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Abstract
Aims/hypothesis It has been shown that melatonin plays a general beneficial role in type 2 diabetes in rodents but its role in
humans is controversial. In the present study, we investigated the association between serummelatonin and type 2 diabetes risk in
a southern Chinese population in a case–control study. We also examined the role of gut microbiota in this relationship.
Methods Individuals with type 2 diabetes (cases) and healthy individuals (controls) (n=2034) were recruited from a cross-
sectional study and were matched for age and sex in a case–control study. The levels of serum melatonin were measured and
the association between serum melatonin and type 2 diabetes risk was examined using a multivariable logistic regression model.
We further conducted a rigorously matched case–control study (n=120) in which gut microbial 16S rRNA was sequenced and
metabolites were profiled using an untargeted LC-MS/MS approach.
Results Higher levels of serum melatonin were significantly associated with a lower risk of type 2 diabetes (OR 0.82 [95% CI 0.74,
0.92]) and with lower levels of fasting glucose after adjustment for covariates (β −0.25 [95% CI −0.38, −0.12]). Gut microbiota
exhibited alteration in the individuals with type 2 diabetes, in whom lower levels of serum melatonin, lower α- and β-diversity of gut
microbiota (p<0.05), greater abundance of Bifidobacterium and lower abundance ofCoprococcus (linear discriminant analysis [LDA]
>2.0) were found. Seven genera were correlated with melatonin and type 2 diabetes-related traits; among them Bifidobacterium was
positively correlated with serum lipopolysaccharide (LPS) and IL-10, whereasCoprococcuswas negatively correlated with serum IL-
1β, IL-6, IL-10, IL-17, TNF-α and LPS (Benjamini–Hochberg-adjusted p value [false discovery rate (FDR)] <0.05).Moreover, altered
metabolites were detected in the participants with type 2 diabetes and there was a significant correlation between tryptophan (Trp)
metabolites and the melatonin-correlated genera including Bifidobacterium and Coprococcus (FDR<0.05). Similarly, a significant
correlation was found between Trp metabolites and inflammation factors, such as IL-1β, IL-6, IL-10, IL-17, TNF-α and LPS
(FDR<0.05). Further, we showed that Trp metabolites may serve as a biomarker to predict type 2 diabetes status (AUC=0.804).
Conclusions/interpretation A higher level of serum melatonin was associated with a lower risk of type 2 diabetes. Gut
microbiota-mediated melatonin signalling was involved in this association; especially, Bifidobacterium- and Coprococcus-
mediated Trp metabolites may be involved in the process. These findings uncover the importance of melatonin and
melatonin-related bacteria and metabolites as potential therapeutic targets for type 2 diabetes.
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Abbreviations
FBG Fasting blood glucose
FDR Benjamini–Hochberg-adjusted p value

(false discovery rate)
GLM General linear model
GXMU Guangxi Medical University
LDA Linear discriminant analysis
LPS Lipopolysaccharide
OPLS-DA Orthogonal Projections to Latent Structures

Discriminant Analysis
PSM Propensity score matching
TC Total cholesterol
TG Triacylglycerol
Trp Tryptophan
VIP Variable importance for the projection

Introduction

Type 2 diabetes is a chronic metabolic disorder that has
become a public health problem worldwide. According to
the WHO, from 1980 to 2014 the prevalence of diabetes rose
from 4.7% to 8.5% in adults and an estimated 1.5 million
deaths were directly caused by diabetes in 2019 [1]. In
China, the prevalence of diabetes was 12.8% in 2017 [2], with

type 2 diabetes accounting for >90% of cases. Prevention and
treatment of type 2 diabetes thus present a major challenge for
modern society. Melatonin, a natural hormone secreted by the
pineal gland, has been considered as a chronobiotic and cyto-
protective agent and has therapeutic potential for diabetes [3].
Melatonin treatment has demonstrated beneficial effects in
individuals with type 2 diabetes who have coronary heart
disease [4], whose diabetes is poorly controlled with metfor-
min [5], or who have insomnia [6]. Typically, melatonin is
synthesised from tryptophan (Trp) and regulates circadian and
seasonal rhythms [7]. It is also involved in energy and glucose
metabolism [8, 9] and immune function [10, 11], and has
multiple extraordinary functions such as antioxidant, anti-
inflammatory and antitumour activity [12–14]. Thus, melato-
nin is regarded as a cornucopia of the 21st century [14]. In
mammals, melatonin receptors are widely expressed at central
and peripheral sites such as the immune system, gastrointesti-
nal tract and pancreas [15]. Since the discovery of melatonin
in pancreatic tissue, which is the predominant site for insulin
secretion [16], investigation of the role of melatonin in diabe-
tes has gained much interest. Genome-wide association stud-
ies have identified that the melatonin receptor gene MTNR1B
is associated with increased fasting glucose level and risk of
type 2 diabetes [17–19], and various studies in rodents have
indicated a general beneficial role for melatonin in glucose
homeostasis [20]. However, studies in different human popu-
lations demonstrated a controversial role for melatonin in type
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2 diabetes, as both loss-of-function and gain-of-function
MTNR1B variant impaired insulin secretion and increased
type 2 diabetes risk [21]. In terms of epidemiological studies,
a nested case–control study found an association between
lower melatonin secretion and higher incidence of type 2
diabetes in American female nurses [22], while a Japanese
cross-sectional study found this association only existed in
elderly men rather than women [23]. To date, no report has
investigated the relationship between melatonin and type 2
diabetes in the Chinese population, and the underlying mech-
anism linking melatonin to type 2 diabetes is largely
unknown.

Increasing evidence indicates that melatonin exhibits
important functions in the gut, serving as a multitasking mole-
cule regulating microbial metabolism, circadian rhythms and
intestinal mucosal immune cells [24]. In fact, melatonin recep-
tors are widely expressed in the gastrointestinal tract and the
levels of melatonin in the gut are at least 400-fold higher than
levels in the pineal glands and tenfold to 100-fold higher than
levels in serum [25]. Recent studies have reported that mela-
tonin improves metabolic disorders such as lipid
dysmetabolism and obesity in mice via modulating gut micro-
biota [26–28], although no report extends to type 2 diabetes.
Notably, it has been well recognised that gut microbiota play a
key role in the pathophysiology of type 2 diabetes, by modu-
lating inflammation and affecting gut permeability, glucose
and lipid metabolism, insulin sensitivity and overall energy
homeostasis in the host [29]. Collectively, we hypothesise that
gut microbiota may mediate the signals of melatonin and
subsequently influence type 2 diabetes.

In the present study, we conducted a cross-sectional case–
control study to investigate the association between serum
melatonin and risk of type 2 diabetes in a Chinese population.
We also examined the role of the gut microbiota in the rela-
tionship between melatonin and type 2 diabetes.

Methods

Study population

A cross-sectional case–control study was designed to examine
the association between serum melatonin and risk of type 2
diabetes. We recruited 12,750 adults enrolled for health phys-
ical examination at the healthcare centres of the Third and
Sixth Affiliated Hospital of Guangxi Medical University
(GXMU) in Nanning and Yulin City, and from four commu-
nities in Guilin City, China during February 2018 to
December 2019. Type 2 diabetes was diagnosed according
to the 1999 WHO diagnostic criteria [30]: (1) fasting blood
glucose (FBG) ≥7.0 mmol/l; or (2) 2 h glucose level in an
OGTT ≥11.1 mmol/l; or (3) self-reported previously diag-
nosed type 2 diabetes with glucose-lowering medication

within 2 weeks. Healthy control individuals were defined as
being without type 2 diabetes history and having normal
glucose (FBG<6.1 mmol/l and 2 h glucose level in an
OGTT<7.8 mmol/l). The exclusion criteria were cancer,
severe cardiovascular/hepatic/kidney disease, acute infection
and mental illness. Participants with missing glucose data or
without serum samples were also excluded. The case–control
participants were 1:2 matched for sex and age using the
propensity score matching (PSM) method. The participant
flow chart is shown in electronic supplementary material
(ESM) Fig. 1.

To further investigate the role of gut microbiota in the
relationship of melatonin and type 2 diabetes, a more
rigorously matched case–control study was conducted.
To reduce confounding effects, only cases and controls
from Fujianyuan Health Care Center of the Third
Affiliated Hospital of GXMU recruited in July 2019 and
2020 were included. In addition, those factors known to
confound the gut microbiota results, such as sex, age,
BMI, alcohol consumption and stool characteristics [31],
were 1:2 matched between cases and controls by using the
PSM method. The exclusion criteria were extended to
chronic digestive disease, history of gastrointestinal
surgery and use of antibiotics within 1 month. The flow-
chart for study participants is shown in ESM Fig. 2.

All participants provided written informed consent. The
protocol was approved by the Ethics Committee of GXMU
and the study was conducted according to the Declaration of
Helsinki guidelines.

Data collection and biochemical measurements

We conducted face-to-face interviews, using a valid question-
naire to collect information on lifestyle (e.g. smoking, alcohol
consumption, physical activity and dietary intake), medical
history and mediation. Anthropometric measurements were
carried out by the local nurses. Overnight fasting blood
samples were collected in the morning and serum melatonin
was measured using ELISA kits from Shanghai Mlbio
Biotechnology Co. (China). Serum levels of glucose, triacyl-
glycerol (TG), total cholesterol (TC), HDL-cholesterol and
LDL-cholesterol were measured using Biochemical
Analyzer (cobas e601; Roche, Germany).

For the participants recruited for the gut microbiota
analysis, 24 h dietary intake and intestinal data were further
recorded by a valid questionnaire. After participants had
fasted overnight, blood samples and fresh faecal samples were
collected in the healthcare centre; faecal samples were imme-
diately placed in liquid nitrogen and stored at −80°C until
further analyses. Additional biochemical indexes were
measured using Biochemical Analyzer (Shenzhen Mindray
BS-2000M, China) for HbA1c, insulin and C-peptide, and
ELISA kits (Jiangsu Jingmei Biotechnology Co., China) were
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used for IL-1β, IL-6, IL-10, IL-17, TNF-α, IFN-γ and lipo-
polysaccharide (LPS).

Gut microbiota analysis

For those individuals participating in the gut microbiota
analysis, bacterial genomic DNA was extracted and the 16S
rRNA gene (V4-V5) was sequenced on an Illumina MiSeq
platform at TinyGene Bio-Tech (Shanghai) Co (China).
High-quality sequence alignments were performed using
UPARSE of USEARCH (v8.1.1756) (https://drive5.com/
usearch/manual8.1/) and MOTHUR (v1.33.3) (https://
mothur.org/). Effective reads from all samples were
clustered into Operational Taxonomic Units (OTUs) at 97%
identity. α- and β-diversity analyses were employed using
MOTHUR (v1.33.3) and R packages (v3.3.2) (https://cran.r-
project.org/) [32].

Metabolite analysis

Untargeted LC-MS/MSwas used for gut microbial metabolite
profiling by an UHPLC system (1290; Agilent, USA) coupled
to an Agilent 6545 UHD and Accurate-Mass Q-TOF/MS
(6545; Q-TOF, USA). MS was operated in both positive and
negative modes. A data matrix was generated, consisting of
retention time, mass/charge ratio (m/z) and peak intensity by
using ProteoWizard (v3.0.8789) (https://proteowizard.
sourceforge.io/) and R package XCMS (v3.18.0) (https://
bioconductor.org/packages/3.15/bioc/html/xcms.html). R
package ROPLS (v3.18.0) (https://bioconductor.org/
packages/release/bioc/html/ropls.html) was used for
Orthogonal Projections to Latent Structures Discriminant
Analysis (OPLS-DA) after XCMS data processing. The qual-
ity of the OPLS-DA model was assessed based on R2 and Q2

scores, and a permutation test was conducted further to vali-
date the model. The metabolites significantly differing in
abundance were identified by Benjamini–Hochberg-adjusted
p value (false discovery rate [FDR] <0.05) and variable impor-
tance for the projection (VIP) ≥1.25). The metabolic pathways
analysis was performed using MetPA of MetaboAnalystR
(v2.0.1) (https://github.com/xia-lab/MetaboAnalystR) and
the significantly affected pathways were detected either by
p values from pathway enrichment analysis or by impact
values from pathway topology analysis [33].

Statistical analysis

Data are expressed as percentages for categorical variables or
as mean ± SD or median (25th to 75th percentile) for contin-
uous variables. Comparisons of variables between two groups
were performed with two-tailed t test or Wilcoxon rank-sum
test, as appropriate. Differentially abundant features between
two groups were analysed using Metastats of MOTHUR

(v1.33.3) (https://mothur.org/wiki/metastats/). To identify the
microbiota enriched in participants with type 2 diabetes vs
control participants, the linear discriminant analysis [LDA]
effect size algorithm was used with the significance set at
FDR<0.05 and LDA>2.0. Multivariable logistic regression
was used to examine the association between serum
melatonin and type 2 diabetes risk and the stratified
analyses. A multivariable linear regression model was used
to test the association between serum melatonin and type 2
diabetes-related traits. The general linear model (GLM) was
selected for the analysis of the correlation between type 2
diabetes-related traits and gut microbiota. Only taxa with an
average of more than 30 reads per sample were included in the
GLM model [34, 35]. Spearman correlation analysis was
performed to illustrate the correlation between metabolites
and gut microbiota or inflammatory factors. Two-tailed
p values <0.05 were considered statistically significant.
Stata version 12.0 (StataCorp LP, USA) was used for statisti-
cal analysis.

Results

Characteristics of the study population in the
association study

A total of 2034 participants were included in the study for
exploring the association between serum melatonin and type
2 diabetes risk after matching for age and sex (678 cases vs
1356 controls). Their characteristics are shown in Table 1. The
serum levels of melatonin were significantly higher among
participants in the control group than among those in the case
group (195.55 vs 180.73 pmol/l, p=0.011). However, this
difference was only statistically significant in the summer
(not in winter.) As expected, the matched cases and controls
were not significantly different in sex and age.

Association between serum melatonin and type 2
diabetes risk

Higher levels of serum melatonin were significantly associat-
ed with a lower risk of type 2 diabetes after matching for age
and sex (OR 0.84 [95% CI 0.76, 0.92]) and further adjustment
for other covariates (OR 0.82 [95% CI 0.74, 0.92]) (Table 2).
When the population stratified by sex, the significance
persisted in men (p=4.48×10−4) and nearly reached statistical
significance in women after adjustment for covariates
(p=0.056). When serum melatonin was stratified by tertile,
the OR of the highest vs lowest category was 0.75 (95% CI
0.59, 0.95; ptrend=0.018) after adjustment for covariates
(Table 2). We also observed that higher levels of serum mela-
tonin were significantly associated with lower FBG levels,
such that FBG decreased by 0.25 mmol/l when serum
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Table 1 Characteristics of partic-
ipants with type 2 diabetes (cases)
and matched control individuals

Characteristic Cases (n=678) Controls (n=1356) p value

Male sex 576 (84.96) 1145 (84.44) 0.76a

Age, years 59.13 (50.75–67.08) 59.67 (50.38–67.92) 0.80a

BMI, kg/m2 24.86 (22.76–26.93) 23.45 (21.32–25.58) <0.001

Han ethnicityb 549 (80.97) 1111 (81.93) 0.60

Region <0.001

Nanning City 164 (24.19) 429 (31.64)

Yulin City 415 (61.21) 600 (44.25)

Guilin City 99 (14.60) 327 (24.12)

Marriedb 605 (89.23) 1179 (86.95) 0.14

Occupationb <0.001

Farmer 95 (14.01) 370 (27.29)

Office staff 219 (32.30) 388 (28.61)

Other 364 (53.69) 598 (44.10)

Educationb <0.001

Below primary school 99 (14.60) 346 (25.52)

Middle school 283 (41.74) 476 (35.10)

Above college 296 (43.66) 534 (39.38)

Annual incomeb 0.001

≤20,000 CNY 156 (23.01) 417 (30.75)

20,000–100,000 CNY 393 (57.96) 681 (50.22)

≥100,000 CNY 129 (19.03) 258 (19.03)

Regular physical activityb 462 (68.14) 808 (59.59) <0.001

Smokingb 0.31

Current 198 (29.20) 427 (31.49)

Ever 113 (16.67) 195 (14.38)

Never 367 (54.13) 734 (54.13)

Alcohol drinkingb 0.044

Current 202 (29.79) 441 (32.52)

Ever 71 (10.47) 100 (7.38)

Never 405 (59.74) 815 (60.10)

Glucose-lowering medication

Yes 404 (59.59) - -

No 274 (40.41) - -

DVS 22.00 (20.00–23.00) 21.00 (18.00–23.00) <0.001

Melatonin, pmol/l 180.73 (123.24–291.08) 195.55 (131.53–312.67) 0.011

Winter 165.87 (110.64–287.67) 178.94(126.58–260.39) 0.38

Summer 188.27 (133.62–293.79) 219.79 (138.38–346.53) 0.001

FBG, mmol/l 7.71 (6.52–10.29) 4.88 (4.54–5.25) <0.001

TC, mmol/l 5.01 (4.33–5.79) 5.03 (4.40–5.77) 0.41

TG, mmol/l 1.64 (1.10–2.66) 1.19 (0.85–1.78) <0.001

HDL-cholesterol mmol/l 1.17 (0.98–1.43) 1.35 (1.11–1.65) <0.001

LDL-cholesterol, mmol/l 3.24 (2.64–3.87) 3.30 (2.77–3.90) 0.10

Categorical variables are presented as n (%); continuous variables are presented as median (25th to 75th percen-
tile); biochemical indexes were detected in serum
aMatches criteria in case–control selection
bMissing data (all <0.69%) were imputed by multiple imputation using R

CNY, Chinese Yuan; DVS, dietary variety score, calculated based on the intake frequency of ten food groups in
the past year
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melatonin increased by 1 pmol/l, after adjustment for covar-
iates (β −0.25 [95% CI −0.38, −0.12]) (Table 3).

Role of gut microbiota in the relationship between
melatonin and type 2 diabetes

The characteristics of selected participants After rigorously
matching for age, sex, BMI, alcohol consumption and stool
characteristics, and limiting the participants to those recruited
in July 2019 and 2020 from Nanning City, 40 cases and 80
controls were included in the analysis. As expected, no signif-
icant difference in general characteristics was observed
between cases and controls (except for education). However,
participants with type 2 diabetes had significantly lower levels
of serum melatonin in comparison with control participants
(26.74 vs 28.81 pmol/l, p=0.015) (Table 4).

Alterations of gut microbiota composition in participants
with type 2 diabetes with lower melatonin After 16S rRNA
sequencing, a total of 3,818,454 optimised sequences were
captured with more than 99.7% coverage. At the phylum
level, individuals with type 2 diabetes had a significantly
greater abundance of Proteobacteria (10.3% vs 6.4%,
p=0.006) (Fig. 1a). Analysis of α-diversity showed that the
type 2 diabetes case group exhibited a significantly lower
diversity of microbiota compared with the control group
(lower Shannon index and higher Simpson index, p<0.05)
(Fig. 1b,c). Analysis of β-diversity (weighted UniFrac
distance) revealed a significantly smaller distance in the type
2 diabetes case group compared with the control group
(p=0.009) (Fig. 1d), indicating that individuals with type 2
diabetes have different gut microbial structure compared with
control individuals. According to the bacterial community
profiles analysed by the LDA method (LDA>2.0), there were
15 different genera among the two groups, of which 11 were

Table 2 The association between type 2 diabetes and serum melatonin

Melatonin n cases/n controls Model 1 Model 2

OR (95%CI) p value OR (95%CI) p value

Totala 678/1356 0.84 (0.76, 0.92) 4.48×10−4 0.82 (0.74, 0.92) 4.65×10−4

Male sexb 576/1145 0.84 (0.76, 0.94) 0.002 0.82 (0.73, 0.92) 4.48×10−4

Female sexb 102/211 0.82 (0.62, 1.08) 0.16 0.72 (0.52, 1.01) 0.056

Tertilesb

Lowest 256/452 1 (ref) 1 (ref)

Intermediate 223/452 0.87 (0.70, 1.09) 0.22 0.85 (0.67, 1.07) 0.17

Highest 199/452 0.78 (0.62, 0.97) 0.029 0.75 (0.59, 0.95) 0.019

ptrend 0.029 0.018

Melatonin level was log10 transformed
aModel 1, conditional logistic regression model matching for age and sex; Model 2, conditional logistic regression model further adjusted for BMI,
region, occupation, education, income, physical activity, dietary variety score, alcohol consumption and season
bModel 1, univariable unconditional logistic regression model; Model 2, multivariable unconditional logistic regression model adjusted for age, sex,
BMI, region, occupation, education, income, physical activity, dietary variety score, alcohol consumption and season

Table 3 The association between
serum melatonin and type 2
diabetes-related traits

Trait Model 1a Model 2b

β (95% CI) p value β (95% CI) p value

FBG −0.24 (−0.36, −0.11) 1.70×10−4 −0.25 (−0.38, −0.12) 1.91×10−4

LDL-cholesterol 0.03 (−0.11, 0.16) 0.71 0.06 (−0.08, 0.21) 0.40

HDL-cholesterol −0.07 (−0.21, 0.06) 0.31 0.06 (−0.13, 0.24) 0.56

TC −0.07 (−0.26, 0.12) 0.49 0.02 (−0.19, 0.23) 0.88

TG −0.01 (−0.07, 0.06) 0.80 −0.02 (−0.09, 0.06) 0.65

Melatonin and the traits were log10 transformed
aModel 1, univariable linear regression model
bModel 2, multivariable regression model adjusted for age, sex, BMI, region, occupation, education, income,
physical activity, dietary variety score, alcohol consumption and season
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Table 4 Characteristics of selected participants with type 2 diabetes and matched control participants

Characteristic Cases (n=40) Controls (n=80) p value

Male sex 14 (35.00) 28 (35.00) 1.00a

Age, years 54.50±7.84 52.43±7.97 0.18a

BMI, kg/m2 24.79 (23.56–26.99) 24.01 (22.26–26.19) 0.10a

Han ethnicity 32 (80.00) 51 (63.75) 0.07
Married 33 (82.50) 70 (87.50) 0.45
Occupation 0.16
Farmer 11 (27.50) 12 (15.00)
Technical staff 13 (32.50) 36 (45.00)
Other 16 (40.00) 32 (40.00)

Education 0.03
Below primary school 9 (22.50) 25 (31.25)
Middle school 28 (70.00) 37 (46.25)
Above college 3 (7.50) 18 (22.50)

Annual incomeb 0.65
≤50,000 CNY 12 (30.77) 30 (37.97)
50,000–100,000 CNY 16 (41.03) 32 (40.51)
≥100,000 CNY 11 (28.21) 17 (21.52)

Smoking 0.08
Never 28 (70.00) 67 (83.75)
Current/ever 12 (30.00) 13 (16.25)

Alcohol drinking 0.74a

Never 33 (82.50) 64 (80.00)
Current/ever 7 (17.50) 16 (20.00)

Stool characteristic 0.71a

Harder than sausage 10 (25.00) 25 (31.25)
Smooth sausage 20 (50.00) 39 (48.75)
Softer than sausage 10 (25.00) 16 (20.00)

Hypertension 4 (10.00) 15 (18.75) 0.22
Sufficient PAL 9 (22.50) 18 (22.50) 1.00
Energy, KJc 4.16 (2.49–5.64) 4.06 (3.16–5.66) 0.62
Melatonin, pmol/l 26.74 (23.58–28.53) 28.81 (25.32–45.36) 0.015
FBG, mmol/l 7.54 (6.31–10.48) 5.37 (4.97–5.63) <0.001
HbA1c, mmol/mol 47.54 (37.16–61.75) 36.07 (30.60–39.89) <0.001
HbA1c, % 6.50 (5.55–7.80) 5.45 (4.95–5.80) <0.001
Insulin, pmol/l 68.62 (45.42–92.82) 62.96 (41.08–88.83) 0.41
HOMA-IR 3.69 (2.16–5.78) 2.10 (1.39–3.19) <0.001
TC, mmol/l 5.37±1.27 4.96±0.75 0.028
TG, mmol/l 1.73 (0.89–3.01) 1.17 (0.80–1.73) 0.043
HDL-cholesterol, mmol/l 1.22 (1.04–1.45) 1.34 (1.20–1.53) 0.051
LDL-cholesterol, mmol/l 3.34 (2.91–4.09) 3.23 (2.67–3.54) 0.12
C-peptide, nmol/l 0.71 (0.60–0.85) 0.64 (0.46–0.85) 0.07
LPS, ng/ml 0.51 (0.36–0.72) 0.40 (0.04–0.57) 0.013
IL-1β, pg/ml 52.63 (44.58–70.48) 45.59 (28.25–60.67) 0.009
IL-6, pg/ml 28.11 (23.98–37.12) 25.35 (16.38–34.13) 0.051
IL-10, pg/ml 580.35 (497.15–716.06) 526.03 (33.30–618.54) 0.012
IL-17, pg/ml 29.05 (25.68–38.71) 26.33 (15.02–33.57) 0.034
TNF-α, pg/ml 495.02 (436.54–793.24) 461.69 (274.41–676.39) 0.08
IFN-γ, pg/ml 399.85 (322.06–803.87) 415.64 (348.60–665.81) 0.78

Categorical variables are presented as n (%); continuous variables are presented as median (25th to 75th percentile) or mean±SD; biochemical indexes
were detected in serum or blood (e.g. HbA1c)
aMatches criteria in case–control selection
bMissing data (n=2)
c Energy was calculated by the 24 h intake of foods, not including beverages and snacks

CNY, Chinese Yuan; PAL, physical activity level
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more abundant in the control group (including Coprococcus),
and four were more abundant in the case group (including
Bifidobacterium; Fig. 2a). Notably, in the case group, the
greater abundance of Bifidobacterium was also shown at the
class (Actinobacteria), order (Bifidobacteriales) and family
(Bifidobacteriaceae) levels (Fig. 2b).

Key phylotypes correlated with melatonin and type 2
diabetes-related traits At the genus level, we found that out
of 48 genera, seven were correlated with melatonin and type 2
diabetes-related traits. Among them, higher abundance of
Bifidobacteriumwas correlated with lower levels of melatonin
but higher levels of serum HbA1c and C-peptide (p<0.05).
Meanwhile, higher abundance ofCoprococcuswas correlated
with higher levels of melatonin and lower levels of serum IL-
1β, IL-6, IL-10, IL-17, TNF-α and LPS (FDR<0.05) (Fig. 3
and ESM Table 1).

Analysis of gut microbiota metabolites

Altered metabolites in type 2 diabetes cases with lower mela-
tonin By using an untargeted LC-MS/MS approach, a total of

915 and 3890 peaks were detected in the positive and negative
modes, respectively. OPLS-DA analysis showed a clear sepa-
ration between the case and control group in the negative
mode (Fig. 4b). The negative model’s predictive accuracy
was R2Xcum=0.507, R2Ycum=0.864, and Q2cum=0.227 (R2

p=0.576; Q2 p=0.01) (Fig. 4d), and the positive model’s
predictive accuracy was R2Xcum=0.495, R2Ycum=0.176,
and Q2cum=0.062 (R2 p=0.859; Q2 p=0.01) (Fig. 4c).
Furthermore, according to the criteria that if the red regression
line of the Q2 points intersects the vertical axis at or below
zero, or if all blueQ2 values to the left are lower than the right
one [36], our OPLS-DA models suggested differentially
enriched metabolites could be identified by these models
(Fig. 4c,d). Finally, a total of 1116 metabolites were identified
that were differentially abundant between the type 2 diabetes
case group and the control group based on VIP>1.25 and
FDR<0.05.

Metabolic pathway analysis To further identify the metabolic
pathways significantly altered by type 2 diabetes, a summary
of pathway analysis is illustrated in Fig. 5a. There were 38
differentially enriched metabolic pathways (all FDR<0.05)

Fig. 1 (a) Comparison of relative
abundance between the case and
control groups at phylum level.
(b) Comparisons of α-diversity
(Shannon index) between the case
and control groups. (c)
Comparisons of α-diversity
(Simpson index) between the case
and control groups. (d)
Comparisons of β-diversity
(weighted UniFrac distance,
Anosim test) between the case
and control groups. Data are
presented as median with IQR,
maximum and minimum in the
box plots. *p<0.05, **p<0.01
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and nine with impact value exceeding 0.185. As expected, the
Trp metabolism pathway, which is related to melatonin
biosynthesis, exhibited an impact value of 0.187
(FDR=0.005). Among the metabolites involved in Trp metab-
olism pathway, ten showed significant difference between the
type 2 diabetes case group and control group (FDR<0.05,
VIP>1.25) and correlated with melatonin level (p<0.01)
(Table 5).

Relationship between key phylotypes and metabolites
involved in Trp metabolism pathway For the seven genera
that correlated with melatonin and type 2 diabetes-related traits,
we focused on their relationship with those metabolites
involved in Trpmetabolism pathway. As shown in Fig. 5b, four
genera were correlated with Trp metabolites (FDR<0.05).
Coprococcus, which was more abundant in the control group,
was correlated with all the nine Trp metabolites, while
Bifidobacterium, more abundant in the case group, was corre-
lated with five metabolites. When we further examined the
relationship between these Trp metabolites and inflammation
factors, we found that all these nine Trpmetabolites were signif-
icantly correlated with inflammation factors, namely IL-1β, IL-
6, IL-10, IL-17, TNF-α and LPS (p<0.05) (Fig. 5c).

Interestingly, both themelatonin-relatedmetabolites and genera
(Coprococcus and Bifidobacterium) were correlated with
inflammation factors, as appropriate (Figs 3 and 5c).

We then tested whether these nine genera-correlated
metabolites could be used to predict type 2 diabetes status
and found that only 5-hydroxyindoleacetylglycine, 2-
oxomelatonin and tryptophanol were potential predictors
(p<0.05). The AUC for the three metabolites combined
was 0.804 (Fig. 5d). Notably, Coprococcus was negatively
correlated with 5-hydroxyindoleacetylglycine, 2-
oxomelatonin and tryptophanol, while Bifidobacterium was
positively correlated with 5-hydroxyindoleacetylglycine and
tryptophanol (Fig. 5b).

Discussion

In the present study, we found that a higher level of serum
melatonin was associated with a lower risk of type 2 diabetes,
and the underlying mechanism may involve gut microbiota
reprogramming, such as alteration in microbial composition
and abundance; especial ly, Bif idobacterium and
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Coprococcus-mediated Trp metabolites may play an impor-
tant role.

By using a matched case–control design (n=2034) from a
cross-sectional study comprised of 12,750 participants, we
described the relationship between serum melatonin and risk
of type 2 diabetes in a Chinese population. Previously, by
using a urinary marker of melatonin, melatonin secretion
was demonstrated to be negatively associated with incidence
of type 2 diabetes in American female nurses in a nested case–
control study (n=740) [22] and associated with type 2 diabetes
risk in Japanese men in a cross-sectional study (n=1096) [23].
This study, using a much larger sample size, provides unique
and powerful insights into the relationship between serum
melatonin and type 2 diabetes risk. Our findings support the
negative association between melatonin and type 2 diabetes
risk, with the association being independent of diabetes medi-
cation status (ESM Tables 2–6).

Recently, increasing evidence has emerged that indicates an
important role for melatonin in mediating microbial metabo-
lism, circadian rhythms and intestinal mucosal immune func-
tion [24]. Through modulating gut microbiota, melatonin
prevents obesity and improves lipid dysmetabolism [26–28],
where obesity and lipid dysmetabolism have been proven as
risk factors for type 2 diabetes. However, there is no direct
evidence suggesting that melatonin has a mediating effect on
gut microbiota and subsequently on type 2 diabetes. For gut

Fig. 3 Correlation between the key phylotypes and melatonin and type 2
diabetes-related traits. *FDR<0.05 and **FDR<0.01. Test by generalised
linear regression (GLM) model. HDL, HDL-cholesterol LDL, LDL-
cholesterol; MT, melatonin
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Table 5 Metabolites involved in Trp metabolism differ between type 2 diabetes cases and controls and are correlated with melatonin

Metabolite Class FDRa VIPa βb p valueb

Tryptophyl-proline Carboxylic acids and derivatives 0.001 1.78 0.42 <0.0001

L-Trp Indoles and derivatives 0.002 1.73 0.49 <0.0001

Acetoacetyl-CoA Piperidines 0.02 1.70 0.41 <0.0001

3-Indoleacetonitrile Indoles and derivatives 0.005 1.58 0.35 0.0001

5-Hydroxyindoleacetylglycine Carboxylic acids and derivatives 0.002 1.50 −0.55 <0.0001

Tryptophanol Indoles and derivatives 0.0005 1.49 −0.34 0.0001

3-Methoxyanthranilate Benzene and substituted derivatives 0.001 1.45 −0.57 <0.0001

Ethyl N-ethylanthranilate Benzene and substituted derivatives 0.001 1.35 −0.45 <0.0001

α-Methoxy-1H-indole-3-propanoic acid Indoles and derivatives 0.002 1.31 −0.62 <0.0001

2-Oxomelatonin Indoles and derivatives 0.002 1.26 −0.24 0.008

aNon-parametric test between type 2 diabetes case and control group
b Spearman correlation test between melatonin and Trp related metabolites (β, coefficient between metabolites and serum melatonin)

Fig. 5 (a) Summary of pathway analysis by MetPA. The top pathways
are ranked by the γ-adjusted p values for permutation per pathway (y-
axis) and the total number of hits per pathway (x-axis). The colour grad-
uated from white to yellow, orange and red as the values of both x and y
increase. (b) Spearman correlation between the melatonin-correlated
genera and those metabolites involved in the Trp metabolism pathway.
*FDR<0.05 and **FDR<0.01. (c) Spearman correlation between Trp

metabolites and inflammation factors. *FDR<0.05 and **FDR<0.01.
(d) Receiver operating characteristic (ROC) curve displaying the classi-
fication for type 2 diabetes case and control groups employing the Trp
metabolites that were correlated with the melatonin-correlated genera. 5-
Hyd, 5-hydroxyindoleacetylglycine; 2-Oxomt, 2-oxomelatonin; Tryp,
tryptophanol

1637Diabetologia (2022) 65:1627–1641



microbial studies in humans, a number of factors have
been demonstrated to confound the results, such as sex,
age, BMI, region, alcohol consumption and stool charac-
teristics [31]. By using a rigorously matched case–control
study design, in which no difference was observed
between case and control groups for any of the basic char-
acteristics, we found altered gut microbial composition in
type 2 diabetes cases with lower serum melatonin level. At
the phylum level, the type 2 diabetes case group displayed
greater abundance of Proteobacteria. At the genus level,
Bifidobacterium and Coprococcus presented different
abundance in type 2 diabetes cases vs controls, and both
were correlated to serum melatonin and type 2 diabetes-
related traits. Bifidobacterium is generally negatively
correlated with type 2 diabetes in humans [29], while
one double-blind, placebo-controlled randomised study
demonstrated a positive correlation with type 2 diabetes
[37]. In our rigorously matched case–control study,
Bifidobacterium showed greater abundance in type 2
diabetes cases and was positively correlated with HbA1c

and C-peptide levels (p<0.05, ESM Table 1), supporting
the positive correlation of Bifidobacterium with type 2
diabetes. Coprococcus is a bacterium that produces ‘anti-
inflammatory’ short-chain fatty acids and has demonstrat-
ed beneficial effects in its host through supplying nutri-
ents, reinforcing the intestinal epithelial barrier function
and intestinal immunity [38]. Decreased abundance of such
bacteria are commonly observed in disease states [39]. For
example, reduced abundance of Coprococcus was observed
in individuals with inflammatory bowel disease [40, 41] and
pulmonary arterial hypertension [42], while treatment with
metformin increased the abundance of Coprococcus in a
mouse model of type 2 diabetes [43]. In this study, we also
found that Coprococcus was more abundant in control partic-
ipants and the abundance was negatively correlated with
serum levels of IL-1β, IL-6, IL-10, IL-17, TNF-α and LPS,
confirming the organism’s potent immunomodulatory and
beneficial role in type 2 diabetes.

Interestingly, we found that both Bifidobacterium and
Coprococcus were correlated with serum melatonin and type
2 diabetes-related traits, while few studies have documented
such relationships. Recently, studies have confirmed the role
of melatonin in the gut microbiome–immune system axis, in
that melatonin mediates mucosal immune cells and microbi-
al metabolism involving Bacteroidetes fragilis, Prevotella
intermedia and LPS [24]. Clinical trials of melatonin in
inflammation-related pathologies indicate that oral melatonin
could improve bowel symptoms in ulcerative colitis [44] and
identified Bifidobacterium as a causal factor of ulcerative
colitis [45]. In this study, we found that metabolites involved
in the Trp metabolism pathway were correlated with
Coprococcus and Bifidobacterium, and were significantly
correlated with serum melatonin level. It is well known that

the Trp metabolism pathway directly relates to melatonin
biosynthesis. It was reported that Trp had profound effects
on gut microbial composition and metabolism, as well as on
the host’s immune system along the microbiota–gut–immu-
nity axis [46]. Indeed, we also observed a significant corre-
lation between Trp metabolites and inflammation factors
including IL-1β, IL-6, IL-10, IL-17, TNF-α and LPS. In
human studies, six circulating Trp metabolites (tryptophan,
indolelactate, etc.) have been identified as being associated
with incidence of type 2 diabetes [47]. Although we did not
detect the same Trp metabolites in gut microbiota, when we
used the genera-correlated metabolites involved in the Trp
metabolism pathway to predict type 2 diabetes status, an
AUC of 0.804 supported the important role of Trp metabo-
lites (a combination of 5-hydroxyindoleacetylglycine, 2-
oxomelatonin and tryptophanol) in type 2 diabetes. Taken
together, our findings indicate that melatonin could be able
to modulate the gut microbiota–immunity axis in type 2
diabetes, probably mediated by gut microbial Trp
metabolism.

Strengths and limitations

This study has several strengths. First, to our best knowledge,
this is the first study to describe the relationship between
melatonin and type 2 diabetes in a Chinese population. By
using a serummarker of melatonin, with a much larger sample
size compared with previous studies and using a matched
case–control study design, our findings support the negative
association between melatonin and type 2 diabetes risk,
consistent with the findings from a nested case–control study
and cross-sectional study in American [22] and Japanese
populations [23]. In addition, due to human lifestyle and phys-
iological variables exerting differential effects on the microbio-
ta [31], we designed a rigorously matched case–control study to
explore the role of gut microbiota in the relationship between
melatonin and type 2 diabetes. As expected, there was no differ-
ence between the case and control groups when comparing all
the basic characteristics. These design features made it possible
to explore the role of gut microbiota in the relationship between
melatonin and type 2 diabetes independently. We found that
individuals with type 2 diabetes presented with altered gut
microbiota (especially, Bifidobacterium and Coprococcus)
and lower serum melatonin levels, suggesting that melatonin-
correlated genera and mediated Trp metabolites may play an
important role in this relationship.

A limitation of this study is that no causal relationship was
described between serum melatonin and type 2 diabetes, in
line with the nature of a case–control study. A cohort study,
and particularly a Mendelian randomisation study, can be
expected to reveal the causal relationship between melatonin
and type 2 diabetes (ESM Fig. 3), since both loss-of-function
and gain-of-function of melatonin receptor gene MTNR1B
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have been reported in different populations [17, 21, 48].
Although there is no evidence indicating a causal relationship
between gut microbiota and type 2 diabetes by Mendelian
randomisation, the metabolites of gut microbiota (e.g. short-
chain fatty acids) have been demonstrated to be a causal factor
[49], suggesting that the causal relationship between Trp
metabolites and type 2 diabetes could be explored in the
future. In addition, sequencing of 16S rRNA of gut microbiota
could not identify bacteria at the species level, thus
metagenomic sequencing is warranted in the future to reveal
the specific bacterial species and their functions.

Future studies investigating the causal relationship between
melatonin and type 2 diabetes would validate the findings of the
current analysis, and exploring the underlying mechanism
involving the gut microbiota through metagenomic sequencing
and analysis of targeted Trp metabolites may extend the thera-
peutic targets for type 2 diabetes to specific microbial species.

Conclusion

This study significantly extends our understanding of the rela-
tionship between melatonin and type 2 diabetes into the
Chinese population and the underlying mechanism involving
gut microbiota. Overall, our results show that higher levels of
serum melatonin are associated with lower risk of type 2 diabe-
tes. The underlying mechanism may involve alteration of gut
microbiota, in which Bifidobacterium and Coprococcus-medi-
ated Trp metabolites may serve as part of the potential mecha-
nism. Our findings suggest that melatonin and melatonin-
related gut microbiota and metabolites may be potent therapeu-
tic targets for type 2 diabetes. Further studies are needed to valid
the causal effect of melatonin in type 2 diabetes.
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