Of these, 76 microRNAs were identified in only one
of the four RNA sources; 10 microRNAs (e.g. miR-125b-5p
and miR-130b-3p) were upregulated in one source but down-
regulated in another; and one microRNA (miR-150-5p) was
upregulated in both whole blood and serum.

In total, 150 studies detected microRNAs using PCR-based
methods, three studies used sequencing technologies, two
studies screened for microRNAs using sequencing technolo-
gies and validated the results using PCR-based methods, and
one study used the NanoString assay. Subgroup analyses of
microRNAs detected using PCR-based methods and sequenc-
ing technologies identified 61 and 11 statistically significantly
dysregulated microRNAs, respectively, which are shown in
ESM Tables 15 and 16, respectively. Two microRNAs
(miR-144-3p and miR-30b-5p) were upregulated in PCR-
based studies but downregulated in sequencing-based studies.

Sensitivity analysis Sensitivity analysis was conducted to
examine the robustness of the findings. We first excluded
those studies with sample sizes <25, and then further excluded
studies whose sample sizes were <50, after which 114 and 78
studies remained, respectively. Analysis of the 114 and 78
studies identified 53 and 37 microRNAs, respectively, that
were significantly differentially expressed (ESM Table 17).
SomemicroRNAswere statistically significantly dysregulated
both in sensitivity analysis and in the overall analysis, whereas

others were not. For example, miR-93-5p was statistically
significant in sensitivity analysis but not in the overall
analysis, as several studies with small sample sizes (<25) but
large effect sizes were excluded in sensitivity analysis. ESM
Table 17 shows that the number of significant microRNAs
decreased when the sample size increased. These data indicate
that the small sample sizes used in microRNA profiling stud-
ies may explain some of the differences seen in the results.

Publication bias Funnel plots, Begg’s tests and Egger’s tests
were performed to evaluate publication bias. The results of the
analysis of publication bias for the top three most reported
microRNAs according to the number of studies (miR-126-
3p, miR-15a-5p, miR-155-5p) and the top three most reported
upregulated microRNAs and the top three most reported
downregulated microRNAs (according to both the number
of studies and the statistical significance) are presented in
the main text. The four substudies of the most reported down-
regulated microRNA, miR-593, were part of the same study,
which does not fit the models in Egger’s and Begg’s tests;
therefore, only two of the top three most reported downregu-
lated microRNAs were tested and a total of eight microRNAs
are presented in Table 1. Typical funnel plots are presented in
ESM Fig. 1, showing various levels of asymmetry across the
studies and indicating some publication bias in the case of
miR-126-3p, miR-320a, miR-29a-3p, miR-29c-3p and miR-
30c-5p. Begg’s tests and Egger’s tests confirmed the statistical
significance of the publication bias in miR-126-3p, miR-320a,
miR-29a-3p, miR-29c-3p and miR-30c-5p (Table 1).

MicroRNA pathway modelling and biomarker selection A
total of 384,579microRNA–target interaction pairs were iden-
tified from the miRTarBase, miRecords and TransmiR data-
bases (ESM Table 18). After alignment of microRNA names
to avoid duplication, 382,633 microRNA–target interaction
pairs remained. After filtering by the number of supporting
articles, the top 1.4% (108,812/7,765,056) of prediction pairs
from TargetScanHuman and the 1203 articles on microRNAs
from Retraction Watch, 3290 robust interaction pairs were
identified from 1966 articles (ESM Table 36). The 3290 inter-
actions were further combined with KEGG pathways, produc-
ing 225 microRNA-regulated pathways (see https://osf.io/
e9v7f). Extensive meta-analyses identified 138 statistically
significantly dysregulated microRNAs, of which 124
microRNAs were dysregulated in a consistent direction in
various meta-analyses. Pathway analysis found that the 124
dysregulated microRNAs were statistically significantly
enriched in type 2 diabetes-related pathways (ESM
Table 19), such as diabetic cardiomyopathy, insulin resis-
tance, advanced glycation end products (AGE)/receptor for
advanced glycation end products (RAGE) signalling-
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mediated diabetic complications and the type 2 diabetes path-
way. The priority verification order (according to the follow-
ing order of importance: [1] detectable in blood or blood frac-
tions; [2] statistically significance in different analyses) for the
16 microRNAs enriched in the type 2 diabetes pathway and
meeting the criteria for biomarker selection (i.e. statistically
significant and biologically relevant) is as follows: miR-29a-
3p, miR-221-3p, miR-126-3pmiR-26a-5p, miR-503-5p, miR-
100-5p, miR-101-3p, mIR-103a-3p, miR-122-5p, miR-199a-
3p, miR-30b-5p, miR-130a-3p, miR-143-3p, miR-145-5p,
miR-19a-3p and miR-311-3p (ESM Table 20).

Discussion

This deep and comprehensive meta-analysis identified specif-
ic microRNAs as biomarkers of type 2 diabetes, yieldingmore
significant findings over our pilot meta-analysis [8] because of
the sixfold growth in the number of microRNA profiling stud-
ies since the pilot study was carried out. In particular, we
conducted extensive subgroup and sensitivity analyses, publi-
cation bias analyses and analysis of the biological significance
of statistically significant microRNAs. To our knowledge, no
other microRNA meta-analytical studies have employed all
these methods. In particular, quality assessment has seldom
been conducted in previous studies.

Our meta-analytical validation showed variations and
discrepancies among the microRNA studies. As an overview,
a Venn diagram of the microRNA categories and systematic
review flow chart are provided in ESM Fig. 2. A total of 205
DEMswere reported in at least two independent substudies, of
which 60 were identified as being statistically significant by
meta-analysis. Several factors may explain these meta-
analysis results, including publication bias (although a
comprehensive literature search was conducted, publication
bias did exist), biological complexity (e.g. variations in envi-
ronmental background and gene susceptibility), the use of
inconsistent methods to detect microRNAs and determine

differential expression, and a lack of information about
expression in different tissue types under various conditions.

The subgroup analyses of both tissue type and blood frac-
tions revealed heterogeneity in microRNA dysregulation.
Subgroup analyses of tissue type found that there were no
overlap microRNAs among the tissues investigated and indi-
cated that the microRNAs in all studies may be tissue specific.
Subgroup analysis of blood fractions found inconsistencies in
dysregulation for 10 of 11microRNAs, which further revealed
the heterogeneity among specimens.

Our pathway analysis identified the biologically significant
microRNAs from among those found to be the most statisti-
cally significant in meta-analyses. Figure 3 shows the
workflow for biomarker selection. Our analysis has several
important advantages over previous microRNA enrichment
analyses: (1) a set of dysregulated microRNAs and their effect
sizes (based on meta-analyses), as well as pathway topology,
were considered by using a pathway impact analysis algo-
rithm; and (2) the latest and most comprehensive microRNA-
regulated pathways were used, which (3) were constructed
from robust microRNA–target interactions, excluding data
from retractions. Pathway analysis found that 16 microRNAs
were enriched in the augmented KEGG type 2 diabetes path-
way (Fig. 4). We recommend that miR-29a-3p is prioritised for
verification, as it was statistically significant in various analy-
ses and was one of the circulating biomarkers identified in our
pilot study. According to Fig. 4, circulating miR-29a-3p, miR-
221-3p, miR-103a-3p and miR-503-5p all target PIK3R1,
which encodes regulatory subunit 1 of phosphoinositide-3-
kinase [35–38]. Phosphoinositide-3-kinase (PI3K) plays an
important role in the metabolic actions of insulin and a muta-
tion in the PIK3R1 gene has been associated with insulin resis-
tance [39]. PI3K has a large impact on GLUT4, the insulin-
regulated facilitative glucose transporter located downstream
in the type 2 diabetes pathway (Fig. 4). This is partly why the
dysregulated input microRNAs (especially the four mentioned
above) are also enriched in the PI3K-Akt signalling pathway
and in insulin resistance (ESM Table 19). miR-199a-3p was

Table 1 Results of Begg’s and Egger’s tests

Feature MicroRNA No. of studies Begg’s test Egger’s test

Kendall’s tau p value Z p value

Top three most reported miR-126-3p 29 0.5473 <0.0001 2.7148 0.0066

miR-15a-5p 19 –0.1071 0.5274 –0.6692 0.5034

miR-155-5p 18 0.1518 0.4193 0.2765 0.7822

Top three most upregulated miR-320a 14 –0.7111 0.0004 –1.0196 0.3079

miR-29a-3p 8 –1.0000 0.0007 –2.2346 0.0254

miR-29c-3p 8 –1.0000 0.0007 –4.2115 <0.0001

Second and third most downregulated miR-30c-5p 6 1.0000 0.0028 1.8795 0.0602

miR-1-3p 4 1.0000 0.0833 0.1333 0.8939
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identified as a potential biomarker in both this study and our
previous meta-analysis [8]; this microRNA regulates MTOR,
which encodes the mechanistic target of rapamycin kinase,
along with miR-100-5p and miR-101-3p. These three
microRNAs mediate protein synthesis, cell growth and prolif-
eration and the cell cycle throughMTOR [40–42]. IRS1, which
encodes insulin receptor substrate 1, is one of the key elements
in Fig. 4, although it is affected only by dysregulatedmiR-145-
5p and miR-126-3p [43, 44], IRS1 is impacted greatly by
upstream elements. In addition, miR-126-3p has been reported
to inhibit IRS1 expression, resulting in downregulation of
PI3K in diabetic retinopathy [45], and miR-145-5p regulates
glucose uptake and insulin signalling by targeting IRS1 [46],
both of which are consistent with Fig. 4. In addition to these
published studies, it is encouraging that new clinical trials
investigating the effects of microRNAs on type 2 diabetes

and its complications (e.g. NCT02459106, NCT02316522,
NCT04889053) and the associations between drug treatments
and microRNAs in type 2 diabetes (e.g. NCT01334684,
NCT03377335, NCT03472846) have been registered at
https://clinicaltrials.gov/.

This deep meta-analysis identified, verified and corroborat-
ed the available evidence on both the biological and the statis-
tical significance ofmicroRNAs in type 2 diabetes. Significant
findings compared with those of our pilot study conducted in
2014 include the identification of 13 newmicroRNAswith the
potential to serve as biomarkers in type 2 diabetes. Seven
microRNAs identified in our pilot study were abandoned
because of inconsistencies with later studies, little biological
significance and changes to biomarker selection criteria. For
instance, miR-107 was found to be upregulated in two earlier
studies included in our pilot study, but two later studies
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included in the present study showed that miR-107 is down-
regulated. After meta-analysis, miR-107 was no longer signif-
icant. ESM Table 21 summarises the contradictory findings
on humanmicroRNAs between our pilot study and the present
meta-analysis.

Recent studies indicate that seminal findings from academ-
ic laboratories can be reproduced only 11–50% of the time
[47, 48]. A survey on biomedical science also identified the
issue of non-reproducibility of data [49]. This issue is exacer-
bated by a lack of reporting of experimental details, which

hinders quality assessment and study reproducibility. The
MIAME guideline (2001) and MIQE guideline (2009) were
published over 20 and 10 years ago, respectively. The aim of
these guidelines was to establish a standard for recording and
reporting biomedical experiments, which in turn would facil-
itate the establishment of databases and public repositories,
enable the development of data analysis tools and encourage
the exchange of data. Of the 156 included studies published
between 2009 and 2020, none referred to the MIAME guide-
line (2001) and MIQE guideline (2009), even though 155
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Fig. 4 Perturbation propagation in the type 2 diabetes pathway. Coloured
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were published after 2009. The quality assessment found that
only one study met all the basic criteria of the MIAME guide-
line and MIQE guideline, while 85% of the studies did not
report raw data on hybridisation and more than 80% did not
provide sufficient information on experimental design. This
indicates that it would not be possible to rely on any individual
study for biomarker development. In addition, 1203
microRNA studies had been retracted or had concerns over
data integrity according to our latest search (September 2021)
of the Retraction Watch database. Although we did not
include such studies, some microRNA-related databases did
include them, such as the three microRNA–target interaction
databases (miRTarBase, miRecords and TransmiR) that we
used and the human microRNA disease database (HMDD)
[50]. Our deep meta-analysis fills these technical gaps,
enabling microRNAs to be selected with very high levels of
statistical and biological confidence.

This study has several potential limitations. Differences in
the characteristics of participants, study design, sample collec-
tion and measurement, microRNA detection methods and
their performance, differential expression analysis methods
and DEM selection criteria as well as normalisation strategies
may lead to bias and errors in using microRNAs as molecular
biomarkers. The present study identified potential microRNA
biomarkers without normalising all the factors mentioned
above. Future microRNA expression profiling studies should
report data in more detail to enable evaluation of the clinical
utility of (new) microRNA candidates. The discovery and
selection of microRNA biomarkers was limited by the study
designs of the included studies and the study design of this
study, which were influenced by researchers’ experience,
scientific background, personal preferences and interests,
etc. In the future, systematic generation and evaluation of
evidence will improve the scientific value of biomarker
studies.

Conclusion This deep meta-analytical corroboration of type 2
diabetes microRNA expression profiling studies and
microRNA-regulated pathways using stringent quality criteria
identified 16 microRNA biomarkers for type 2 diabetes that
are both statistically significant and biologically relevant.
These should be prioritised in the following order for verifi-
cation: miR-29a-3p, miR-221-3p, miR-126-3p, miR-26a-5p,
miR-503-5p, miR-100-5p, miR-101-3p, mIR-103a-3p, miR-
122-5p, miR-199a-3p, miR-30b-5p, miR-130a-3p, miR-143-
3p, miR-145-5p, miR-19a-3p and miR-311-3p.
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