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Abstract
Aims/hypothesis Data-driven diabetes subgroups have shown distinct clinical characteristics and disease progression, although
there is a lack of evidence that this information can guide clinical decisions.We aimed to investigate whether diabetes subgroups,
identified by data-driven clustering or supervised machine learning methods, respond differently to canagliflozin.
Methods We pooled data from five randomised, double-blinded clinical trials of canagliflozin at an individual level. We applied
the coordinates from the All NewDiabetics in Scania (ANDIS) study to form four subgroups: mild age-related diabetes (MARD);
severe insulin-deficient diabetes (SIDD); mild obesity-related diabetes (MOD) and severe insulin-resistant diabetes (SIRD).
Machine learning models for HbA1c lowering (ML-A1C) and albuminuria progression (ML-ACR) were developed. The primary
efficacy endpoint was reduction in HbA1c at 52 weeks. Concordance of a model was defined as the difference between predicted
HbA1c and actual HbA1c decline less than 3.28 mmol/mol (0.3%).
Results The decline in HbA1c resulting from treatment was different among the four diabetes clusters (pinteraction=0.004). In
MOD, canagliflozin showed a robust glucose-lowering effect at week 52, compared with other drugs, with least-squares mean of
HbA1c decline [95%CI] being 6.6mmol/mol (4.1, 9.2) (0.61% [0.38, 0.84]) for sitagliptin, 7.1mmol/mol (4.7, 9.5) (0.65% [0.43,
0.87]) for glimepiride, and 9.8 mmol/mol (9.0, 10.5) (0.90% [0.83, 0.96]) for canagliflozin. This superiority persisted until 104
weeks. The proportion of individuals who achieved HbA1c <53 mmol/mol (<7.0%) was highest in sitagliptin-treated individuals
with MARD but was similar among drugs in individuals with MOD. The ML-A1C model and the cluster algorithm showed a
similar concordance rate in predicting HbA1c lowering (31.5% vs 31.4%, p=0.996). Individuals were divided into high-risk and
low-risk groups using ML-ACR model according to their predicted progression risk for albuminuria. The effect of canagliflozin
vs placebo on albuminuria progression differed significantly between the high-risk (HR 0.67 [95% CI 0.57, 0.80]) and low-risk
groups (HR 0.91 [0.75, 1.11]) (pinteraction=0.016).
Conclusions/interpretation Data-driven clusters of individuals with diabetes showed different responses to canagliflozin in
glucose lowering but not renal outcome prevention. Canagliflozin reduced the risk of albumin progression in high-risk individ-
uals identified by supervised machine learning. Further studies with larger sample sizes for external replication and subtype-
specific clinical trials are necessary to determine the clinical utility of these stratification strategies in sodium–glucose
cotransporter 2 inhibitor treatment.
Data availability The application for the clinical trial data source is available on the YODA website (http://yoda.yale.edu/).
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CANTATA-M Canagliflozin Treatment
and Trial Analysis Monotherapy

CANTATA-SU Canagliflozin Treatment And
Trial Analysis-Sulfonylurea

CANVAS Canagliflozin Cardiovascular
Assessment Study

CANVAS-R A Study of the Effects of Canagliflozin on
Renal Endpoints in Adult Participants
With Type 2 Diabetes Mellitus

DBP Diastolic BP
DPP4i Dipeptidyl peptidase-4 inhibitor
FDR False discovery rate
FPG Fasting plasma glucose
GADab GAD antibody
HDL HDL-cholesterol
kNN k-Nearest neighbours
LDL LDL-cholesterol
LRT Likelihood ratio test
LS Least squares
MAE Mean average error
MARD Mild age-related diabetes
mITT Modified intent-to-treat
ML Machine learning
ML-A1C model ML-based model for HbA1c decline
ML-ACRmodel ML-based model for

albuminuria progression
MOD Mild obesity-related diabetes
OHD Oral glucose-lowering drug
RF Random forest

ROC AUC Average area under the receiver-operating
characteristic curve

SBP Systolic BP
SCr Serum creatine
SGLT2i Sodium–glucose cotransporter 2 inhibitor
SIDD Severe insulin-deficient diabetes
SIRD Severe insulin-resistant diabetes
SU Sulfonylurea
SVM Support vector machine
TC Total cholesterol
TG Triacylglycerol
TZD Thiazolidinedione
YODA Yale University Open Data Access

Introduction

Sodium–glucose cotransporter 2 inhibitors (SGLT2i) are
novel and innovative glucose-lowering treatments, which
can alter cardio-renal outcomes [1–3]. Type 2 diabetes is a
highly heterogeneous disease so there is a clinical need to
identify individuals who can benefit from SGLT2i treatment
for better health resource allocation [4]. Artificial intelligence
methods are increasingly used to stratify patients thus facili-
tating clinical decisions in line with the promotion of precision
medicine. Among these methods, data-driven clustering was
recently proposed for refining diabetes classification, with
diabetes being clustered into five groups using GAD antibody
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(GADab), age, BMI, HOMA2-B and HOMA2-IR [5]. Where
GADab data were absent, four cluster subgroups, including
mild age-related diabetes (MARD), mild obesity-related
diabetes (MOD), severe insulin-deficient diabetes (SIDD)
and severe insulin-resistant diabetes (SIRD), were reproduced
in epidemiological studies in China and the USA [6] as well as
clinical trials involving participants from different ethnicities
[7]. The subgroups have distinct clinical characteristics and
different trajectories towards diabetes complications [5], rais-
ing the possibility of providing ‘precision management’ [8] to
diabetes patients.

Currently, evidence is accumulating to address whether the
clinical response of oral glucose-lowering drugs (OHDs [oral
hypoglycaemic drugs]) varies across these subtypes. Dennis
et al used the data from the A Diabetes Outcome Progression
Trial (ADOPT) to show that sulfonylureas (SUs) may be suit-
able for individuals with MARD and thiazolidinediones
(TZDs) may bring benefit to those with SIRD in terms of
glucose lowering [7]. However, whether the effects of
SGLT2i on glucose lowering and clinical outcomes are differ-
ent among data-driven clusters is largely unknown. In the
realm of precision medicine, supervised learning is frequently
used in predicting clinical outcomes and the clinical response
to the OHD [9]. This study aimed to investigate whether strat-
ification of individuals by data-driven clustering or supervised
machine learning (ML) can distinguish those deriving greater
benefit from treatment with SGLT2i, and therefore guide clin-
ical decisions, using clinical trials of canagliflozin.

Methods

Study design and participants

We used data from five randomised, double-blinded, multi-
centre clinical trials of canagliflozin (ClinicalTrials.gov
identifiers: NCT01081834, Canagliflozin Treatment and
Trial Analysis Monotherapy [CANTATA-M] [10];
NCT01106677, Canagliflozin Treatment and Trial Analysis
- DPP-4 Inhibitor Comparator Trial [CANTATA-D] [11];
NCT00968812, Canagliflozin Treatment And Trial
Ana l y s i s - Su l f ony l u r e a [CANTATA-SU] [ 12 ] ;
NCT01032629, Canagliflozin Cardiovascular Assessment
Study [CANVAS] [2]; and NCT01989754, A Study of the
Effects of Canagliflozin on Renal Endpoints in Adult
Participants With Type 2 Diabetes Mellitus [CANVAS-R]
[2]) obtained through the Yale University Open Data Access
(YODA) Project (no. 2020-4211), which has an agreement
with Janssen Research & Development. The interpretation
and reporting of research using this data are solely the respon-
sibility of the authors and do not necessarily represent the
official views of the YODA Project or Janssen Research &
Development.

All trials complied with the International Conference on
Harmonization Good Clinical Practice guidelines and the
Declaration of Helsinki and the protocols were approved by
local ethics committees and institutional review boards before
the start of each clinical trial. No informed consent was
required since all data were previously collected and all indi-
vidual identities were masked.

Eligibility criteria for each trial have been published
previously [2, 10–12]. Briefly, CANTATA studies were
multi-centre, randomised, double-blinded, phase 3 clinical
trials in individuals with type 2 diabetes who were drug-
naive or who received metformin monotherapy, in which
the efficacy of canagliflozin (either 100 mg or 300 mg
daily) was evaluated in reference to placebo, sitagliptin
100 mg daily or glimepiride (1–8 mg daily). The
CANVAS program was a randomised trial investigating
the role of canagliflozin vs placebo on cardiovascular
outcomes in individuals with type 2 diabetes at high
cardiovascular risk [2].

For data-driven cluster assays, 6365 participants were
pooled from the modified intent-to-treat (mITT) popula-
tion of all CANTATA trials and CANVAS for whom
there was complete information on variables for cluster
allocation (Fig. 1). There were 175 participants in the
CANTATA-D trial who used a placebo during the first
26 weeks and then switched to sitagliptin. These were
included as participants treated using a placebo before
26 weeks for efficacy analysis and were excluded from
further analysis. Only participants from CANVAS
(ClinTrials.gov registration no. NCT01809327) were
included for outcome analysis.

As a comparison, an ML-based model for HbA1c decline
(ML-A1C model) and an ML-based model for albuminuria
progression (ML-ACR model) were developed in
CANTATA trials and CANVAS-R trial, respectively, and
externally validated in CANVAS (Fig. 1).

Outcomes

Since the minimum observation period for all experimental
drugs was 52 weeks among all trials, we selected 52 weeks
to assess the efficacy of SGLT2i. We combined the two
dosages of canagliflozin as one treatment arm. For efficacy
analysis, the primary endpoint was the decline of HbA1c from
baseline to week 52. We also aimed to investigate the follow-
ing outcomes: (1) the percentage of participants attaining
HbA1c <53 mmol/mol (<7.0%) after 52 weeks of treatment;
and (2) changes in HbA1c, fasting plasma glucose (FPG) and
body weight from baseline to 104 weeks.

Renal outcome consisted of the progression of albuminuria
and renal composite outcome. Progression of albuminuria was
defined as a more than 30% increase in urinary albumin/
creatinine ratio (ACR), or change from normoalbuminuria to
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microalbuminuria, or from normoalbuminuria or
microalbuminuria to macroalbuminuria. Renal composite
outcome was defined as follows: (1) 40% reduction in eGFR
from baseline sustained for at least 30 days; (2) end-stage renal
disease; (3) doubling of serum creatinine; or (4) death with a
proximal renal cause.

Cluster analysis

HOMA2-B and HOMA2-IR were calculated using the
HOMA2 calculator of Oxford [13] using baseline fasting
glucose and fasting C-peptide (the latter was substituted
with fasting insulin due to unavailability in 59 partici-
pants). Since all participants recruited had type 2 diabetes
and GADab data were missing, we assumed all partici-
pants were GADab negative. HOMA2-IR, HOMA2-B,
BMI, HbA1c and age, instead of age-of-onset due to
unavailability, were used for cluster analysis. Using the
coordinates from the All New Diabetics in Scania
(ANDIS) cohort [5], we allocated the participants in each
trial into the four diabetes subgroups.

Supervised ML-based predictive models

ML-A1C modelWe used CANTATA trials (N=2076) to devel-
op the ML-A1Cmodel to predict HbA1c decline at week 52 in
individuals treated with canagliflozin and validated the model
in the CANVAS trial (N=3111). We used a set of baseline
clinical variables relating to hypoglycaemic response, includ-
ing age, sex, race, pulse, systolic BP (SBP), diastolic BP
(DBP), height, weight, BMI, HbA1c, FPG, fasting insulin,
fasting C-peptide, triacylglycerol (TG), total cholesterol
(TC), HDL-cholesterol (HDL), LDL-cholesterol (LDL),
urinary ACR, serum creatine (SCr), eGFR, blood urea nitro-
gen (BUN), HOMA2-B, HOMA2-IR and background treat-
ment (using OHD or insulin) as predictors. Weight, FPG,
fasting insulin, fasting C-peptide and TC were excluded for
being missing in more than 20% of samples or being in high
collinearity with existing variables (Pearson coefficient >0.7).
Skew variables were log10-transformed. Missing data were
generated by multiple imputations. Then, a spectrum of super-
vised ML methods, including linear regression, random forest
(RF), XGBoost, k-nearest neighbours (kNN) and support
vector machine (SVM) was tested (for distance-based

CANTATA-M CANTATA-D CANTATA-SU CANVAS

678 in mITT analysis set 1284 in mITT analysis set 1452 in mITT analysis set 4330 in mITT analysis set

635 complete data 1254 complete data 1405 complete data 3140 complete data

619 for cluster analysis 1235 for cluster analysis 1400 for cluster analysis 3111 for cluster analysis

SGLT2i arm

2076 in CANTATA

2068 in CANVAS

4144 for ML-A1C

6365 for cluster analysis
Placebo arm

2771 in CANVAS-R

1043 in CANVAS

6365 for efficacy analysis 3111 for outcome analysis

CANVAS-R

5812 in mITT analysis set

29 failed to calculate

HOMA2-B/HOMA2-IR

217 missing age, BMI,

HbA
1c

973 missing fasting

insulin & C-peptide

3814 for ML-ACR

3237 not in CANVAS

5 failed to calculate

HOMA2-B/HOMA2-IR

19 failed to calculate

HOMA2-B/HOMA2-IR

16 failed to calculate

HOMA2-B/HOMA2-IR

19 missing age, BMI,

HbA
1c

28 missing fasting

insulin & C-peptide

23 missing age, BMI,

HbA
1c

7 missing fasting

insulin & C-peptide

17 missing age, BMI,

HbA
1c

26 missing fasting

insulin & C-peptide

Fig. 1 Flowchart of study participant inclusion. CANTATA and
CANVAS were used for data-driven analysis. CANTATA and
CANVAS were used for ML-A1C development and validation
(N=4144). CANVAS-R and CANVAS were used for ML-ACR model

development and validation (N=3814). Red lines represent cluster/effica-
cy/outcome analyses. Black lines represent ML-A1C and ML-ACR
models
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methods such as kNN and SVM, continuous variables were
scaled before modelling). In the development dataset, tenfold
cross-validation was applied for parameter tuning to obtain a
minimum mean average error (MAE), calculated as the mean
of the absolute difference between predictions and observa-
tions. Details on parameter calibration are displayed in elec-
tronic supplementary material (ESM) Table 1. The algorithm
with the least MAE in cross-validation was called the ML-
A1C model and further replicated in the external validation
dataset (Figs 1, 5a).

ML-ACR model We developed a model to predict the risk of
progression of albuminuria in the placebo arm of CANVAS-R
(N=2771) and validated the model in the placebo arm of
CANVAS (N=1043). We used a set of baseline clinical vari-
ables including age, sex, race, pulse, SBP, DBP, height,
weight, BMI, HbA1c, TG, TC, HDL, LDL, ACR, SCr,
eGFR, BUN, background treatment, history of cardiovascular
diseases and history of diabetic nephropathy to predict the
progression of albuminuria (yes or no). Weight and TC were
excluded after variable selection. After data processing, a
spectrum of ML methods, including logistic regression, RF,
XGBoost, kNN and SVM, were developed and tested by
tenfold cross-validation in derivation. Parameters were tuned
for the maximum average area under the receiver-operating
characteristic curve (ROC AUC) in the deviation dataset
(ESM Table 2). The algorithm achieving the highest ROC
AUC in cross-validation was called the ML-ACR model and
further replicated in the external validation dataset. We used
the Youden index, calculated as the maximum of sensitivity +
1−specificity, as the cut-off value for progression risk (Figs 1,
6a).

Statistical analysis

Participants from the mITT set from CANTATA trials and
CANVAS were included. Missing data were imputed
using the last observation carried forward (LOCF)
approach and the last observation prior to the initiation
of rescue therapy was used for participants who received
glycaemic rescue therapy. For the primary efficacy
outcome and other continuous endpoints, we used an
ANCOVA model with different trials and corresponding
baseline values as covariates to assess the least-squares
(LS) mean differences and the associated two-sided 95%
CIs among different drugs within each subgroup. Post hoc
comparisons were performed if the overall p value was
significant, and type one error was further controlled by
the false discovery rate (FDR) method if applicable. The
categorical efficacy endpoints (proportion of individuals
achieving HbA1c <53 mmol/mol [<7.0%]) were analysed
using a log-binomial regression model adjusted by trial
and baseline HbA1c.

In the clinical outcome analysis, all endpoints were tested
together without a sequential conditional hypothesis, since
this study was designed for an exploratory hypothesis.
Annualised incidence rates per 1000 individuals were calcu-
lated. HR (95%CI) for endpoints in SGLT2i vs placebo was
estimated using Cox regression models within each subgroup.
In subgroup analysis, the p value for interaction (pinteraction)
across subgroups was obtained through the likelihood ratio
test (LRT).

For the HbA1c decline endpoint, the percentage of concor-
dance was compared using McNemar test between cluster
algorithm and ML-A1C model in participants in CANVAS
receiving SGLT2i treatment. For the cluster algorithm, the
predicted HbA1c was equal to the mean HbA1c of the assigned
cluster. Concordance between prediction and actual HbA1c

decline was defined as an absolute difference between predict-
ed HbA1c decline value and actual HbA1c decline value of less
than 3.28 mmol/mol (0.3%), as accepted by many clinical
trials [14].

For the albuminuria progression endpoint, participants in
CANVAS-Rwere stratified into high-risk and low-risk groups
using the cut-off value of the ML-ACR model.

Sensitivity analysis was performed by repeating primary
endpoints in efficacy analysis and cardio-renal outcome
analysis using coordinates from ADOPT [4]. We also
performed a case-complete analysis on the full cohort by using
multiple imputation techniques to impute missing values in
HOMA2-IR and HOMA2-B.

All statistical analyses were conducted in R version 3.6.3
(R Foundation for Statistical Computing, Vienna, Austria).
SupervisedMLmodels were constructed using the caret pack-
age. Multiple imputations were constructed using the mice
package. Significance was regarded as a two-sided p value
<0.05 unless otherwise specified.

Results

Cluster allocation

A total of 6365 participants were allocated to the diabetes
clusters using coordinates from the ANDIS study (Fig. 1).
The characteristics of the participants in the clusters were
similar to those of the original ANDIS study (Fig. 2 and
ESM Table 3). The median (IQR) of baseline ACR (mg/g)
was 11.8 (6.0–31.6), 10.7 (5.7–29.0), 14.4 (7.5–51.5), 11.7
(6.3–34.3) (p<0.001) and eGFR (ml min−1 [1.73 m]−2) was
80.0 (68.0–94.0), 88.0 (76.5–102.0), 86.0 (73.6–99.0) and
75.0 (65.0–88.0) (p<0.001) in the MARD, MOD, SIDD
and SIRD clusters, respectively. Treatments were evenly
distributed to the four clusters at randomisation (ESM
Table 3).
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Glycaemic control achieved by canagliflozin in data-
driven clusters

In canagliflozin-treated participants, the crude decline in HbA1c

at 52 weeks (95% CI) was 7.54 mmol/mol (7.1, 8.1) (0.69%
[0.65, 0.74]), 9.81 mmol/mol (9.2, 10.5) (0.90% [0.84, 0.96]),
17.2 mmol/mol (16.5, 17.8) (1.57% [1.50, 1.63]) and 8.2
mmol/mol (7.4, 9.0) (0.75% [0.68, 0.82]) in MARD, MOD,
SIDD and SIRD clusters, respectively (p<0.001). The HbA1c

decline was greatest in participants with MOD when baseline
HbA1c was adjusted for, although this difference did not reach
statistical significance (p=0.06) (Fig. 3a and ESM Fig. 1).

There was a significant interaction between cluster and drug
treatment in HbA1c decline (pinteraction=0.004, Fig. 3b). In the
MOD group, the LS mean (95% CI) decline of HbA1c with
sitagliptin (dipeptidyl peptidase-4 inhibitor [DPP4i]), glimepiride
(SU) and canagliflozin was 6.6 mmol/mol (4.1, 9.2) (0.61%
[0.38, 0.84]), 7.1 mmol/mol (4.7, 9.5) (0.65% [0.43, 0.87]) and
9.8 mmol/mol (9.0, 10.5) (0.90% [0.83, 0.96]), respectively, pSU
vs SGLT2i=0.029 and pDPP4i vs SGLT2i=0.029 after FDR correction
(Fig. 3b). In MARD, the highest percentage of participants
reaching the HbA1c control target were those treated with sita-
gliptin (Fig. 3c). There was no difference in either HbA1c decline
or the proportion of participants achieving glycaemic control

when comparing canagliflozin with the other drugs in the
SIRD and SIDD groups (Fig. 3b,c).

For HbA1c decline, the p value for interaction between treat-
ment and clusters was <0.01 at all time points from week 12 to
week 104. Canagliflozin caused a greater magnitude of HbA1c

decline than glimepiride at week 52 and 104 in the MOD group
(Fig. 3e). Glimepiride yielded the largest decline in HbA1c in
the SIDD group compared with other OHDs at week 12 but the
preponderance disappeared afterwards (Fig. 3f). For FPG
decline, the p for interaction between treatment and clusters
was <0.001, 0.012 and 0.024 at week 12, 18 and 52, respec-
tively, and >0.05 at week 52 and 104. In MOD, canagliflozin
reduced FPG at the greatest magnitude compared with other
OHDs, and this effect persisted until 104 weeks (Fig. 3i). The
effect of body weight lowering of canagliflozin was sustained
for 2 years in all subgroups (Fig. 3l-o).

Renal outcomes in data-driven clusters

In CANVAS, the progression risk of participants in the four
diabetes subgroups towards albuminuria and eGFR decline
was similar in the placebo arm. There was a marginal differ-
ence in the risk of developing albuminuria in canagliflozin-
treated participants (ESM Fig. 2).
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Canagliflozin significantly reduced the risk for the renal
outcome (HR 0.83 [95% CI 0.73, 0.93]), driven mainly by
the effect on albuminuria progression (HR 0.78 [95% CI
0.69, 0.89]) rather than the effect on renal composite outcome
(HR 0.90 [95% CI 0.65, 1.24]) (Fig. 4). The p for interaction
of treatment by group was >0.05 for all endpoints. The HR
(95% CI) of albumin progression risk with canagliflozin treat-
ment vs placebo was 0.68 (0.52, 0.89) inMOD and 0.67 (0.51,
0.89) in SIDD.

We performed a sensitivity analysis in the case-complete
dataset (ESM Figs 3–5, ESM Table 4) and the main endpoints
were similar. We also used coordinates from the ADOPT study
to generate four subgroups. The cluster characteristics and distri-
bution were highly concordant with those in the ANDIS study

(Cohen κ 0.76 [95%CI 0.75, 0.78]; ESM Fig. 6, ESMTable 5).
The main endpoints were also similar (ESM Figs 7, 8).

Prediction of canagliflozin-induced changes in
glycaemic control by the ML-A1C model

We developed the ML-A1C model to predict the HbA1c

decline using canagliflozin treatment using XGBoost, which
showed the best internal MAE among all algorithms (Fig. 5
and ESM Table 6). The external MAE was similar between
the clustering algorithm and the ML-A1C model (p=0.936)
(Fig. 5b and ESM Table 6). HbA1c, HOMA2-B, ACR,
HOMA2-IR and HDL were the top five important variables
for the prediction (Fig. 5c). The concordance rate, which was
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Fig. 3 Glucose-lowering efficacy of SGLT2i and DPP4i, SU and placebo
in all diabetes clusters derived from the ANDIS study. (a) The decline of
HbA1c unadjusted and adjusted by baseline HbA1c in each cluster treated
with canagliflozin (N=6190). (b) Decline of HbA1c in each cluster treated
with different OHDs adjusted for baseline HbA1c for each treatment
(N=6190). pinteraction=0.004. (c) Percentage of participants that achieved
HbA1c <53 mmol/mol (<7.0%) in each subgroup (N=6190). pinteraction
<0.001. (d–o) The trajectory of HbA1c (d–g), FPG (h–k) and bodyweight
(l–o) up to 2 years in each cluster (N=6365 at baseline) for participants in
theMARD (d, h, l),MOD (e, i,m), SIDD (f, j, n) and SIRD clusters (g, k,
o). Data are presented as mean ± SEM or % (95% CI). Continuous data

were analysed using the ANCOVAmodel followed by post hoc compar-
ison and baseline values and trials were adjusted unless specified.
Categorical data were analysed by log-binomial regression model adjust-
ed by study and baseline HbA1c. ***p<0.001 for differences between
OHDs within each cluster. Post hoc comparison: †p<0.05, ††p<0.01 and
†††p<0.001 for SU vs DDP4i; ‡p<0.05, ‡‡p<0.01 and ‡‡‡p<0.001 for
DDP4i vs SGLT2i; §p<0.05 and §§§p<0.001 for SU vs SGLT2i. The
significance for multiple comparisons was adjusted by FDR if applicable.
The SGLT2i treatment was canagliflozin 100 mg + 300 mg combined,
the SU treatment was glimepiride and the DPP4i treatment was sitagliptin
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the percentage of participants with predicted HbA1c similar to
actual HbA1c, showed no difference between the cluster strat-
egy (31.4%) and the ML-A1C model (31.5%) (p=0.966).

Renal effect of canagliflozin in high-risk patients
identified by the ML-ACR model

Since the major difference between SGLT2i vs placebo in the
risk of outcomes was in albuminuria progression, we devel-
oped ML-based algorithms for the albuminuria progression
endpoint (Fig. 6a and ESM Table 7). The maximum internal
ROC AUC of the model was achieved using XGBoost (0.71
[95% CI 0.67, 0.74]) (Fig. 6b), which was selected for the
ML-ACR model. The participants in the validation cohort
were divided into high-risk and low-risk groups using the
optimal cut-off value of ML-ACR. The top five most impor-
tant indicators for albumin progression were ACR, BUN,
eGFR, HbA1c and LDL (Fig. 6c). There was a one-third
decline in the risk of albuminuria progression in high-risk
participants treated with canagliflozin (HR vs placebo 0.67
[95% CI 0.57, 0.80]) but not in low-risk patients (HR 0.91
[95% CI 0.75, 1.11]; pinteraction [treatment by group]=0.016).

Discussion

In this study, we replicated the clusters derived from the
ANDIS study and ADOPT. Canagliflozin treatment

outperformed other drugs in HbA1c decline in individuals with
MOD from 52 weeks up to 104 weeks. There was no signif-
icant difference in the effect of canagliflozin on renal
endpoints (vs placebo) among the different diabetes clusters.
The ML-A1C model showed a similar concordance rate with
the cluster strategy in predicting the HbA1c-lowering effect of
canagliflozin. Canagliflozin reduced the risk of albuminuria
progression in high-risk individuals identified by the ML-
ACR model.

Our data highlight the possibility of using the data-driven
diabetes clusters to guide clinical decisions on use of SGLT2i
regarding their glucose-lowering effect. Canagliflozin
showed a better and sustained glucose-lowering effect in
MOD, so SGLT2i could be possibly recommended to indi-
viduals with MOD at diagnosis for long-term glucose
control. Glimepiride treatment showed a good glycaemic
reduction in the first 12 weeks in SIDD, so an SU could be
an option for short-term glycaemic control for SIDD.
Similarly, in ADOPT, the SIRD group achieved better
glycaemic control with TZD and the SIDD and MARD
groups showed robust HbA1c decline in less than half a year
with SU [7]. The MARD group consisted mainly of older
participants and hypoglycaemia may be the major safety
consideration in these individuals. A DDP4i could be a better
option for glycaemic control in individuals with MARD.
However, there was a lack of consistency in the HbA1c-
lowering effect and HbA1c<53 mmol/mol (7.0%) rate in the
MOD group, possibly due to the limited sample size
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estimated using the Cox regression model, and pinteraction (treatment by
group) was tested using the LRT method
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(N=1449). A significant interaction of treatment by group in
HbA1c on-target rate was mainly driven by the fact that more
participants in the MARD group achieved glycaemic control
targets when treated with DPP4i than when treated with
SGLT2i. Our results provided exploratory evidence that the
glycaemic response to canagliflozin may differ between
diabetes clusters and further studies are necessary before
data-driven clusters can be used to guide clinical practice.

SGLT2i showed robust renal protection effects including
reducing the progression of albuminuria and eGFR decline [2,
3, 15]. Our study showed that the interactions between
SGLT2i and clusters were not statistically significant, despite
a reduction in the risk of albuminuria progression being

observed in the MOD and SIDD groups. The main reason
for this observation was that the sample size may not have
been sufficient to enable detection of a treatment-by-group
difference for the renal outcome (7169 participants were
necessary to detect a significant difference between MARD
and other groups with the current effect size). Another possi-
bility was that data-driven clusters were not able to stratify the
progression risk towards renal outcomes in our study. For
example, it was suggested in previous studies that SIRD had
a rapid progression towards eGFR decline compared with
other subgroups [5]. Similar to previous studies, our data
showed that participants in the SIRD group had the lowest
baseline eGFR [7, 16]. However, the progression of
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Fig. 5 Derivation, validation and application of the ML-A1C model and
its comparison with data-driven clusters. (a) Flowchart for the ML-A1C
model development. Participants treated with canagliflozin in the
CANTATA and CANVAS trials were used for model development and
model validation, respectively. Variables with more than 20% of data
missing or 70% colinear with existing variables were excluded. Tenfold
cross-validation was applied. Supervised learning methods, including
linear regression, RF, XGBoost, kNN and SVM, were tested to predict
the decline of HbA1c. Continuous variables were log-transformed or
scaled if applicable. Missing values were replaced by multiple

imputations. Parameters were calibrated to achieve the lowest MAE in
CANTATA. External validation was conducted in CANVAS. XGBoost
was selected as the ML-A1Cmodel. (b) Internal (CANTATA) and exter-
nal (CANVAS) MAE (95% CI) in cluster algorithm and ML methods.
***p<0.001 tested by one-way ANOVA. (c) Importance scores of vari-
ables in predicting endpoint in the ML-A1C model. (d) Concordance rate
(95% CI) was defined as predicted HbA1c decline similar to actual HbA1c

decline, between the cluster strategy and the ML-A1C model (p=0.966,
tested using McNemar test)
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participants with SIRD towards eGFR decline was similar to
that seen in other groups in the placebo-treated arm in the
CANVAS trial (ESM Fig. 2). The discrepancy may be attrib-
utable to differences in disease duration (new-onset in ANDIS
and 15 years in CANVAS), CVD history (60% in CANVAS)
and follow-up time (15 years in ANDIS and 4.5 years in
CANVAS) between our study and previous studies [5, 16,
17]. Further studies with larger sample sizes or subtype-
specific studies are necessary to investigate whether there
was a treatment-by-group difference in renal outcomes and
even cardiovascular outcomes.

Data-driven clustering and supervised ML are two distinct
methods for facilitating precision medicine in patients. In our

study, supervised learning algorithms showed a similar concor-
dance rate in prediction of HbA1c decline by canagliflozin
using the data-driven clustering algorithm. Three of the five
variables for cluster development were among the top five
important variables for predicting the glucose-lowering
response to canagliflozin. By this means, data-driven clustering
is more likely to be accepted as a tool for clinical practice,
because it had the advantage of stability across a spectrum of
studies and ethnicities, whereas the external validity of theML-
A1C model has yet to be tested in other cohorts.

The ML-ACR model precisely predicted the progression
risk for albuminuria. Although the diagnostic accuracy of the
ML-ACR model was around 70%, which can hardly meet the
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Fig. 6 Derivation, validation and application of the ML-ACR model. (a)
Flowchart for the ML-ACR model. Participants treated with placebo in
CANVAS-R and CANVAS were used for model development and
model validation, respectively. Variables with more than 20% data miss-
ing or 70% colinear with existing variables were excluded. Tenfold cross-
validation was applied. Supervised learning methods, including linear
regression, RF, XGBoost, kNN and SVM, were tested to predict the
decline of HbA1c. Continuous variables were log-transformed or scaled
if applicable. Missing values were replaced by multiple imputation.

Parameters were adjusted to reach the highest ROC AUC in the internal
validation dataset. (b) External ROC AUC in all supervised learning
methods. (c) Importance scores of variables in the ML-ACR model.
The model developed using XGBoost was selected as the ML-ACR
model. (d) HR (95% CI) for progression of albuminuria following treat-
ment with canagliflozin and placebo in high-risk participants (N=1874)
and low-risk participants (N=1237) stratified using the ML-ACR model.
pinteraction (treatment by group)=0.016, using the LRT method. DN,
diabetic nephropathy
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clinical diagnostic criteria, it was not inferior to other models
developed in large cohorts to predict chronic kidney disease or
albuminuria in participants with diabetes [18, 19]. In fact,
data-driven clusters are not as effective as simple clinical vari-
ables in predicting drug response, as Dennis et al proposed [7].
Our study suggested that SGLT2i yielded the highest magni-
tude of albuminuria progression risk reduction in participants
aged 55–65 years or with BMI≤25 kg/m2 and >30 kg/m2

(ESM Fig. 9). As a replacement for data-driven clusters, the
ML-ACR model successfully stratified the participants into
high-risk and low-risk groups and the effect of SGLT2i vs
placebo was different between the two groups. Of the top five
variables for cluster development, only HbA1c was ranked in
the top five important variables for the prediction of albumin-
uria progression. This might partly explain why the clustering
algorithm was not able to stratify the albuminuria develop-
ment risk.

Our study had the strength of combining canagliflozin
trials to investigate not only the glucose-lowering effect of
SGLT2i but also renal outcomes. This is the first study to
our knowledge to explore the role of SGLT2i in data-driven
diabetes clusters. This study also proposed a new model, ML-
ACR, which may potentially promote precision SGLT2i
usage if validated. However, there are some limitations to this
study. First, we were unable to replicate our models, especial-
ly the supervised MLmodels, in other cohorts due to a lack of
availability. Thus, the external validity of the ML-A1C and
ML-ACR models was unknown. Second, since C-peptide or
insulin values were required for data-driven clustering, we lost
more than half of the participants of the CANVAS program
when analysing the clinical outcomes. The comparison to
identify treatment-by-group differences among four clusters
was underpowered in the renal outcome analysis, so the ques-
tion of whether data-driven clusters responded differently to
SGLT2i treatment is yet to be answered. We may need other
trials of SGLT2i (e.g. Empagliflozin Cardiovascular Outcome
Event Trial in Type 2 Diabetes Mellitus Patients [EMPA-
REG] and Dapagliflozin on the Incidence of Cardiovascular
Events [DECLARE]) to enlarge the sample size and replicate
our models. In addition, subgroup-specific clinical trials
should be implemented to test the effect of SGLT2i among
subgroups. Third, we were unable to adjust the results for the
effect of diabetes duration due to a lack of information, so we
replaced the age-of-onset in the original ANDIS study with
age to generate the clusters. Nevertheless, clusters may vary
during the disease progression [16], and the randomisation of
clinical trials can be regarded as the start of an observation
period. Fourth, we were unable to exclude participants who
may have had severe autoimmune-related diabetes (SAID)
from the analysis due to a lack of GADab information. Since
all participants were diagnosed with type 2 diabetes, the
proportion of participants with GADab positive may be
negligible.

Conclusion

Our data provided exploratory evidence that using an SGLT2i
in MOD may improve long-term glycaemic control and that
using a DPP4i may achieve a higher glycaemic on-target rate
in MARD. Developing supervised learning models for albu-
minuria progression may help to precisely identify individuals
who could benefit from SGLT2i treatment. Further studies
with external replication and subtype-specific clinical trials
are necessary to build up evidence for guiding clinical deci-
sions on SGLT2i use in precision stratification strategies.
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