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Abstract
It is well established from clinical trials that behavioural interventions can halve the risk of progression from prediabetes to type 2
diabetes but translating this evidence of efficacy into effective real-world interventions at scale is an ongoing challenge. A
common suggestion is that future preventive interventions need to be more personalised in order to enhance effectiveness.
This review evaluates the degree to which existing interventions are already personalised and outlines how greater
personalisation could be achieved through better identification of those at high risk, division of type 2 diabetes into specific
subgroups and, above all, more individualisation of the behavioural targets for preventive action. Approaches using more
dynamic real-time data are in their scientific infancy. Although these approaches are promising they need longer-term evaluation
against clinical outcomes. Whatever personalised preventive approaches for type 2 diabetes are developed in the future, they will
need to be complementary to existing individual-level interventions that are being rolled out and that are demonstrably effective.
They will also need to ideally synergise with, and at the very least not detract attention from, efforts to develop and implement
strategies that impact on type 2 diabetes risk at the societal level.
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From the establishment of efficacy
to effectiveness: type 2 diabetes prevention

Twenty-five years ago, a series of RCTs began to report find-
ings [1–6], which subsequently unequivocally demonstrated
that type 2 diabetes was a preventable disease [7, 8]. This
observation was crucial in focusing the attention of
researchers, research funders, practitioners, policy makers
and, perhaps most importantly, the wider public, on

prevention. Showing that a medical condition is theoretically
preventable is of course not the same as showing that the
potential for prevention can be converted into real health bene-
fit. Thus the past two decades have seen a shift in attention
away from demonstrating the efficacy of preventive interven-
tions to the implementation and evaluation of real-world strat-
egies for prevention [8]. This has proved to be a rather more
difficult challenge, not least because the design and delivery
of the interventions are often beyond the sphere of influence of
the researcher. In some situations, where researchers have
attempted to linearly translate from diabetes prevention trials
into real-world settings, there has been a marked gap between
what can be achieved in the idealised context of a controlled
trial and the real world [9]. Closing this gap between efficacy
and effectiveness is an ongoing priority [10]. The translational
challenge applies not only to the delivery of the intervention
but also to the process of identification of individuals to whom
it might be offered. In most of the original diabetes prevention
trials people were recruited on the basis of an OGTT [2, 3].
This test helps identify individuals with impaired glucose
tolerance (IGT) and, in the case of the US Diabetes
Prevention Program (DPP), which coupled a trial-inclusion
criterion of IGT (defined by 2 h post-load glucose concentra-
tion) with a high fasting glucose, results in the identification of
a subgroup of people who are at high risk of progression to
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The extent to which current diabetes
prevention approaches are already
personalised

Personalisation of prevention approaches is a question of
degree, not a binary alternative to non-personalised interven-
tions. Existing approaches are already personalised to some
extent because testing for glycaemia is not universal but is
usually undertaken on the basis of an estimation of risk either
by strategies that offer testing to particular population
subgroups (e.g. people of a particular age or level of obesity
or women with previous gestational diabetes) or following the
quantification of risk at the individual level using risk predic-
tors that include personal characteristics. Such prediction,
using tools that utilise existing information with or without
additional simple clinical variables, is already very good
[16], creating a challenge for more personalised approaches
to risk prediction. Given the principle already articulated in
this article that personalised approaches need to augment rath-
er than replace existing approaches, it follows that
personalised prediction methods need to be evaluated against
the extent to which they outperform existing approaches, not
whether they work in isolation. Since existing approaches are
already very good, this is a challenging proposition as the
demonstration of enhanced prediction becomes incrementally
harder as tools improve.
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diabetes in a relatively short period of time [3]. Such a strategy
makes eminent sense in a trial since statistical power to
demonstrate an effect is driven, in part, by the absolute risk
of the endpoint in question in the study population. However,
this process of risk-group identification, which works so well
in trials, is difficult to translate into real-world settings in
which it is difficult to get OGTTs undertaken for diagnosis
of diabetes, let alone for the purpose of risk-group identifica-
tion. Thus, many implementation strategies for diabetes
prevention in the real-world setting involve more practical
ways of identifying high-risk individuals [11–13].

Another key distinction between diabetes prevention trials
and the real world is that in a trial the focus is entirely on
individuals without diabetes who are at high risk. People
who are found by a measurement of glycaemia to have prev-
alent, but previously undiagnosed, diabetes are excluded. In a
research paradigm this latter group of individuals are the prin-
cipal focus of a different theme of research into the benefits of
screening for diabetes. In real-world settings, screening for
undiagnosed diabetes and the identification of people at high
risk for prevention interventions cannot be seen as separate
issues because they are inextricably linked by the processes of
risk prediction and measurement of glycaemia. In turn, these
two processes are linked to the more fundamental issue of how
type 2 diabetes is defined and how it is diagnosed. The inter-
national move to accept the very easy to measure HbA1c test
[14] as a way of diagnosing diabetes has opened up more
easily implementable ways of testing for prevalent but undi-
agnosed diabetes and identifying people with prediabetes who
can be offered preventive interventions. This linking of diabe-
tes diagnosis, screening and high-risk-group identification is
critical to implementation in real-world settings. How a risk
assessment and high-risk intervention programme could be
implemented ought to be considered right at the outset of its
design, not as an after-thought once it has been shown to
work. This is an important principle that influences how we
might think of future developments in diabetes prevention,
including more personalised approaches.

The relevance of the evolution of diabetes
prevention interventions for personalised
prevention

The brief résumé of how the field of diabetes prevention has
evolved from the early trials to the current implementation of
integrated diagnostic screening and high-risk prevention
programmes serves a key purpose of showing where the field
is currently. The development and evaluation of personalised
approaches to diabetes prevention are not happening in a
vacuum but in a context in which many countries are imple-
menting more standard approaches and others are yet to even
make that move. Where healthcare systems have already

implemented diabetes prevention measures, the key question
is whether more personalised approaches can augment the
existing approaches. Without a focus on augmentation rather
than replacement, there is a risk that a call for greater
personalisation could undermine the implementation of
approaches that demonstrably work in trials and for which
considerable attention has been placed on the challenges of
translation into real-world settings. Undermining an approach
that is effective, admittedly only in part for most people, risks
letting a drive towards the best be the enemy of the implemen-
tation of the merely very good. In healthcare systems where
diabetes prevention programmes are yet to be implemented,
personalised prevention approaches must be considered
alongside the broader question of why diabetes prevention
interventions that are known to be efficacious are not being
implemented. There is no single reason for this as policy deci-
sions are context specific. However, in less-well-resourced
countries, the prospect of implementing integrated screening
and high-risk diabetes prevention approaches is challenging
when the strengthening of healthcare systems to deal with
those with diagnosed disease is such a pressing concern
[15]. In such settings, the consideration of greater
personalisation of diabetes prevention is unlikely to be a
priority.



Perhaps the area where personalisation of prevention has
the most to deliver is in the nature of the intervention. In
established prevention programmes that build on the classical
RCTs, the intervention is usually common to a group of
people who are defined as being at risk by virtue of having
prediabetes. While trial evidence does suggest that a focus of
such interventions on weight reduction, increased physical
activity and dietary change is logical on average for people
who are identified as being in the target population [17], it is
also true that there is heterogeneity among that target popula-
tion. As an example, in early data from the National Health
Service Diabetes Prevention Programme roll out in England
[18], 44% of those referred to the programme with a diagnosis
of prediabetes were obese and a further 33%were overweight.
However, 15% of people had a BMI under 25 kg/m2 when
referred. For this sizeable subgroup, the face validity of an
intervention with a heavy emphasis on weight loss has some
challenges from a participant perspective. It is true that in the
US DPP the analysis of efficacy by population subgroups
suggested that the lifestyle intervention was actually margin-
ally more effective in those with lower BMI at baseline (RR
reduction 65%) than in those with obesity (RR reduction
61%). Overall, there was no statistically significant heteroge-
neity by initial BMI [3], although the lower comparison group
in this context comprised people with BMI 22–30 kg/m2 and
were a mixed group of people, some of whom were over-
weight and some who were of normal weight. Whether the
intervention was effective in those with BMI <25 kg/m2 was
not reported. Similarly, within the Finnish Diabetes
Prevention study there was no evidence of heterogeneity of
the intervention effect by initial BMI. However, this trial was
smaller than the US DPP and likely to be underpowered to
detect subgroup effects, particularly when multiple potential
interactions were tested [19].

There is clear evidence of heterogeneity of effect for phar-
macological approaches to the prevention of type 2 diabetes,
with the DPP trial showing that the RR reduction for metfor-
min therapy in people with initial BMI >35 kg/m2 was signif-
icantly greater (at 53%) than in those with lower BMI [3]. In
the subgroup of people with initial BMI 22 kg/m2 to <30 kg/
m2, there was no evidence that metformin was effective in
reducing the risk of progression to diabetes (risk reduction
3% [95% CI −36, 30]). This observation opens up the possi-
bility of personalisation of pharmacological diabetes preven-
tion on the basis of BMI. However, it is likely that such hetero-
geneity is specific to the mechanism of action of particular
glucose-lowering treatments. While there is demonstrable
BMI-dependent effectiveness for metformin, there is, for
example, no evidence of heterogeneity of effect by initial
BMI for pioglitazone [20].

It is well established that ethnicity influences individual
risk of type 2 diabetes and that South Asian populations in
particular develop type 2 diabetes at an earlier age [21] and at

a lower level of overall obesity than people of Europid origin
[22]. Ethnicity is thus one of the key factors that contribute to
individual-level risk prediction or, if stratified approaches to
prevention are considered, is a key factor defining population
subgroups of interest on the basis of age, BMI and ethnic
origin. However, evidence for differential responses to life-
style interventions by ethnicity in classical trials is limited.
Even in the largest single trial, the US DPP, which
oversampled populations of non-white origin (representing
45% of the participants), there was no statistically significant
heterogeneity of the intervention effect by ethnic group [3].
The authors of that classic paper were at pains to point out that
‘the study had inadequate power to assess the significance of
effects within the subgroups’ and thus the failure to observe
any demonstrable heterogeneity of effect by ethnicity or age,
BMI and sex, cannot be taken as definitive evidence of the
absence of true heterogeneity.

Development of more personalised
approaches to type 2 diabetes prevention

Personalisation on the basis of individual risk For a given
level of effectiveness, individuals stand to gain more from
preventive interventions if they are at high absolute risk.
This is because the number needed to treat for any preventive
or therapeutic intervention is the inverse of the absolute risk
reduction. Therefore, if the relative effect of the intervention is
the same in all individuals (an assumption that at least for
classical interventions holds, as the previous section of this
review describes), the number needed to treat is lower in
people whose absolute risk is higher. For most people, the
number needed to treat is a relevant and intuitive parameter
when considering whether to engage with an individually
targeted preventive intervention because it addresses the ques-
tion of ‘howmany people like me would need to participate in
the intervention for one to avoid developing diabetes’. More
personalised ways of predicting risk do, therefore, at least in
theory, have the potential to contribute to personalised preven-
tion if they more accurately identify those at high absolute
risk.

The past 15 years has seen a considerable expansion in the
number of genetic loci definitely known to be associated with
type 2 diabetes, as a consequence of the combination of tech-
nological innovation in genotyping at scale, the application of
these methods in large-scale studies and previously unprece-
dented levels of international collaboration and result sharing
[23]. These studies have provided important insights into the
aetiology and pathophysiology of type 2 diabetes but their role
in risk prediction has been more limited. Early studies, such as
the Framingham Study, using a genetic risk score (GRS)
based on 18 single nucleotide polymorphisms (SNPs) to
predict the future development of diabetes, showed that the
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genetic score made a non-significant marginal difference to
the area under the receiver operating characteristic curve
(aROC; 0.900 without and 0.901 with the genotype score)
[24]. This observation underscores the point made previously
in this review that existing methods for predicting type 2
diabetes based on simple clinical and biochemical variables
are extremely good. Of course, it is possible that better genetic
risk prediction could be obtained using updated evidence of
association with type 2 diabetes from genome-wide associa-
tion studies to create a more extensive GRS, or simply by
using the association of all genetic variants across the genome
in a polygenic risk score. However, most of the predictive
utility of a genetic score comes from the relatively small group
of strongly associated alleles and the marginal advantage of
adding large numbers of more weakly associated loci is limit-
ed. An update of the Framingham analysis in 2014 used a
GRS based on 62 SNPs and showed virtually identical results
to the earlier analysis, with an aROC of 0.903 without the
genotype score and a non-statistically different aROC of
0.906 with it [25]. Extending analyses to the whole genome
adds very little additional predictive utility. In an analysis
based on data reported in Mahajan et al [23], Udler showed
that a GRS with only age and sex as additional covariates had
an aROC of 0.72, whereas one using a polygenic risk score
across the whole genome had an aROC of 0.73 [26].

Even if genetics adds little to prediction over existing risk
scores for the whole population, it remains possible that it
might enhance prediction in population subgroups, if there is
an interaction between a particular characteristic and genetic
risk. The examination of interaction between exposures and
incidence of type 2 diabetes is challenging since it requires
very large studies with standardised assessment of key expo-
sures and long follow-up. In the EPIC-InterAct study, 12,403
incident cases of type 2 diabetes were ascertained in a large
population-based cohort study originally involving centres
from eight different European countries with nearly 4 million
person-years of follow-up [27]. A GRS based on 49 loci was
strongly associated with the incidence of type 2 diabetes (HR
per SD of the GRS was 1.41 [95% CI 1.34, 1.49]) [28]. On a
relative scale there was evidence of interaction between this
GRS and BMI at baseline, with the HR per SD of the GRS
being greatest in those who were thinnest at baseline.
However, it is the absolute (rather than relative) risk that is
most relevant to prediction and prevention and, on an absolute
scale, the marginal change in risk linked to differences in
underlying genetic risk was dwarfed by that of the non-
genetic risk factors, particularly obesity.

Finally, it remains possible that genetic factors for type 2
diabetes could influence the response to a preventive interven-
tion. The challenge of demonstrating this is probably compa-
rable to that of testing for interaction in observational studies,
but the sample sizes available for analysis are much smaller.
Even in the largest prevention trial, the DPP, there was no

evidence of a difference in the effect of lifestyle by genetic
risk of type 2 diabetes as assessed by a 34 SNP GRS (p for
interaction=0.13) [29]. Because of the limited statistical power
to examine heterogeneity of intervention effect by subgroups,
the possibility of difference in response to intervention by
genetic risk groups remains an unanswered question.

Technological advances in measurement of epigenetic
markers, metabolites and proteins have made it possible to
add other ‘omic’ measures to risk tools for prediction of type
2 diabetes. As with the genetic markers, the available evidence
suggests that each of these types of additional ‘omic’ data
provide novel insights into disease aetiology and pathogenesis
[30–32] and although they are predictive of disease, especially
when considered in isolation, they do not make a material
difference to the predictive utility of risk tools when consid-
ered as an addition to existing information [33]. The next step
forward is not to keep repeating the same mistake of hoping
that the addition of yet further information will somehow
improve the prediction of type 2 diabetes but instead to reflect
on the principle that diagnosis, screening and high-risk
prevention are part of the same process, and to consider
whether personalisation of prevention may play a role in
specific diagnostic subgroups that are hidden within the
diffuse disorder that we label as type 2 diabetes.

Personalisation of prevention by breaking type 2 diabetes
down into diagnostic subgroups It is generally accepted that
type 2 diabetes is a heterogeneous disorder and that efforts to
break it down into specific subgroups could have utility for
personalised treatment and potentially for prevention. For
example, Ahlqvist et al used a data-driven approach to define
five subtypes of diabetes using six key variables: GAD anti-
bodies; age at diagnosis; BMI; HbA1c; and HOMA assess-
ments of beta cell function and insulin resistance [34]. This
analysis clearly identified a subgroup of individuals with auto-
immune diabetes characterised by early onset disease, rela-
tively low BMI, insulin deficiency and GAD antibody posi-
tivity. Putting that group to one side, the remaining individuals
could be put into four further subgroups: a severe-insulin-
deficiency subgroup; a severe insulin resistance subgroup;
an obese but not insulin-resistant subgroup; and a subgroup
termed ‘mild age-related diabetes’. Although these subgroups
are associated with different patterns of diabetes complica-
tions and may be associated with response to therapy, the
value of clusters in predicting response was less than for
predictions based on simple clinical features, raising doubts
about the value of these clusters for personalised therapy [35].
The clinical utility of the clusters for personalised prevention
is even more challenging since many of the features that
define the clusters are not knowable at the time preventive
interventions would be applied, since they are characteristics
that are manifest at the time of diagnosis. This would not be a
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limitation if the clusters were linked to clearly distinct
aetiological pathways that could be detected prior to diagno-
sis. In their original paper, Ahlqvist et al showed that,
although there was heterogeneity in the association of estab-
lished type 2 diabetes genetic loci with the five disease clus-
ters, the magnitude of the differences in association were small
and there were no loci that were uniquely associated with
individual clusters. GAD antibody positivity at the time of
diagnosis is part of the Ahlqvist subgrouping. It is also asso-
ciated with risk of future diabetes if measured in people with-
out diabetes [36], but the level of association is modest which,
with the low frequency of antibody positivity, makes the
predictive value limited. Even if the autoimmune subgroup
was identifiable at an earlier stage, the nature of the preventive
intervention that would be put in place is uncertain. The form
of clustering used by Ahlqvist et al essentially forced individ-
uals to be members of only one cluster. An alternative
approach was used by Wesolowska-Andersen et al, who used
a soft-clustering method that allowed individuals to be
members of multiple clusters linked to five aetiological
processes: insulin secretion; obesity; insulin resistance;
dyslipidaemia; and reduced beta cell glucose sensitivity [37].
The utility of these soft clusters for personalised treatment or
prevention is unclear. A key observation in this study was that
most individuals with newly diagnosed diabetes belonged to
multiple clusters, suggesting that a mixed aetiology for type 2
diabetes is the norm rather than the exception.

An alternative approach towards breaking down all cases
of type 2 diabetes into subgroups is to tackle heterogeneity by
identifying specific diagnostic subtypes at the margins that
can be distinguished as having a specific cause. This fits with
the reality of type 2 diabetes, which is in effect a diagnosis of
exclusion since it has no simple operational definition and is
often defined by what it is not (i.e. it is a diagnostic label for a
type of diabetes that is not type 1 and for which there is no
specific known cause). This perspective in itself certainly has
clinical value as it ensures that clinical attention is kept on the
possibility of specific causes, recognising that diagnostic
labels like ‘type 2’ can get in the way of appropriate diagnosis
and treatment if applied blindly without consideration of alter-
native specific causes. In the context of a discussion about
personalised prevention, the possibility that there are some
covert specific subgroups of diabetes hidden within the popu-
lation of people with type 2 diabetes raises the possibility that
the identification of that subgroupmight identify opportunities
for personalised prevention, particularly if the aetiological
process linked to that subgroupwere distinct from that of more
typical type 2 diabetes. One key example of this could be
familial partial lipodystrophy, which not only exists as a
distinct phenotype with particular genetic causes but is also
probably covertly present in the population of people labelled
as having type 2 diabetes but distinguishable on the basis of
being enriched with genetic loci linked to insulin resistance

[38]. In this instance, separation of a phenotypic subgroup
could have advantages both for more personalised treatment
and prevention (e.g. through specific therapies targeting the
primary pathophysiological defects in adipose tissue). What
distinguishes this example from the more blanket approach of
applying GRSs to personalised prevention of type 2 diabetes
is not only the specificity of the phenotype but also the poten-
tial application of a preventive intervention distinct from that
offered to the general population of those at high risk.

Personalisation of prevention by greater individualisation of
the targets for preventive action It would be perfectly possi-
ble for preventive intervention programmes to be much more
adaptive so that they were tailored not only to the specific
behaviours that an individual needed to change (rather than
simply a standard set of risk factors) but also, perhaps more
importantly, to those risk factors that the individual was will-
ing and able to prioritise for change. Additionally, it would be
possible for interventions not only to provide broad generic
recommendations about behaviour change but also to provide
assistance or prompts for behaviour change at certain times
when it might be particularly effective, such as around critical
points when decisions between alternatives choices are being
made.

A complementary approach to trying to distinguish
personalised prevention by greater specificity of pathophysi-
ological pathways to diagnostic subgroups of type 2 diabetes
is to focus more on the potential for greater individualisation
of the behavioural risk factors that drive the disease. The
promise of this personalised nutrition approach is considerable
but the science is in its infancy. In an important paper in 2015,
Zeevi and colleagues showed that a machine learning algo-
rithm bringing data together from diverse sources, including
blood biomarkers, diets, anthropometry, physical activity and
the gut microbiome, could predict individual glycaemic
responses to meals in free-living individuals [39].
Importantly, they also undertook a small RCT in which 28
individuals were randomly assigned to receive dietary recom-
mendations from a clinical dietitian based on their expert
interpretation of postprandial glucose response to meals
during a profiling week or to receive dietary advice based on
the machine learning algorithm. In both instances, participants
were provided with a dietary recommendation for 1 week that
was likely to be beneficial in relation to postprandial glucose
responses and one that was likely to be disadvantageous. The
trial showed that some of the postprandial glucose response
variables were lower during the week in which participants
consumed the predicted beneficial diet, although there was no
major difference between whether that prediction came from
an expert or from the machine learning algorithm. How such
personalised nutrition recommendations would impact on
clinical outcomes over the long term was not investigated in
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this initial study. Nor were they investigated in similar work
on machine learning algorithms that predict individual
glycaemic responses to food intake conducted in the Predict-
1 study [40].

However, in a follow-up trial in 225 people with prediabe-
tes, the Segal group undertook an RCT of what they termed a
personalised postprandial targeting (PPT) diet, which they
compared with a group assigned to follow a Mediterranean
diet in a 6 month dietary intervention period with a 6 month
post-intervention follow-up [41]. As in the previous study, the
PPT diet was tailored to individual participants based on their
postprandial glucose responses using a machine learning algo-
rithm. There were three primary outcomes in the trial: the total
time during the day when glucose measured by the continuous
glucose monitor was above 7.8 mmol/l; HbA1c; and an OGTT
undertaken at home. There was a higher loss to follow-up rate
in the PPT arm, explained by the authors as being related to
higher motivation of participants in the group assigned to the
Mediterranean diet, who were promised personalised predic-
tions from the algorithm at the end of the follow-up period. Of
course, such an observation could also be explained by lower
motivation to continue in the PPT group for whatever reason.
The between-randomised-group difference in differences
(between baseline and follow-up) were statistically significant
for two of the primary outcomes but not for the OGTT.
Importantly, the magnitude of effect seen in the PPT group,
with a difference of 0.18% in HbA1c between baseline and
follow-up, was comparable with that reported in the DPP [3].

A key question that arises from this study concerns the
explanation for the differences between the dietary interven-
tion groups. Although weight loss was greater in the PPT
group, the difference from the group randomised to the
Mediterranean diet was not statistically significant. Nor was
there a difference in physical activity between groups.
However, the PPT intervention resulted in a diet that was
significantly lower in carbohydrates. At 6 months, the average
percentage of carbohydrate intake in the Mediterranean diet
group was 42.4% of total energy, which was double that of the
PPT group (20.4%). This raises the question about whether
the comparison being tested here is between a low- and a high-
carbohydrate diet rather than anything to do with
personalisation of the dietary recommendation per se.

A characteristic of this field is the rapidity with which tech-
niques for personalised prediction become commercialised,
with both of the approaches mentioned above already being
available from companies linked to the scientific groups that
undertook the original research: DayTwo [42]; and Zoe [43].
Whether the promise of such approaches is matched by
evidence of their long-term beneficial impact remains uncer-
tain but interest and activity in this field is growing rapidly, as
evidenced by the award of $170 million by the US National
Institutes of Health for a new study of 10,000 people which
will develop algorithms to predict individual responses to

food and dietary routines [44]. Even with large traditional
funder investment, this field will develop rapidly in the
commercial sector, with large providers positioning them-
selves to offer ‘innovative tools, personalised data and
insights, and an ever-growing library of programs designed
to help’ paying clients discover what works for them [45].
While this commercialisation of personalised prevention is
not itself a bad thing, it does raise considerable challenges
for the future, particularly in relation to knowing what is in
the ‘black box’ of proprietary interventions that change with
time and may not be subject to the same sort of rigorous
evaluative assessment as more traditional preventive interven-
tions. In the end, since such interventions are neither being
offered by state providers nor recommended by them, whether
an individual wishes to use them is a matter of individual
choice and since this is a financial transaction, the principle
of caveat emptor applies. Whether regulators such as the US
Food and Drug Administration (FDA) or the UK Medicines
and Healthcare products Regulatory Agency (MHRA) regu-
late the claims that are made about such personalised preven-
tion approaches depends upon the intended purpose and
consequently on decisions about whether such approaches fall
under medical device regulations [46].

Personalised and whole-population approaches to preven-
tion A final key question is where increasing efforts to person-
alise prevention of type 2 diabetes leaves interventions that take a
whole-population approach. From this perspective, diabetes is
seen less as a clinical presentation of a pathophysiological defect
but rather as a public health manifestation of a societal problem.
Unhealthy diets and low levels of physical activity can be viewed
not solely as the consequences of individual choices but as the
product of broader issues such as the food system and the built
environment. Preventive interventions that influence those
broader issues have the potential to influence behavioural risk
factors in the whole population and small changes in a large
number of individuals can have a sizeable population-level
impact. In the past some have attempted to argue for greater
investment in research into whole-population prevention by
framing this as an alternative to more individualised approaches
[47]. In reality this is a false dichotomy and it is perfectly rational
for a prevention strategy in any given country to include both
approaches, although the balance of investment aimed at differ-
ent approaches to prevention depends on various factors includ-
ing the capacity of the healthcare system.

Whatever the future holds for more personalised
approaches to type 2 diabetes prevention, it is important that
the investment and effort that is put into such developments at
best synergises with, but at the very least does not detract
attention from, either the roll out of established individual-
level interventions or the implementation and evaluation of
societal-level prevention strategies.
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