
/Published online: 4 October 2022

Diabetologia (2023) 66:105–115

ARTICLE

Proteomic analysis of diabetes genetic risk scores identifies
complement C2 and neuropilin-2 as predictors of type 2 diabetes:
the Atherosclerosis Risk in Communities (ARIC) Study

Brian T. Steffen1
&Weihong Tang1

& Pamela L. Lutsey1 & Ryan T. Demmer1,2 & Elizabeth Selvin3
& KunihiroMatsushita3,4 &

Alanna C. Morrison5
& Weihua Guan6

& Mary R. Rooney3,4 & Faye L. Norby7 & Nathan Pankratz8 & David Couper9 &

James S. Pankow1

Received: 17 May 2022 /Accepted: 15 August 2022
# The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Aims/hypothesis Genetic predisposition to type 2 diabetes is well-established, and genetic risk scores (GRS) have been devel-
oped that capture heritable liabilities for type 2 diabetes phenotypes. However, the proteins through which these genetic variants
influence risk have not been thoroughly investigated. This study aimed to identify proteins and pathways through which type 2
diabetes risk variants may influence pathophysiology.
Methods Using a proteomics data-driven approach in a discovery sample of 7241White participants in the Atherosclerosis Risk
in Communities Study (ARIC) cohort and a replication sample of 1674 Black ARIC participants, we interrogated plasma levels
of 4870 proteins and four GRS of specific type 2 diabetes phenotypes related to beta cell function, insulin resistance,
lipodystrophy, BMI/blood lipid abnormalities and a composite score of all variants combined.
Results Twenty-two plasma proteins were identified in White participants after Bonferroni correction. Of the 22 protein–GRS
associations that were statistically significant, 10 were replicated in Black participants and all but one were directionally
consistent. In a secondary analysis, 18 of the 22 proteins were found to be associated with prevalent type 2 diabetes and ten
proteins were associated with incident type 2 diabetes. Two-sampleMendelian randomisation indicated that complement C2may
be causally related to greater type 2 diabetes risk (inverse variance weighted estimate: OR 1.65 per SD; p=7.0 × 10−3), while
neuropilin-2 was inversely associated (OR 0.44 per SD; p=8.0 × 10−3).
Conclusions/interpretation Identified proteinsmay represent viable intervention or pharmacological targets to prevent, reverse or
slow type 2 diabetes progression, and further research is needed to pursue these targets.
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Abbreviations
ARIC Atherosclerosis Risk in Communities
GRS Genetic risk score
GWAS Genome-wide association studies
IVW Inverse variance weighted
MR Mendelian randomisation
pQTL Protein quantitative trait locus

Introduction

Type 2 diabetes is characterised by complex disruptions in cell
signalling and metabolic homeostasis across multiple organ
systems. Among these, peripheral and hepatic insulin resis-
tance, pancreatic beta cell dysfunction and adipose tissue
accumulation are typical, and individuals with type 2 diabetes
often present with various combinations of these phenotypes
[1–3]. While lifestyle risk factors such as physical inactivity
and hyper-caloric diets are well-established in disease devel-
opment [4, 5], genetic liabilities also influence risk [6–9] and
have been shown to contribute to the phenotypic heterogene-
ity of type 2 diabetes [9, 10].

Genome-wide association studies (GWAS) have iden-
tified over 450 gene variants related to type 2 diabetes
[7–12]—most showing modest magnitudes of association
with disease risk, typically <10% greater risk per allele
[12–14]. Numerous additive genetic risk scores (GRS)
for type 2 diabetes have been generated to integrate risk
information across identified gene variants [6, 9].
Refining this approach to address the heterogeneity of

type 2 diabetes, Goodarzi et al [10] developed four type
2 diabetes GRS for the distinct phenotypes of beta cell
function, insulin resistance, lipodystrophy and BMI/
aberrant blood lipids, which were comprised of indepen-
dent clusters of gene variants. These type 2 diabetes risk
variants may have cis or trans effects on gene expression,
and the proteins and networks through which they affect
metabolic dysfunction are unknown.

The present study aimed to identify proteins and pathways
through which type 2 diabetes risk variants may collectively
influence pathophysiology. To strengthen causal inference, a
stepwise approach was applied in which: (1) plasma proteins
associated with the type 2 diabetes phenotype GRSs were
identified from a platform comprised of 4870 protein
measures; (2) cross-sectional and prospective associations
with type 2 diabetes were examined for identified proteins;
and (3) a two-sampleMendelian randomisation (MR) analysis
was conducted to investigate potential causal relationships
between these proteins and type 2 diabetes. Collectively, these
findings aim to provide greater understanding of genetic
liability to type 2 diabetes.

Methods

Study population The Atherosclerosis Risk in Communities
Study (ARIC) of 15,792 individuals was originally designed
to identify risk factors for cardiovascular disease and athero-
sclerosis and has been described in detail previously [15].
Male and female participants aged 45–64 years were recruited
from four communities in the USA (Washington County,
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MD; the northwest suburbs of Minneapolis, MN; Jackson,
MS; Forsyth County, NC). Information about risk factors
was obtained at baseline (visit 1; 1987–1989) and in follow-
up examinations: visit 2 (1990–1992), visit 3 (1993–1995),
visit 4 (1996–1998), visit 5 (2011–2013), visit 6 (2016–
2017) and visit 7 (2018–2019). Visit 3 served as the baseline
for this analysis. Information on risk factors and use of medi-
cations was also obtained through follow-up phone calls to
participants (annually before 2012; twice-yearly thereafter).
Institutional review boards at each site approved the study
protocol, and written informed consent was obtained from
all participants.

Genetic risk scores for type 2 diabetesGRS for type 2 diabe-
tes were constructed from SNP dosages and clustered into
four mutually exclusive phenotypes of beta cell function
(50 SNPs), insulin resistance (29 SNPs), lipodystrophy
(12 SNPs) and BMI/lipid abnormalities (12 SNPs), using
SNPs and weights provided by Goodarzi et al [10]. Two
additional GRS were generated from SNPs that remained
uncategorised by Goodarzi et al in terms of diabetes
phenotype (339 SNPs) and all SNPs combined (442
SNPs) [10]. For each participant, a weighted GRS was
generated by multiplying the number of risk alleles at
each variant by its corresponding diabetes-related risk
value (logOR) and then summing the products. For vari-
ants unavailable in the ARIC GWAS data, a proxy variant
in tight linkage disequilibrium (r2≥0.80) was substituted.
In Black participants, no suitable proxy variants were
available for rs145904381 (insulin resistance GRS) or
rs1005752 (beta cell function GRS).

Genotyping Genotyping, imputation and quality control
procedures have been described previously [16]. Genome-
Wide Human SNP array 6.0 (Affymetrix, USA) was used to
genotype genomic DNA extracted from whole blood, and
race-specific imputation of variant dosages to the TOPMed
reference panel (freeze 5b) was performed to increase the
number of genetic markers beyond this array [17].
Individuals who were first-degree relatives of each other,
genetic outliers and those whose genotypes did not match
genotype data from other platforms were removed prior to
imputation. Based on the GWAS data, principal components
reflecting population substructure or genetic ancestry were
generated using EIGENSTRAT [18].

Proteomics measurement Proteins were measured in plasma
collected at visit 3 (1993–1995) using a modified DNA
aptamer-based array that measures 4870 proteins (SomaScan
version 4.0, SomaLogic, USA), described previously [19, 20].

Samples that had been stored at −70°C and not previously
thawed were transferred to the SomaLogic laboratory and
incubated with proprietary reagents. Protein levels were quan-
tified using single-stranded DNA-based modified aptamers
that bind to specific protein epitopes. Protein concentrations
are reported as relative fluorescent units.

Proteomics quality control Protein measurements by
SomaScan were standardised and normalised as previously
described [21, 22]. Briefly, hybridisation control normalisa-
tion was applied to each sample based on a set of hybridisation
control sequences to correct for systematic biases during
hybridisation. Median signal normalisation was applied to
measures within plates to remove sample or assay biases due
to variations in pipetting, reagent concentrations, assay timing
and other sources of systematic variability within single plate
runs. Each plate contained calibrators for each aptamer
reagent to correct for plate-to-plate variation based on global
reference materials. ARIC investigators previously conducted
a pilot study of SomaScan version 3 in 42 ARIC participants
and reported excellent metrics of assay reproducibility: medi-
an coefficient of variance (Q1–Q3) of 5.0 (4.1–6.9) and medi-
an intraclass correlation (Q1–Q3) of 0.96 (0.92–0.98) [22].

Logarithmic transformations (base 2) were applied to all
proteins prior to analysis. A total of 422 blind duplicate plas-
ma aliquots were included, and the median inter-assay Bland–
Altman coefficient of variation was 6.3%. The median split
sample reliability coefficient was 0.85 after applying the
following quality control filters on 5284 available aptamer
measurements: Bland–Altman coefficient of variation >50%
or a variance of <0.01 on the log scale (n=94 excluded) and
non-specific binding to non-proteins (n=313 excluded). After
all quality control measures were completed, 4870 aptamer
measurements remained, corresponding to 4697 unique
human proteins or protein complexes.

Assessment of kidney function The eGFR at visit 3 was
included as a covariate to account for the influences of
kidney function on plasma proteins. The Chronic Kidney
Disease Epidemiology Col labora t ion combined
creatinine–cystatin C equation was used to estimate GFR
(ml/min per 1.73 m2) [23]. A creatinase enzymatic meth-
od using a Roche Modular P Chemistry Analyzer
measured serum creatinine (Roche Diagnostics, USA)
and was standardised to isotope-dilution mass spectrome-
try as described previously [24]. A turbidimetric immuno-
assay (Gentian, Norway) calibrated and standardised to
the International Federation of Clinical Chemistry and
Laboratory Medicine reference was used to measure
serum cystatin C level [25].
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Diabetes ascertainment Prevalent diabetes at visit 3 was
defined by a fasting blood glucose level ≥7.0 mmol/l, non-
fasting blood glucose ≥11.1 mmol/l, self-reported physician
diagnosis of diabetes, or self-reported use of diabetes medica-
tions. Among those without prevalent diabetes at visit 3, inci-
dent diabetes was obtained by self-reported physician diagno-
sis of diabetes or self-reported use of diabetes medications at
visit 4 (between 1996 and 1998) and in annual or semi-annual
follow-up telephone interviews between 1999 and 2019.

Statistical analyses A total of 12,887 participants attended
visit 3. After excluding those with missing genetic data
(n=2737), proteomic data (n=1041) or covariate data
(n=194), 1674 Black and 7241 White participants were avail-
able for the main analysis of GRS–protein associations. Race-
specific linear regression models were used to estimate asso-
ciations between each of the six GRSs and proteins. Covariate
adjustments were made for age, sex, field centre, eGFR at visit
3, and ten principal components of ancestry (unadjusted anal-
yses shown in electronic supplementary material [ESM]
Table 1). For each protein, participants with values that were
more than 6 SD from the population mean were excluded.
Bonferroni correction was applied to account for multiple
testing: the 4870 protein outcomes and six GRSs stipulated a
significance threshold of p<1.71 × 10−6 in White participants.
Analyses in Black participants were treated as a replication.
Significant replication was defined as having the same direc-
tion of association observed inWhite participants and meeting
a Bonferroni-corrected significance threshold that accounts
for the number of proteins tested for each GRS in Black
participants.

Proteins identified in the main GRS–protein analysis were
tested for associations with prevalent and incident diabetes in a
secondary analysis, and a schematic of analytical sample sizes
is shown in ESM Fig. 1. Logistic regression was used to esti-
mate ORs for each plasma protein with prevalent diabetes at
visit 3 among those with all covariate data (n=11,063 partici-
pants and 1733 cases), with adjustment for age, sex, field
centre/race, physical activity based on the ARIC physical activ-
ity sport and exercise index [26], BMI, cigarette smoking status
and eGFR (all assessed at the visit 3 time point). Field centre
and race variables were combined as only Black participants
were recruited at the field centre in Jackson, MS. A sensitivity
analysis was conducted in which the definition of prevalent
type 2 diabetes was limited to self-reported physician diagnosis
or use of diabetes medications (n=10,995 participants and 1067
cases), since including laboratory values of fasting glucose may
inflate the type I error rate. For prospective analysis, Cox
regression was used to estimate HRs for incident diabetes over
a median follow-up of 23.9 years (n=6224 participants, 2354
incident cases) with the same adjustments described above.
Date of diagnosis was defined as the date of the interview at

which diabetes was first reported; individuals who remained
diabetes-free were censored at the time of their last available
interview. For both cross-sectional and prospective analyses,
Bonferroni correction was applied to correct for multiple test-
ing: 22 proteins were tested, stipulating a significance threshold
of p≤2.3 × 10−3. Unadjusted protein–type 2 diabetes analyses
shown in ESM Table 2.

Two-sample MR was performed using the MR-Base web
application [27] and was restricted to proteins found to be relat-
ed to both prevalent and incident type 2 diabetes in the second-
ary analysis. Instrumental variables consisted of protein quanti-
tative trait loci (pQTLs) identified in White ARIC participants
by GWAS analyses between the proteins and genetic dosages
imputed based on the TOPMed (freeze 5b) reference, with
adjustment for age, sex, field centre and ten principal compo-
nents of ancestry. Clumping was used to prune pQTLs that did
not reach the significance threshold (p≤5 × 10−8), were in link-
age disequilibrium (r2 for linkage disequilibrium <0.2) or were
within a clumping distance threshold of 10,000 kb. Identified
pQTLs in the ARIC study were confirmed using published data
from the INTERVAL [28] and AGES-Reykjavik [29] studies.
For identified pQTLs, type 2 diabetes summary statistics were
obtained from a large consortium study available through the
MR-Base platform [12]; this study was selected based on the
numbers of type 2 diabetes cases (n for events=62,892) and
overlap with the TOPMed imputation panel used in the ARIC
study. For pQTLs that were unavailable in the outcome summa-
ry data, proxy SNPs in tight linkage disequilibrium (r2≥0.8)
were substituted. For proteins with only one pQTL,Wald ratios
were calculated. Two and three pQTLs were identified for
neurofascin and complement C2, respectively; inverse variance
weighted (IVW) meta-analyses of Wald ratios were performed,
and an MR-Egger sensitivity analysis [30] was conducted for
C2. For significant two-sample MR results, reverse causality
was evaluated. Type 2 diabetes-related SNPs were derived from
the above consortium study [12]. Type 2 diabetes-related SNPs
from this study were tested for their associations with
neuropilin-2 and complement C2, and their associations with
these proteins were obtained from GWAS by Sun et al [28] and
Suhre et al [31], respectively. MR-Egger and IVW estimates
were generated.

Canonical pathway enrichment was examined using the
Ingenuity Pathway Analysis platform (Qiagen, USA) to deter-
mine potential mechanisms and signalling cascades through
which GRSs may influence respective pathogenic phenotypes
[32]. Entrez Gene IDs, log expression ratios (i.e. variant–
protein association estimates) and false discovery rate q values
from primary analyses were uploaded. To control for multiple
comparisons, a Benjamini–Hochberg false discovery rate was
applied and proteins with q values ≤0.05 were deemed signif-
icant. Core analysis was performed, and direct and indirect
experimentally confirmed relationships across species were
evaluated.
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Results

The analytical sample comprised 8915 participants with a
mean age of 60.1 years, of whom 54.1% were female. To
assess the potential for selection bias, all 12,887 participants
who attended visit 3 were compared to the analytical sample
with complete genotype, proteomic and covariate data
(Table 1). The analytical sample had a smaller proportion of
Black participants than the visit 3 cohort; however, demo-
graphic, clinical and lifestyle characteristics were otherwise
similar. Upon stratification into Black (n=1674) and White
(n=7241) participant groups, it was found that, compared with
White participants, Black participants showed higher propor-
tions of current smokers (17.2% vs 21.7%) and never smokers
(38.5% vs 45.4%), and a greater prevalence of type 2 diabetes
(12.7% vs 27.7%).

Identification of GRS-related proteins As shown in Fig. 1, the
12-variant type 2 diabetes GRS defining the BMI/lipid pheno-
type was associated with 14 plasma proteins in White partic-
ipants. Of these, eight were replicated in Black participants:
leucine-rich repeat neuronal protein 1 (p=2.1 × 10−14), MOB-
like protein phocein (p=9.1 × 10−6), dehydrogenase/reductase
SDR family member 9 (p=9.0 × 10−7), ADP-ribosylation
factor-like protein 2 (p=1.2 × 10−4), D-3-phosphoglycerate
dehydrogenase (p=1.5 × 10−13), neurofilament light

polypeptide (p=4.3 × 10−14), tubulin-specific chaperone A
(p=9.2 × 10−15) and protein S100-A13 (p=1.0 × 10−13).

As shown in ESM Table 3, the 29-variant type 2 diabetes
GRS defining the insulin resistance phenotype was related to
plasma chymotrypsinogen B2 (p=1.1 × 10−12) and SLIT and
NTRK-like protein 3 (p=1.2 × 10−6) in White participants; the
latter result was replicated in Black participants (p=0.02). The
12-variant type 2 diabetes GRS defining the lipodystrophy
phenotype was related to plasma neuromedin-B (p=7.7 ×
10−7) in White participants but this result was not replicated
in Black participants (p>0.05). The 50-variant type 2 diabetes
GRS defining the beta cell function phenotype was related to
cartilage intermediate layer protein 2 in White participants
(p=2.2 × 10−10), but the association was not replicated in
Black participants.

Over 300 GWAS-identified gene variants were previously
associated with type 2 diabetes but remain uncategorised with
respect to a distinct type 2 diabetes phenotype. When we
combined these 339 variants into an ‘uncategorised’ pheno-
type GRS, one significant plasma protein association was
observed in White participants: lactase-phlorizin hydrolase
(p=8.5 × 10−27); this result was replicated in Black participants
(p=0.02). Finally, combining all GWAS-derived variants
generated a 442-variant GRS that was related to seven
proteins in White participants, as shown in Fig. 2. Of these,
no associations were replicated in Black participants

Table 1 Demographic, lifestyle and health characteristics of all ARIC study participants at visit 3 compared to those with available proteomic, genetic
and covariate data for the main GRS–protein analysis and further stratified by race

Characteristic All visit 3 participants
(n=12,887)

Analytic sample
(n=8915)

Black participants
(n=1674)

White participants
(n=7241)

Age 60.0 ± 5.7 60.1 ± 5.7 59.0 ± 5.7 60.3 ± 5.7

Female 7170 (55.6) 4824 (54.1) 1041 (62.2) 3783 (52.2)

Race

Black 2997 (23.3) 1674 (18.8) – –

White 9852 (76.5) 7241 (81.2) – –

Smoking statusa

Current 2283 (17.8) 1607 (18.1) 359 (21.6) 1248 (17.2)

Former 5286 (41.1) 3751 (42.2) 545 (32.9) 3206 (44.3)

Non-smoker 5277 (41.1) 3537 (39.8) 752 (45.5) 2785 (37.5)

BMI (kg/m2) 28.5 ± 5.6 28.5 ± 5.5 30.5 ± 6.5 28.0 ± 5.2

Waist/hip ratio 0.94 ± 0.07 0.94 ± 0.07 0.94 ± 0.07 0.94 ± 0.08

Fasting glucose (mmol/l) 6.18 ± 2.36 6.17 ± 2.32 7.04 ± 3.60 5.97 ± 1.85

Total cholesterol (mmol/l) 5.37 ± 0.98 5.37 ± 0.97 5.37 ± 1.01 5.37 ± 0.96

LDL-cholesterol (mmol/l) 3.29 ± 0.89 3.30 ± 0.89 3.34 ± 0.95 3.29 ± 0.87

HDL-cholesterol (mmol/l) 1.35 ± 0.47 1.34 ± 0.47 1.43 ± 0.48 1.32 ± 0.46

Triglycerides (mmol/l) 1.37 (0.98–1.94) 1.39 (0.99–1.96) 1.14 (0.89–1.58) 1.45 (1.05–2.04)

Prevalent diabetes 1988 (15.5) 1378 (15.5) 460 (27.7) 918 (12.7)

Values are means ± SD, n (%) or median (Q1–Q3)
a There are 39 missing and two unknown participant smoking statuses in the visit 3 cohort
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following Bonferroni correction (p>7.0 × 10−3), but all were
directionally consistent. Point estimates, 95%CIs and p values
for these associations are provided in ESM Table 3.
Associations between GRS exposure variables and metabolic
characteristics are shown in ESM Table 4.

A sensitivity analysis was performed in which 555 partic-
ipants with physician-diagnosed diabetes or those taking
diabetes medications were excluded from the GRS–protein
analysis; the results are shown in ESM Table 5. Most associ-
ations in the subset without diagnosed diabetes were similar in
magnitude to those observed in the full analytic sample.

Associations of identified proteins and type 2 diabetes In the
secondary analysis, the 22 proteins identified in the main
analysis were tested for associations with prevalent and inci-
dent diabetes. Among 11,063 Black and White participants at
visit 3, there were 1733 individuals with type 2 diabetes. As
shown in Fig. 3a, cross-sectional analysis showed that 18 of
the 22 proteins were significantly related to prevalent diabetes
(p≤2.2 × 10−3). Four of these 22 proteins were moderately to
strongly correlated with one another. Specifically, neurofila-
ment light polypeptide was correlated with tubulin-specific
chape rone p ro t e i n A ( r=0 .79 ; p<0 .001 ) , D - 3 -

Fig. 1 Plasma proteins that were significantly associated with the type 2
diabetes GRS defining the BMI/lipid phenotype in 7241 White partici-
pants, with replication in 1674 Black participants. Results for a regression
model examining the BMI GRS and protein outcomes (effect size
expressed as difference in log2 protein level per SD in the GRS), adjusted
for age, sex, field centre, ten principal components of ancestry and eGFR

at ARIC study visit 3. The Bonferroni correction for multiple testing was
applied with a significance threshold of p<1.7 × 10−6 in White partici-
pants; Black individuals were treated as a replication cohort with a signif-
icance threshold of p<4.2 × 10−3 for correction of 12 tests. Asterisks
indicate replication in Black participants

Fig. 2 Plasma proteins that were significantly associated with the overall
type 2 diabetes genetic risk score in 7241 White participants, with repli-
cation in 1674 Black participants. Results for a regression model exam-
ining the GRS of all diabetes-related variants and protein outcomes (effect
size expressed as difference in log2 protein level per SD in the GRS),

adjusted for age, sex, field centre, ten principal components of ancestry,
and eGFR at ARIC study visit 3. The Bonferroni correction for multiple
testing was applied with a significance threshold of p<1.7 × 10−6 inWhite
participants; Black individuals were treated as a replication cohort with a
significance threshold of p<7.1 × 10−3 for correction of seven tests
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phosphoglycerate-dehydrogenase (r=0.69; p<0.001) and
protein-S100-A13 (r=0.65; p<0.001). Despite these correla-
tions, all proteins were tested for their associations with type
2 diabetes outcomes.

A sensitivity analysis was performed in which prevalent
type 2 diabetes was defined as self-reported physician diagno-
sis or use of type 2 diabetes medications (n for cases=1069).
The results are shown in ESM Table 6 and are consistent with
the previous model that used a more expansive definition of
type 2 diabetes that included laboratory values of fasting
glucose obtained at visit 3, indicating robust associations.

As shown in Fig. 3b, 10 of the 22 plasma proteins were
significantly related to incident diabetes over a median follow-
up of 23.9 years among 6224 Black and White participants
without diabetes at visit 3 (n=2354 incident cases). ESM
Table 7 provides point estimates, 95% CIs and p values for
cross-sectional and prospective analyses.

ESM Table 8 provides a summary of our main findings:
protein–GRS associations (0 or 1), replication in Black partic-
ipants, and protein associations with prevalent and incident
type 2 diabetes.

Two-sample MR analysis For the ten proteins associated with
both prevalent and incident type 2 diabetes, we performed a
two-sample MR analysis to examine relationships between
genetically determined protein levels and type 2 diabetes
outcomes. Five of the ten proteins were found to have avail-
able genetic instruments. The results of this analysis are

presented in Table 2, showing the target protein, correspond-
ing pQTL(s) and r2 value specifying the percentage variance
in protein level explained by the pQTL(s) in the ARIC study.
A significant and inverse association was observed for
neuropilin-2, suggesting that low neuropilin-2 levels promote
type 2 diabetes development (OR per SD 0.44; p=0.008).
Complement C2 was found to be positively related to type 2
diabetes (OR per SD 1.65; p=0.007); however, the MR-Egger
results for complement C2 were not significant (OR per SD
1.07; p=0.96) and the test for directional horizontal pleiotropy
was null (p=0.72). Further details of pQTLs are shown in
ESM Table 9.

The potential for reverse causality was evaluated for
neuropilin-2 and complement C2 (ESM Table 10). For
neuropilin-2, 112 type 2 diabetes-related SNPs were available
for analysis; estimates were null for IVW analyses (OR per SD
0.87; p=0.13) and MR-Egger sensitivity analyses (OR per SD
1.02; p=0.6) (ESM Fig. 2). For complement C2, 57 type 2
diabetes-related SNPs were available for analysis; estimates
were null for IVW analyses (OR per SD 1.06; p=0.76) and
MR-Egger sensitivity analyses (OR per SD 1.00; p=0.96)
(ESM Fig. 3). Tests for horizontal pleiotropy were null for
both proteins but approached significance for neuropilin-2
(p=0.054).

Pathway enrichment analysis Pathway analysis was perform-
ed for proteins associated with each GRS. One canonical path-
way was identified in which protein associations with the

Fig. 3 Associations between identified proteins and (a) prevalent type 2
diabetes, among 11,063 participants at visit 3 (OR and 95%CI are shown;
n for events=1733), or (b) incident type 2 diabetes, among 6224 ARIC
participants over a median of 23.9 years of follow-up (HR ratios and 95%

CI are shown; n=2354 events). Models were adjusted for age, sex, field
centre/race, physical activity, BMI, cigarette smoking status and eGFR at
visit 3
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GRS defining the BMI/lipid phenotype and plasma proteins
indicated retinoate biosynthesis I activation (z score 2.24;
p=2.3 × 10−7). Pathway components included alcohol dehy-
drogenase 4 (q value=0.03), aldo-keto reductase family 1
member C4 (q0.02), dehydrogenase/reductase SDR family
member 9 (q0.0002) and retinol binding protein 5 (q0.03).

Discussion

Proteomics research has examined associations with prevalent
and incident T2D, its complications and responses to pharmaco-
therapies, but no proteomics study has examined the genetic
liabilities captured by previously generated GRS specific for
T2D phenotypes. Using a large-scale agnostic proteomics
approach in White participants, we identified 22 unique plasma
proteins associated with GRSs for BMI, insulin resistance, beta
cell dysfunction and lipodystrophy, or a composite of all type 2
diabetes-related variants. Of these, ten proteins were replicated in
1674 Black participants, and 21 of the 22 associations were
directionally consistent between the discovery and replication
samples. Of these 22 proteins, 18 were statistically significantly
related to prevalent type 2 diabetes, and ten of these were related
to incident diabetes over a median of 24 years of follow-up. MR
analysis showed that higher neuropilin-2 levelsmay be protective
against type 2 diabetes, while higher complement C2 levels may
be related to disease development based on the IVW estimate,
although this was tempered by the MR-Egger result.

Collectively, these findings suggest potential mechanisms
through which the phenotype-specific GRSs confer greater risks
of type 2 diabetes.

Of the identified proteins, plexin-B2, S100-A13 arfaptin-2,
neurofascin and complement C2 have previously been shown
to be associated with prevalent and/or incident type 2 diabetes
[33]. The plexin-B2 receptor and its ligand, semaphorin 6A
(with a significance level of p=1.1 × 10−5 in the fully adjusted
model, above the Bonferroni-corrected threshold), have been
shown to be associated with HbA1c levels in individuals with
type 2 diabetes [34], and circulating levels of plexin-B2 have
been shown to be positively related to greater risk of prevalent
type 2 diabetes, but not incident type 2 diabetes [33]. In
contrast, protein S100-A13 has been suggested to have a
protective effect against adverse metabolic outcomes [33,
35]. As shown here and by Gudmundsdottir et al in the
AGES-Reykjavik cohort [33], lower levels of protein S100-
A13 were related to both prevalent and incident type 2 diabe-
tes. In agreement with these findings, hypomethylation of the
S100A13 gene has been shown to be associated with lower
protein levels and prevalent diabetic retinopathy, potentially
through NF-κB activation and greater hyperglycaemia-
induced vascular damage [35]. We were unable to identify a
suitable genetic instrument for these proteins for evaluation in
MR analysis.

Apart from the above five proteins, the remaining identified
proteins are novel observations, and few have been characterised
in type 2 diabetes development—indeed, most have functions

Table 2 GWAS-identified protein quantitative trait loci and results of two-sample MR analysis

Protein exposure pQTL in the ARIC Study Two-sample MR results (per SD)a

rsID Chr Position Ref Alt cis/
trans

Gene R2 b OR Lower CI Upper CI p

NRP2 rs16837641 2 205173653 T C cis NRP2 0.006 0.44 0.24 0.8 8.0 × 10−3

SLITRK3 rs11928265 3 165193012 A G cis SLITRK3 0.038 0.98 0.9 1.08 0.71

NMB rs35127183 15 84672508 G A trans SEC11A 0.007 0.97 0.51 1.84 0.93

NFASC rs11801063 1 204840015 C T cis NFASC 0.056 1.61 1.15 2.28 6.3 × 10−3

rs6667532 1 204979531 G A cis NFASC 1.07 0.87 1.32 0.52

IVW estimate 1.20 0.84 1.72 0.32

C2 rs558702 6 31902549 A G cis C2 0.02 2.46 1.45 4.18 8.7 × 10−4

rs3130573 6 31138491 G A cisc PSORS1C1 1.66 1.05 2.62 0.03

rs6916921 6 31552649 T C cisc NFKBIL1 1.26 0.82 1.95 0.30

IVW estimate 1.65 1.15 2.38 7.0 × 10−3

MR-Eggerd 1.07 0.16 7.12 0.96

aWald ratios are shown for single instrumental variables
bR2 values indicate the percentage variance in protein levels explained by the corresponding pQTL (or all loci for C2 and NFASC) in the ARIC Study
c rs3130573 and rs6916921 are within 1 Mb of the C2 gene and are classified as cis-pQTLs
d Egger intercept=0.019

NRP2, neuropilin-2; SLITRK3, SLIT and NTRK-like protein 3; NMB, neuromedin-B; NFASC, neurofascin; C2, complement C2
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that are seemingly unrelated to metabolic health or disease.
Leucine-rich repeat neuronal protein 1, neuromedin-B, neurofil-
ament light polypeptide and neuropilin-2 have been characterised
in gastric cancer [36], smooth muscle contraction [37], head and
neck cancer [38] and angiogenesis [39], respectively.Despite this,
we report here that the semaphorin receptor, neuropilin-2, may
have a protective role against disease development based on MR
results.

Arfaptin-2 and neurofascin do not have any known physi-
ological roles in metabolic function or adipogenesis despite
their associations with type 2 diabetes shown here. However,
consistent with a potential protective effect, the ubiquitously
expressed arfaptin-2 protein has been shown to inhibit NF-κB
activity [40]. Whether arfaptin-2 suppression of NF-κB
signalling influences adiposity or predisposition to adipose
tissue accumulation has not been shown, but a central role
for NF-κB has been reported in models of obesity [41] and
insulin resistance [42].

Finally, we confirm that plasma levels of complement C2
are positively associated with risk of type 2 diabetes as shown
previously [33], and the results of the MR analysis suggest a
causal relationship. These findings are consistent with the
established role of the complement system in inflammation
and its deleterious effects on metabolic function. Recent stud-
ies have shown that activation of complement components
likely promote insulin resistance [43, 44] and microvascular
complications including nephropathy [45–47] and retinopathy
[48, 49]. However, the IVW result must be considered in
combination with the non-significant result of the MR-Egger
sensitivity analysis. Based on the latter finding and the null
directional horizontal pleiotropy finding, it appears that the
instrumental variable for complement C2 likely violated the
‘instrument strength independent of direct effect’ assumption
[50]. Critically, of the three pQTL components of the C2
instrumental variable, the pQTL proximal to the C2 gene
(rs558702) is an intron variant, showed the largest magnitude
of association with type 2 diabetes (OR per SD 2.46; 95% CI
1.45–4.18) and is more likely to be independent of horizontal
pleiotropy. It may therefore provide a more reliable estimate
of the effect of complement C2 on type 2 diabetes. Taken
together, the potential causal effect of complement C2 on type
2 diabetes risk remains equivocal. Additional research is
warranted to further characterise the role of C2 and other
complement system components in type 2 diabetes.

An important consideration in evaluating the present find-
ings is the degree of pathway convergence, which depends on
the variant composition of the GRS. It has been suggested that
a GRS may capture convergence in downstream disease path-
ways that originate with hundreds to thousands of genetic risk
variants [33]. In that case, a GRS comprised of variants that
operate through a shared pathway(s) would be expected to
show moderate to strong associations with protein compo-
nents of that pathway. Conversely, a GRS comprised of

variants that operate through different pathways would be
expected to show more modest associations with proteins
specific to one pathway. The relatively small magnitudes of
association observed here suggest that the latter is occurring,
and a few gene variants within each GRS may be driving the
significant findings. In addition, these GRSs are likely incom-
plete as not all variants contributing to a specific type 2 diabe-
tes phenotype are currently known. Taken together, these
observations may have implications for future studies to: (1)
sub-classify known variants by shared pathways; and (2) iden-
tify new variants and epigenetic modifications to obtain a
more complete representation of genetic liability, which may
then inform the degree of pathway convergence for each
diabetes phenotype.

Limitations There are limitations in the present analysis that
must be acknowledged. First, GRS construction assumed an
additive genetic architecture of independent risk variants and
did not account for the possibility of gene–gene or gene–
environment interactions. Additionally, gold standard assess-
ments of beta cell function, insulin resistance and
lipodystrophy were not available in ARIC participants, and
we were unable to assess relationships between identified
proteins and these phenotypic manifestations of type 2 diabe-
tes. Our two-sample MR analysis was limited by two factors:
(1) no genetic instruments were found for cartilage intermedi-
ate layer protein-2 in the ARIC study; and (2) outcome
summary statistics for the s100-A13, arfaptin-2, plexin-B2
and platelet activating factor-acetyl hydrolase pQTLs or iden-
tified proxy SNPs were unavailable in the study selected from
MR-Base, which prevented MR analysis of these proteins.
Limiting the generalisability of our findings, GRSs were
comprised of variants identified fromGWA studies conducted
in individuals of European ancestry, and this may have
contributed to the relatively moderate replication of GRS–
protein associations among Black participants (ten of 22
proteins); however, the directional consistency in associations
between groups was substantial: 21 of the 22 proteins identi-
fied in White participants were directionally consistent in
Black participants. Finally, we had limited statistical power
to identify pQTLs in Black participants and were therefore
unable to perform MR analysis in that group; additional stud-
ies with larger samples of Black individuals are needed.

ConclusionsUsing a large-scale agnostic proteomic approach,
we identified 22 novel proteins associatedwith GRS for type 2
diabetes in the ARIC study. Most of these were found to be
associated with prevalent or incident type 2 diabetes after
adjustment for potential confounders. Two-sample MR
analysis provided evidence that complement C2 and
neuropilin-2 levels may be causally related to type 2 diabetes
risk, although the former finding should be interpreted with
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caution. Additional research is warranted to further interrogate
these proteins and characterise their possible roles in the path-
ophysiology of type 2 diabetes and as potential targets for
pharmacological intervention.
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