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A roadmap to achieve pharmacological precision
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Abstract
Current pharmacological treatment of diabetes is largely algorithmic. Other than for cardiovascular disease or renal disease, where
sodium–glucose cotransporter 2 inhibitors and/or glucagon-like peptide-1 receptor agonists are indicated, the choice of treatment is
based upon overall risks of harm or side effect and cost, and not on probable benefit. Here we argue that a more precise approach to
treatment choice is necessary to maximise benefit and minimise harm from existing diabetes therapies. We propose a roadmap to
achieve precisionmedicine as standard of care, to discuss current progress in relation tomonogenic diabetes and type 2 diabetes, and to
determine what additional work is required. The first step is to identify robust and reliable genetic predictors of response, recognising
that genotype is static over time and provides the skeleton upon which modifiers such as clinical phenotype and metabolic biomarkers
can be overlaid. The second step is to identify these metabolic biomarkers (e.g. beta cell function, insulin sensitivity, BMI, liver fat,
metabolite profile), which capture the metabolic state at the point of prescribing and may have a large impact on drug response. Third,
we need to show that predictions that utilise these genetic and metabolic biomarkers improve therapeutic outcomes for patients, and
fourth, that this is cost-effective. Finally, these biomarkers and predictionmodels need to be embedded in clinical care systems to enable
effective and equitable clinical implementation. Whilst this roadmap is largely complete for monogenic diabetes, we still have
considerable work to do to implement this for type 2 diabetes. Increasing collaborations, including with industry, and access to clinical
trial data should enable progress to implementation of precision treatment in type 2 diabetes in the near future.
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Abbreviations
AMP Accelerating Medicines Partnership
AMP-CMD Accelerating Medicines Partnership–

Common Metabolic Diseases
AMP-T2D

Accelerating Medicines Partnership–Type 2
Diabetes

CAD Coronary artery disease
DPP-4 Dipeptidyl peptidase-4
EHR Electronic health record
GLP-1RA Glucagon-like peptide-1 receptor agonist
GWAS Genome-wide association studies
IMI Innovative Medicines Initiative
NIH National Institutes of Health
PS Polygenic score
SGLT2 Sodium–glucose cotransporter 2

Current context

The treatment of type 2 diabetes is currently algorithmic.
Professional guidelines elaborated by expert panels typically
recommend initiation of pharmacotherapy with metformin, a
biguanide that lowers blood glucose in a variety of insulin-

* Jose C. Florez
jcflorez@mgh.harvard.edu

* Ewan R. Pearson
E.Z.Pearson@dundee.ac.uk

1 Center for Genomic Medicine and Diabetes Unit, Department of
Medicine, Massachusetts General Hospital, Boston, MA, USA

2 Department of Medicine, Harvard Medical School, Boston, MA,
USA

3 Programs in Metabolism and Medical & Population Genetics, Broad
Institute of Harvard & MIT, Cambridge, MA, USA

4 Department of Population Health & Genomics, School of Medicine,
University of Dundee, Dundee, Scotland, UK

https://doi.org/10.1007/s00125-022-05732-3

Received: 28 October 2021 /Accepted: 17 January 2022 /Published online: 24 June 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s00125-022-05732-3&domain=pdf
mailto:jcflorez@mgh.harvard.edu
mailto:E.Z.Pearson@dundee.ac.uk


Diabetologia (2022) 65:1830–1838

independent mechanisms [1] and has been shown to be safe,
cheap and effective. For those at high risk for, or with pre-
existing, cardiovascular disease, or with proteinuric kidney
disease, there is now strong evidence for treatment escalation
with sodium–glucose cotransporter 2 (SGLT2) inhibitors and/
or glucagon-like peptide-1 receptor agonists (GLP-1RAs).
However, for the majority, escalation of treatment is triggered
by failure to meet glycaemic targets, and involves the incor-
poration of second- and third-line agents to the treatment regi-
men. Of the 12 drug classes currently available to practi-
tioners, the decision on which agent to add is usually predi-
cated on considerations such as the patient’s comorbidities,
the desire to avoid specific side effects, cost or availability.
Critically, these choices are never made by a principled
evaluation of the specific pathophysiological processes
that caused the patient’s hyperglycaemia in the first place:
though a weight-losing medication may be selected in
someone with obesity and concomitant insulin resistance,
the decision is reached on a clinical assumption rather
than on a rigorous ascertainment of the molecular or phys-
iological defects that led to the person’s current metabolic
state.

This empiric approach stands in stark contrast with emerg-
ing trends in other areas of medicine. In oncology, older
chemotherapeutic regimens that would inhibit cellular prolif-
eration non-specifically and were designed on the basis of
clinical trials centred on a particular anatomical origin of the
primary tumour have been largely replaced by biological and
chemical agents targeting the specific disruptive mutations
that alter the cellular growth programme identified in the
tumour sample. Pharmacological approaches to autoimmune
diseases have experienced a qualitative leap driven by the
elucidation of the pathways affected in each clinical condition,
such that biological agents are now prescribed to modulate the
immunological defect that causes the clinical syndrome. In
cardiology, prevention of coronary artery disease (CAD)
addresses each of the mechanisms (hypercholesterolemia,
platelet aggregation, hypertension) that contributes to athero-
sclerotic thrombotic events.

Therefore, the question that arises is whether the current
approach for type 2 diabetes management is adequate. We
believe it is not, based on three key considerations:

1. The epidemiological evidence suggests that we are far
away from reaching glycaemic targets [2]. Though there
are multiple potential reasons for this failure (e.g. cost,
access, adherence, education, etc.), it is quite possible that
the medication(s) being prescribed may not be optimal for
each individual patient.

2. In support of the last assertion, evidence from multiple
clinical trials indicates that there is great heterogeneity in
the human response to particular therapeutic modalities,

with a substantial number of participants failing mono-
therapy over time [3, 4].

3. Most significantly, none of the currently available options
‘cures’ diabetes or causes remission: unless a significant
lifestyle change ensues, preferably early in the disease
process and resulting in substantial weight loss (of the
type only achieved after bariatric surgery or after very
low calorie diet [5]), the patient with type 2 diabetes
remains on pharmacotherapy for life, his/her pathophysi-
ology continues unabated and the typical course involves
escalation of therapy.

We therefore postulate that a promising avenue to achieve
better control of the diabetes pandemic, and potentially reverse
the disease process, is to advance a change in the treatment
paradigm that deploys our therapeutic armamentarium in the
metabolic context most likely to succeed. This requires (1)
determining the predominant mechanism that led to each indi-
vidual’s diabetes; (2) elucidating his/her current metabolic
state; and (3) understanding the mode of action of the available
drugs, such that the therapeutic choice is mainly driven by the
underlying biology, in hopes of correcting it.

A vision for the future: the ideal scenario

What does that scenario look like, in real life? By re-
imagining the ideal clinical encounter, we can highlight what
needs to happen for this vision to be realised, and how realistic
it is to achieve it in the short- to medium-term given the pres-
ent state of the field.

To determine the predominant mechanism that led to each
individual’s diabetes, we first need to achieve much greater
granularity in the diagnostic process. As is outlined in other
contributions to this issue on precision diabetes, the current
classification of diabetes types is imperfect. In particular, type
2 diabetes is mainly a diagnosis of exclusion: any
hyperglycaemia that is not caused by a single-gene mutation,
an established genetic syndrome, autoimmunity or a second-
ary pancreatic defect is labelled as ‘type 2 diabetes’. This is
because the diagnosis is established simply by crossing a
glycaemic threshold: since hyperglycaemia is the common
end result of many disparate pathophysiological processes,
the diagnosis of type 2 diabetes is really a ‘grab basket’ of
many different conditions, and this heterogeneity hampers the
selection of tailored pharmacotherapeutic regimens.

Recent evidence described elsewhere in this issue suggests
that type 2 diabetes can be parsed into distinguishable, even if
partially overlapping, subtypes [6–9]. One approach involves
the use of genetically anchored but physiologically informed
clusters, in the form of process-specific or partitioned poly-
genic scores (PSs), composed of a subset of genetic variants
associated with specific biological processes [7, 10]. This
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strategy has the advantage that genetic information only needs
to be obtained once in the lifetime of the individual and is not
affected by the disease itself or by its treatment. One drawback
is that taken in isolation it neglects the contribution of envi-
ronmental or behavioural factors that modify or interact with
the genetic risk.

An alternative approach involves the use of phenotypic
characteristics alone, in that some of these metrics (e.g. fasting
glucose, BMI) capture both genetic and environmental infor-
mation, and do not require the generation of genomic data in
the entire population which may well be a barrier to imple-
mentation in many healthcare systems. Many of these pheno-
typic variables are routinely captured in clinical management
of type 2 diabetes, including in low-resource healthcare
systems, and as such offer a readily tractable route to precision
medicine without the need for genetic or other molecular char-
acterisation of patients. An evident limitation is that both the
disease process and its treatment can influence many of these
variables, and thus paying attention to the metabolic and
developmental state of the person along his/her disease course
may be critical in their interpretation.

Nevertheless, we propose that in our ideal scenario genetic
data can serve as an informative starting point. In a future
world where every individual has their genome sequenced or
is genotyped as soon as they enter the healthcare system (a not
unrealistic prospect, given current favourable trends in the
cost of genotyping or sequencing technologies), the moment
somebody is diagnosed with diabetes by a hyperglycaemic
blood reading, pre-existing genetic information deposited into
the medical record would produce a preliminary estimate of
the genetic burden that has predisposed that individual to
develop diabetes. It is possible that such an assessment may
indicate a most likely or predominant mechanism in a fraction
of the cases, currently estimated in 25–30% of people with
type 2 diabetes [7]; however, the majority of cases may have
type 2 diabetes caused by a constellation of factors that could
make it difficult to place individuals into discrete categories
[11]. In this ‘palette’ model, where each person represents a
specific hue composed of multiple primary colours, using
quantitative scales for each of the factors that assign each
person an aggregate risk score may hold greater power and
be extensible to more individuals [8], although in the end
arbitrary thresholds may need to be adopted to facilitate
dichotomous clinical decision making. In either case, that
initial genetically based assessment would then be refined by
a clinician-triggered measurement of biomarkers at the time of
diagnosis, which would confirm, refine or modify the diabetes
subtype or aggregate risk score suggested by the genetic algo-
rithm. Robust clinical trial evidence would have already
demonstrated that assigning a diabetes subtype or aggregate
risk score to the patient might alter the therapeutic and/or
surveillance strategy, and would lead to improved patient
outcomes. That information would be available to the

clinician at the point of care, such that when a diabetes subtype
is confirmed for the patient a tailored pharmacological regi-
men and a programme for interval monitoring for complica-
tions can be adopted in real time.

For this ideal vision to be realised, we need (1) genome-
wide genetic information included into the medical record; (2)
solid evidence supporting that certain genetic profiles predict
differential response to specific drug classes; (3) dynamic
metabolic modifiers of those static genetic predictors to
become easily available in the clinic; (4) outcomes evidence
suggesting that such an approach leads to better clinical
outcomes and is more cost-effective; and (5) a translational
strategy that allows for this complex information to be imple-
mented at the point of care, so that the clinician can seamlessly
access the decision tool as soon as hyperglycaemia has been
documented.

Such a picture is not science fiction: it has already been
adopted in the context of monogenic diabetes. When a person
presents clinically with neonatal diabetes (diabetes that
develops in the first 6 months of life) or MODY (autosomal
dominant familial diabetes in a young and lean person, with a
non-ketotic and antibody-negative presentation), the diagnosis
triggers a genetic test for the specific molecular subtype, and
the result determines whether the patient can be transitioned
from insulin to high-dose sulfonylurea (in the case of neonatal
diabetes) [12, 13], from metformin or insulin to a low-dose
sulfonylurea (in the case ofHNF1A-MODY) [14, 15] or to no
pharmacological therapy at all (in the case of GCK-MODY)
[16]. It is not utopian to assume that what has already become
the standard of care in monogenic diabetes could, in the not-
too-distant future, be adopted to some extent in polygenic
diabetes, in cases where the genetic and metabolic tools carry
a comparable risk prediction profile and are associated with
similar levels of evidence supporting favourable clinical
outcomes.

In the sections that follow, we state what we believe is
needed for each of these components to emerge, and describe
how far along we are towards reaching that goal. These steps
are outlined in Fig. 1.

What is needed?

1. Robust and reproducible genetic predictors of response
The field of pharmacogenetics in diabetes is still in its infancy,
but a general picture of the genetic architecture of the
glycaemic response to antidiabetic drugs is beginning to
coalesce. Genome-wide association studies (GWAS) for
metformin [17, 18] and sulfonylureas [19] numbering in the
several thousand samples have identified a handful of loci
associated with drug response (in or near the genes ATM and
SLC2A2 for metformin, andGXYLT1 and SLCO1B1 for sulfo-
nylureas). More importantly, these GWAS datasets have not
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revealed genetic associations of large effects, whilst assess-
ments of heritability [19, 20] have shown that these traits are
similar to other complex traits, in that multiple genetic variants
and environmental factors contribute in concert to the
observed phenotype.

Given these findings, the quest for individual genetic asso-
ciations will require much larger samples, including from non-
European ethnicity, only achievable via international collabo-
ration. Whilst this global effort may yield insights that help
illuminate the molecular mode of action of specific drugs, it is
unlikely to produce individual genetic variants that harbour
strong predictive power at the population level. Therefore,
the attention has recently shifted to the construction of PSs,
composed of multiple variants, which in aggregate explain a
greater proportion of the variance observed.

The construction of such scores can follow a number of
avenues. Investigators could focus on genes that encode the
enzymes responsible for metabolising the relevant drug, under
the assumption that pharmacokinetic parameters have the
greatest relevance on circulating drug levels and subsequent
clinical effects. To identify the variants that would populate
such PSs, studies that incorporate measurements of the drug
and its metabolites at specific time points are needed, but unfor-
tunately these tend to be limited in size. An alternative is to

develop PSs in which genetic variants are clustered according
to their impact on specific metabolic traits, in an attempt to
group them along physiological pathways: these process-
specific or partitioned PSs, referenced above and elsewhere in
this issue, have been recently developed for type 2 diabetes [7,
10]; whether individuals at one extreme of the genetic risk for
each of these subtypes of type 2 diabetes experience a differ-
ential response to specific pharmacological therapies is a
subject of active investigation. PSs for drug response can also
be constructed from GWAS designed specifically with that
endpoint in mind, and they can include only the variants that
reach genome-wide significance (defined at p<5 × 10−8),
termed restricted to significant PSs (rsPSs); or they can include
a much larger set of variants below that stringent statistical
threshold, under the assumption that a large number of false
negative associations lie beneath the cutoff and will improve
predictive power, in globally expanded PSs (gePSs). In either
situation, many thousands of samples are needed to generate
robust and reproducible associations, and these are presently
only available for a handful of type 2 diabetes drugs [17–19].
Finally, it should be noted that whilst glycaemic endpoints have
been traditionally used as outcomes in these investigations,
there is increased interest in other clinical endpoints of greater
relevance to patients, such as those having to do with the
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Fig. 1 A roadmap to achieve pharmacological precision medicine in
diabetes. Steps 1 to 5 describe the necessary steps for discovery, valida-
tion and implementation of precisionmedicine approaches to themanage-
ment of diabetes. This is depicted for monogenic diabetes and type 2

diabetes. The colour represents the current strength of evidence, with blue
being high and red being low. DPP-4i, DPP-4 inhibitor; NDM, neonatal
diabetes mellitus; SU, sulfonylurea; TZD, thiazolidinedione. This figure
is available as part of a downloadable slideset
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cardiovascular system (e.g. CAD, congestive heart failure or
stroke), diabetic kidney disease or retinopathy.

At the time of writing, beyond the aforementioned GWAS
for metformin and sulfonylureas examining glycaemic
outcomes, there is a similar ongoing effort for GLP-1RAs
led by the Metformin Genetics Plus Consortium, which is
composed of international partners with access to retrospec-
tive pharmacogenetic datasets, most frequently centred on the
electronic health record (EHR). A new Consortium seeking to
gather clinical trial data has also been formed as a joint venture
between Canadian and UK partners. This initiative between
the University of Dundee (E. R. Pearson) and Montreal Heart
Institute (M.-P. Dubé) has obtained GWAS on clinical trial
data for glycaemic response and cardiovascular outcomes for
the novel type 2 diabetes drug classes GLP-1RAs, SGLT2
inhibitors and dipeptidyl peptidase-4 (DPP-4) inhibitors, and
should report in the next 12 months (see https://gtr.ukri.org/
projects?ref=MR%2FT032014%2F1). The National Institutes
of Health (NIH)-funded Glycemia Reduction Approaches in
Diabetes: A Comparative Effectiveness Study (GRADE, see
https://grade.bsc.gwu.edu) is a comparative effectiveness trial
in which just over 5000 participants with type 2 diabetes on
metformin therapy were randomised to one of four arms
(glimepiride, sitagliptin, liraglutide and insulin glargine); a
GWAS is currently being conducted in this dataset. It is
hoped that as the results from these various studies become
available the PS to be produced will acquire greater predictive
power.

2. Robust and reproducible metabolic or phenotypic biomark-
ers It is critical to note that whilst germline genetic informa-
tion harbours the distinct advantage of immutability in the
lifetime of an individual and thereby preservation from
reverse confounding, it is necessarily static. In the complex
trait world, where genetic variation only explains one compo-
nent of the phenotype and often interacts with the environ-
ment, genetic prediction can only be probabilistic, in contrast
to the deterministic assessments often encountered for
Mendelian traits. As such, a person with the same genetic
profile from birth may respond differently to exogenous stim-
uli depending on a variety of factors, including his/her current
metabolic state [11, 21]. This has been noted, for instance, in
the differential response to sulfonylureas seen over time in
individuals classified as having ‘severe insulin deficient
diabetes’ [6], whereby an initial favourable response waned
relatively quickly as the individual beta cell reserve presum-
ably was more rapidly exhausted in this group [8].

Therefore, any genetic predictors that derive from the well-
powered genomic studies described above will need to be
complemented with biomarkers that capture orthogonal infor-
mation and in essence ‘actualise’ genetic predictions. These
might include measures of adiposity, disease duration, beta
cell function or insulin action: in this regard, a basal or

stimulated C-peptide holds singular promise. In addition,
agnostic explorations for such biomarkers as can be assessed
by global metabolomic profiling are of intense interest
[22–24].

3. Evidence that such prediction leads to better clinical
outcomes Even if the genetic determinants of drug response
and the molecular biomarkers that refine this prediction are
identified, wemust ensure that obtaining such information and
acting on it improves clinical outcomes. It could very well be
that whilst the ability for such an instrument to predict the
outcome is statistically significant, the magnitude of the effect
is not clinically relevant, or adds only a limited amount to
simple clinical measures. For example, if a PS associated with
metformin response is used to stratify the population into
extremes of ‘top responders’ and ‘response failures’, but the
contrast between the two groups only amounts to a difference
in HbA1c of 0.1%, it is unlikely that clinical decision making
would be affected by such an instrument, as the downstream
impact on diabetic complications would be minimal.

To assess the magnitude of these effects, investigators need
access to clinical trial data. Unfortunately, the majority of
clinical trials for novel type 2 diabetes drugs have been
conducted by the pharmaceutical industry. Barriers to
accessing these results include the proprietary nature of
industry-sponsored clinical trials, the boundaries imposed by
informed consent obtained at the time of trial design, the
potential identifiability afforded by genetic information, data
protection measures enacted by governmental and regulatory
authorities, and the logistic hurdles involved in assembling
and disseminating such information. Nevertheless, there are
several precedents where forward-looking pharmaceutical
companies have collaborated with academic and/or govern-
ment scientists in advancing valuable knowledge in the pre-
competitive space. In the type 2 diabetes field, the Innovative
Medicines Initiative (IMI) funded by a European Union
public–private partnership has supported a variety of type 2
diabetes-related projects: the IMI-DIRECT Consortium
(https://www.imi.europa.eu/projects-results/project-
factsheets/direct) was specifically designed to advance
prec is ion medic ine in diabe tes , and included a
pharmacogenetic component [25]. Its goals have been
largely assumed by the subsequently formed IMI-
RHAPSODY Consortium (https://www.imi.europa.eu/
projects-results/project-factsheets/rhapsody). Similarly, the
Accelerating Medicines Partnership (AMP) in the USA
convenes the NIH, academic investigators and pharma part-
ners to elucidate molecular mechanisms and advance the iden-
tification of drug targets, and has focused on type 2 diabetes
(AMP-T2D) and common metabolic diseases (AMP-CMD)
as areas of specific interest. Under AMP-T2D (https://www.
nih.gov/research-training/accelerating-medicines-partnership-
amp/type-2-diabetes), it supported the generation of the
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largest whole-exome sequencing dataset for type 2 diabetes
[26]; under AMP-CMD (https://www.nih.gov/research-
training/accelerating-medicines-partnership-amp/common-
metabolic-diseases), it supports the AMP-CMD Knowledge
Portal (https://hugeamp.org), which contains genomic and
metagenomic datasets on ~350 metabolic traits available for
mining and exploration, as well as a number of functional
genomics projects to advance from genetic association to
molecular function. A valuable byproduct of these initiatives
is the increased collaboration and interaction between
academic and industry investigators, and it is hoped that
access to pharmaceutical clinical trial data may ensue as a
reasonable aspiration.

An alternative to clinical trial data attained via industry–
academic collaborations is to delve into the EHR,where a pleth-
ora of clinical data (often of a longitudinal nature) are available
and are increasingly amenable to investigation via machine
learning and artificial intelligence approaches. Several health
system-based biobanks have been created in academic medical
centres, which have invested resources to obtain general consent
from participants as well as genome-wide DNA data. In some
cases, entire national jurisdictions have done likewise, and
programmes like the UK Biobank, FinnGen, the Estonian
Biobank, the US Million Veterans Program, the US All Of Us
Research Program, Biobank Japan, the China Kadoori Biobank
and many others are already yielding results. These widely
available datasets can be accessed to test whether predictive
tools are associated with clinical outcomes, and whilst the initial
focus might be on glycaemic measures it is possible to assess a
multitude of other relevant endpoints.

It is also important to point out that there is a need to greatly
increase the genetic and phenotypic studies of drug response
in non-Europeans, whether in trial datasets or biobanks.
Variants and indeed PSs developed in European populations
may have limited effect in non-Europeans, who may have
ethnicity-specific variants that are relevant to their treatment.

A note about causality is warranted here. A common crit-
icism of studies that leverage pre-existing clinical trials,
cohorts or biobanks is that any observed association merely
denotes a correlation, and is not free of the confounding and
biases inherent to retrospective studies. The corollary of this
assertion is that no causality can be inferred until an appropri-
ately designed prospective, randomised clinical trial is
conducted to assess whether a genetic instrument truly
predicts an outcome—an insurmountable and unaffordable
task for the length of time required to carry out such trials
across multiple phenotypes for multiple biomarkers.
However, it should be noted that genetic predictors are unique
among biomarkers in three key respects: indeed, (1) germline
DNA sequence variation is present from the moment of
conception, i.e. before the onset of any phenotype, and thus
the arrow of time is unidirectional; (2) it is inherited in a
largely random manner, as maternal and paternal alleles

distribute stochastically at meiosis, providing a natural exper-
iment of randomised genetic exposure; and (3) it is immutable
through the lifetime of the individual, and thus free of the
effects of reverse confounding. Therefore, robust genetic asso-
ciations contain within them the seed of causal inference, and
as such we favour genetic instruments as anchors of nascent
clinical predictors.

4. Evidence for cost-effectiveness Investigators may be able to
identify genetic determinants of clinical outcomes and
refine these predictive instruments with current biomark-
ers; they may even demonstrate that the predictions made
are clinically significant and lead to improved health
outcomes. However, if the incorporation of such instru-
ments to the clinical armamentarium is inordinately expen-
sive, it will not be possible to deploy it at scale, and it may
contribute to magnifying health disparities. It is therefore
imperative that the tools that are developed take both
throughput and cost into account.

On the benefit side of the scale, the morbidity and mortality
associated with diabetes and its complications is substantial,
and the effort spent in surveillance and prevention taxes the
most robust economies. Being able to discriminate who is at
greatest risk of a given vascular complication, or more likely
to respond to a specific therapy, should facilitate an intelligent
stewardship of resources. It is easy to envision that great gains
may be reaped in this regard.

On the other side, the cost of genomic technologies
(genotyping and sequencing) continues to plummet, and it is
not too extravagant to assume that it may be possible to obtain
genomic information from every individual the moment they
enter a healthcare system, or even at birth (although we recog-
nise this is an area of ongoing ethical debate). Such informa-
tion could be used for multiple diseases and indications, and
would pre-empt the need for a disease-specific test every time
a new condition arises. Though some advocate for disease-
specific genotyping using inexpensive customised arrays, it
would seem most efficient to capture the entire genome once
with a single lifetime test.

Other relevant biomarkers would be measured at the rele-
vant developmental stage or metabolic state. Here again,
sophisticated and complex metabolomic platforms might be
used for discovery; however, once a candidate biomarker is
selected to complement the genetic information, its measure-
ment must be simple, affordable and scalable if one hopes for
precision diabetes to penetrate low- and middle-income coun-
tries, where the bulk of people with type 2 diabetes reside. As
these tools are developed, the proper cost-effectiveness anal-
yses, using simulations and prospective studies, ought to be
carried out. These types of studies have already proven that
identifying monogenic diabetes is cost-effective [27–29], and
that using metformin to prevent diabetes in people at high risk
is cost-saving [30].
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5. Effective and equitable implementation Once the theoreti-
cal groundwork has been established, the predictive tools have
been designed and refined, and their clinical utility and
cost-effectiveness have been demonstrated, the vision
described above has to be implemented at the point of
care. The proposed strategy entails universal genomic
ascertainment, through a generic GWAS array, sequenc-
ing or disease-informed panels, if not immediately, at
least eventually, with disease-specific chips potentially
serving as the bridge. This information would be available
in the patient’s EHR, ready to be harnessed as various
health needs arise.

Algorithms would have been developed to mine the broad
swath of genomic data and produce a quantitative assessment
of the person’s risk, subtype of diabetes or likelihood to
respond to a specific therapy. The clinical trigger for the algo-
rithm to be run might be a blood test meeting the diagnostic
threshold for diabetes, or a prescription for a diabetes drug: at
that point, the algorithm would reach into the genomic
sequence and provide a probabilistic prediction and concom-
itant interpretation for the clinician. The result may be accom-
panied by the recommendation to order a specific test, to
measure the biomarker(s) that have been shown to modify or
refine the genetic prediction. The algorithms and ancillary
biochemical evaluations might be updated iteratively as new
information emerges and reaches the level of actionable
evidence.

In addition to the clinical workforce, appropriate education
on the value and use of these predictive tools would need to be
disseminated to patients, regulators and payors. As society
embraces their adoption, it must do so with a firm commit-
ment to democratisation and generalisability so as to reduce
health disparities (see Text box).

Five steps towards the future 
implementation of pharmacological 

precision medicine

Robust genetic predictors of response

Metabolic or phenotypic biomarkers that modify 

response 

Evidence of better outcomes with a precision 

medicine approach

Evidence for cost-effectiveness 

Effective and equitable clinical implementation

1

2

3

4

5

Caveats: reality vs the ideal

In this perspective, we have proposed a vision for what we
consider an ideal approach to achieve pharmacological preci-
sion medicine. We outline the steps required to establish that,
for type 2 diabetes, such an approach has clinical utility, is cost-
effective and can be readily implemented, an approach largely
realised for monogenic diabetes. The relative contributions of
genotype, molecular biomarkers or clinical measures have yet
to be established, and at the end of this process we may
conclude that for prediction of drug response, genetics may
not add to clinical phenotype or to simple physiological metrics
such as measuring C-peptide. But this does not detract from a
focus on genetic drivers of diabetes and drug response that
provide the invariant causal biological mechanism for variation
in drug outcomes. We recognise that our approach may be
considered idealistic by some, and acknowledge that in the
context of global diabetes, where healthcare costs are a key
consideration and where available diabetes drug treatments
are limited, a vision focused on genetics and other molecular
biomarkers is currently unrealistic. As discussed above, the
most tractable approach to implementation of precision medi-
cine in these contexts will be to focus on available clinical
measures such as sex and BMI [31, 32]. However, given the
falling costs of genome-wide genotyping, which now amount
to little more than a chest x-ray, incorporation of genetic infor-
mation is achievable for most healthcare systems.

Our premise for pharmacological precision medicine is that
by understanding the defects that cause an individual to devel-
op diabetes, overlaid with measures that capture his/her
current metabolic state, we will be able to select a best drug
for the patient, and this will result in better outcomes for that
individual and for the healthcare system. This precision
approach would need to be compared with alternative ‘non-
precision’ approaches based upon empirical treatment or early
use of combination therapy.

Conclusion: where we are, where we need
to go

In our vision, if genomic-based prediction is proven to have
sufficient predictive power, it could serve as the scaffolding
denoting inherited predisposition to a particular pathogenic
process. On this relatively static skeleton, organic modifiers
in the form of biomarkers that signify environmental or behav-
ioural factors (the flesh and blood) would complete the predic-
tive picture (Fig. 2). Under this anatomical analogy, the preci-
sion roadmap is largely aspirational: of the items that are
needed (Fig. 1), we are in the midst of generating the data
for Step 1 (genomic predictors) for a handful of type 2
diabetes-relevant medications: this needs to be expanded to
all the major drug classes and to include hard endpoints such
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as cardiovascular outcomes, in large enough sample sizes,
across all major populations. We are only beginning to use
high-throughput technologies to identify clinically relevant
biomarkers (Step 2), and perhaps honing in on those that guide
the construction of diabetes subtypes [6]. There are only a few
instances whereby these predictive tools might make a clinical
difference (Step 3), and studies of cost-effectiveness (Step 4)
or venues for implementation (Step 5) remain at the contem-
plative stage.

To achieve our vision, we must continue to encourage the
creation and support of international consortia that foster
widespread collaboration, both in terms of the resources need-
ed for them to function, as well as the culture that sees team
science as a win–win proposition. Efforts such as the IMI and
AMP initiatives that make government–industry–academia
cooperation more seamless and fluid should be welcomed,
by simplifying regulatory hurdles and encouraging cross-
fertilisation. Finally, the earnest engagement of investigators
and populations other than those of European descent will be
critical to ensure that the tools that emerge can be effectively
translated in an increasingly cosmopolitan and inter-
dependent world.
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Fig. 2 Anatomical analogy of a predictive tool for precision prediction
that incorporates relevant axes of biology. (a) A robust and reproducible
PS denoting a specific diabetes subtype or risk burden would serve as the
‘static’ skeleton, obtained at any point in the individual’s lifetime and
signifying its relative immutability. That score would be actualised by
robust and reproducible temporal metrics that denote the current devel-
opmental and/or metabolic state of the individual, and which could take

the form of (b) environmental variables (muscle), (c) circulating biomark-
ers (blood vessels) and/or (d) behavioural traits (nerves), which together
(e) offer a holistic picture of prediction. Each of these elements would
need to be shown to be robustly associated with clinical outcomes and be
cost-effective. This figure is available as part of a downloadable slideset
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