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Abstract
Aims/hypothesis Type 2 diabetes mellitus is a major health burden disproportionately affecting those with lower educational
attainment (EA). We aimed to obtain causal estimates of the association between EA and type 2 diabetes and to quantify
mediating effects of known modifiable risk factors.
Methods We applied two-step, two-sample multivariable Mendelian randomisation (MR) techniques using SNPs as genetic
instruments for exposure and mediators, thereby minimising bias due to confounding and reverse causation. We leveraged
summary data on genome-wide association studies for EA, proposed mediators (i.e. BMI, blood pressure, smoking, television
watching) and type 2 diabetes. The total effect of EA on type 2 diabetes was decomposed into a direct effect and indirect effects
through multiple mediators. Additionally, traditional mediation analysis was performed in a subset of the National Health and
Nutrition Examination Survey 2013–2014.
Results EA was inversely associated with type 2 diabetes (OR 0.53 for each 4.2 years of schooling; 95% CI 0.49, 0.56).
Individually, the largest contributors were BMI (51.18% mediation; 95% CI 46.39%, 55.98%) and television watching
(50.79% mediation; 95% CI 19.42%, 82.15%). Combined, the mediators explained 83.93% (95% CI 70.51%, 96.78%) of the
EA–type 2 diabetes association. Traditional analysis yielded smaller effects but showed consistent direction and priority ranking
of mediators.
Conclusions/interpretation These results support a potentially causal protective effect of EA against type 2 diabetes, with
considerable mediation by a number of modifiable risk factors. Interventions on these factors thus have the potential of substan-
tially reducing the burden of type 2 diabetes attributable to low EA.
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Introduction

Type 2 diabetes is a multifactorial group of disorders in which
impaired insulin secretion and/or insulin resistance results in
dysregulated carbohydrate, lipid and protein metabolism [1].
It confers an increase in risk of cardiovascular disease and all-
cause mortality [2, 3]. Global prevalence has been continu-
ously rising over the past few decades, with type 2 diabetes
projected to affect 9.9% of the world population by the year
2045 [4–8], thus posing an increasingly unsustainable global
health burden [9].

A large and consistent body of epidemiological data
suggests that those with lower educational attainment (EA)
are disproportionately affected by type 2 diabetes [10]. This
association is likely mediated by modifiable risk factors, such
as obesity, sedentary behaviour, physical activity (PA),
smoking and blood pressure [11–15]. Knowledge of media-
tion in the EA–type 2 diabetes association will inform public
health policies, e.g. by prioritising targets for intervention to
reduce the excess risk of type 2 diabetes due to low EA. Our
current knowledge of mediating pathways is predominantly
based on traditional observational studies that are sensitive
to confounding and reverse causation. Therefore, it is uncer-
tain to what extent the associations between EA and type 2
diabetes, and their intermediates, are confounded or affected
by reverse causation.

A well-acknowledged method to support causal inference in
observational data is Mendelian randomisation (MR). This
method uses SNPs, identified in genome-wide association stud-
ies (GWAS) to be strongly associated with an exposure, as

instrumental variables [16]. Under a number of assumptions,
MR yields estimates of an exposure–outcome relation that are
less likely to be biased due to unobserved confounding. Recent
advances in MR methodology include multivariable MR
(MVMR), which can be applied to investigate mediation [17].

Previous MR studies have provided support for a potential
causal effect of EA (measured by years of schooling) on coro-
nary artery disease [18], with evidence of mediation through
risk factors such as BMI, smoking and blood pressure [19].
For type 2 diabetes risk, recent MR studies have also provided
evidence of such a causal effect of EA [20–22]. However,
these studies did not assess mediation by modifiable factors
[21, 22], while one recent study only examined mediation by
BMI and smoking [23]. Furthermore, some MR studies relied
on genetic associations leveraged from less recent, less precise
GWAS data [20, 21]. Recent GWAS on EA [24] and type 2
diabetes [25] have yielded more precise estimates of SNP
effects due to their larger sample size compared with less
recent GWAS. Updating the results from previousMR studies
on EA and type 2 diabetes, as well as assessing potential
mediation, using the most recent GWAS data would result
in more precise insights into the causal structure underlying
the EA–type 2 diabetes association.

We therefore aimed to obtain causal estimates of the asso-
ciation between EA and type 2 diabetes and to characterise the
causal structure by assessing mediation effects of BMI, seden-
tary behaviour, PA, smoking and blood pressure in anMVMR
framework. In addition, we aimed to obtain observational
mediation estimates from the 2013–2014 National Health
and Nutrition Examination Survey (NHANES).
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Methods

Overall study design

This study used a two-step MR analysis of genetic summary
data to investigate to what extent BMI, blood pressure,
smoking, sedentary behaviour (daily hours of television
watching) and PA explain the protective effect of EA on type
2 diabetes risk. In addition, we estimated mediation in data
from the NHANES 2013–2014 using traditional observational
mediation analysis techniques.

Outcome definitions

In the original GWAS [24], educational level was categorised
according to the International Standard Classification of
Education (ISCED) 2011 [26], converted to US years of
schooling and standardised, with each unit representing
4.2 years of schooling. Type 2 diabetes in the original
GWAS was defined by diagnostic fasting glucose, casual
glucose, 2 h plasma glucose or HbA1c levels; use of
glucose-lowering medication (by Anatomical Therapeutic
Chemical code or self-report); or type 2 diabetes history from
electronic medical records, self-report and varying combina-
tions of each, depending on the contributing cohort [25].
Mediator selection was based on potential for modification,
observational epidemiological evidence of mediation in the
EA–type 2 diabetes relation and availability of comprehensive
GWAS data. BMI was calculated by dividing weight (kg) by
height squared (m2) [27]. Sedentary behaviour was measured
by daily hours of television watching [28]. Systolic blood
pressure (SBP) and diastolic blood pressure (DBP) values
were the mean of two automated or two manual blood pres-
sure measurements [29]. Smoking behaviour was a binary
trait: participants who reported ever being a regular smoker
in their life were defined as smokers; the remaining partici-
pants were defined as non-smokers [30]. PA was measured by
accelerometry and reported as SDs of metabolic equivalent of
task [31].

MR methods

For a brief discussion of assumptions underlying MR, see
electronic supplementary material (ESM) Methods 1. We
used two-sampleMR (2SMR) methods using GWAS summa-
ry level data [32]. Two-step 2SMR (ESM Fig. 1) was used to
assess whether an intermediate trait has a mediation effect
between exposure and outcome [33]. The first step was to
estimate the causal effect of EA on potential mediators using
SNPs to genetically predict years of schooling. In the second
step, SNPs for the potential mediating risk factors were used
to genetically predict these mediators and to estimate their
causal effect on the outcome, adjusting for EA using

MVMR. The total effect of EA was then decomposed into a
direct effect (i.e. the effect of EA on type 2 diabetes indepen-
dent of the mediator) and an indirect effect (i.e. the effect of
EA on type 2 diabetes via the mediator). This approach is
currently being widely applied [19, 34].

For these analyses, we obtained summary statistics of the
genetic associations from the most recent GWAS for each
respective phenotype. Table 1 summarises the GWAS data
used in this study.

Instrument selection All selected SNPs and their associa-
tions with EA, mediators and type 2 diabetes were extracted
from the GWAS studies in Table 1. For EA, genetic instru-
ments were selected from the Social Science Genetic
Association Consortium GWAS meta-analysis of years of
schooling in 1,131,881 individuals of European ancestry
[24]. A total of 1271 independent (r2 < 0.1) genome-wide
significant (p < 5×10−8) SNPs were used as the primary
genetic instruments.

For each mediator, genetic instruments were selected
from the most recent large-scale GWAS data. We then
selected genome-wide significant SNPs for each trait
(p < 5×10−8 for SBP/DBP, television watching, smoking
and PA; p < 1×10−8 for BMI). We applied pairwise linkage
disequilibrium (LD) thresholds from the original GWAS
for each mediating trait, with SNPs for each trait adhering
to an LD cut-off of r2 < 0.1 within a window of 1 MB,
except for television watching (LD r2 < 0.005 within
5 MB) and smoking (LD r2 < 0.1 within 500 kB). Then,
for all SNPs, we harmonised coding and non-coding alleles
in the summary statistics of each GWAS. In case of palin-
dromic SNPs, we inferred strand based on allele frequency.
Palindromic SNPs with ambiguous allele frequency
(frequency 0.3–0.7) were removed.

Effect of EA on type 2 diabetes We obtained estimates of the
total effect of EA on type 2 diabetes using straightforward
2SMR. Here, single SNP estimates of the effect of EA on type
2 diabetes were investigated by calculating Wald ratios with
standard errors derived using the delta method. We used
inverse variance-weighted meta-analysis to pool Wald ratios
as our main method [32].

Mediation analysis We used inverse variance weighting
(IVW) as our main approach to estimate the effect of EA on
each mediator. We used regression-based MVMR to estimate
the effect of each mediator on type 2 diabetes risk while
adjusting for the genetic effect of the instruments on EA
[35]. For the individual mediation effect of each risk factor
(BMI, SBP, DBP, smoking, PA and television watching), we
used the product of coefficients method as our mainmethod to
estimate the indirect effect (that is, the effect of EA on type 2
diabetes through the mediator) [36]. This involved first
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estimating the effect of EA on each mediator individually,
then multiplying the EA–mediator effect with the EA-
adjusted effect of the mediator on the outcome [34]. The
proportion of the total effect of EA on type 2 diabetes that
was mediated by each risk factor separately was estimated by
dividing the indirect effect by the total effect. Standard errors
were derived by using the delta method, using effect estimates
obtained from 2SMR analysis.

To estimate the combined proportion mediated, we used
the difference in regression coefficient MVMR approach to
adjust the genetic effect for several mediators simulta-
neously (such as BMI + SBP) to obtain the direct effect
of EA on type 2 diabetes. Then, the combined indirect
effect of considered mediators was the residual of the total
effect. We explored all possible meaningful combinations
of mediators to find the combination of mediation with the
highest proportion mediated and to assess potential overlap
between mediators.

Although PA was initially included in our selection of
potential mediating risk factors, GWAS data on this vari-
able were limited with regard to power and number of
available genetic instruments: only two SNPs were avail-
able, precluding meaningful mediation analysis using the
product of coefficients method. We therefore decided to
abandon further investigation of PA as an intermediate
trait in both our main MR and observational analyses,
although we were able to examine mediation by PA using
the difference method.

MR sensitivity analyses We conducted several sensitivity
analyses to evaluate the robustness of the MR results.
First, in addition to our primary IVW meta-analysis, we
applied 2SMR methods that are robust to violations of the
assumptions regarding horizontal pleiotropy of SNPs (ESM
Methods 1). Second, to validate estimates of the product of
coefficients method, we used the MVMR approach to esti-
mate the individual mediation effect of each mediator using
the difference method. In this approach, the indirect effect
of each mediator was estimated by subtracting the direct
effect of education from the total effect. Third, we used
the MVMR-Egger method to examine the robustness of
the MVMR-IVW results. Fourth, to assess the validity of
our mediation model we conducted reverse MR using
genetic instruments for each purported mediator to explore
bidirectionality between EA and potential mediators.

All MR analyses were conducted using R (version 4.0.2)
[37] and the TwoSampleMR R package version 0.5.6 [38].

Observational mediation analysis in NHANES

Details on the sample and methods of the observational
mediation analysis can be found in ESM Methods 2.
Briefly, we applied standard regression-based mediation

analysis methods to explore mediation through pathways
presented in ESM Fig. 2.

Results

MR analysis

Genetic instruments Detailed information on SNPs and their
associations with EA, mediators and type 2 diabetes can be
found in the ESM Data of SNPs.

Effect of EA on type 2 diabetes Each SD (4.2 years of school-
ing) higher genetically predicted EA was associated with 0.53
times lower odds of type 2 diabetes (OR 0.53; 95% CI 0.49,
0.56).

Effect of EA on mediators Effects of genetically predicted EA
on each mediator are shown in Fig. 1a. Each SD (4.2 years of
schooling) higher genetically predicted EA was associated
with lower BMI (β = −0.34 kg/m2; 95% CI −0.37, −0.31);
less television watching (β = −0.61 SD of television
watching; 95% CI −0.63, −0.59, translating to 0.92 h less
television watching per 4.2 years of schooling); lower odds
of smoking (OR 0.63; 95% CI 0.61, 0.66); lower SBP
(−1.83 mmHg; 95% CI −2.24, −1.41); lower DBP (β =
−0.81 mmHg; 95% CI −1.06, −0.57); and more PA (β =
0.08 SD; 95% CI 0.05, 0.12).

Effect of mediators on type 2 diabetes with adjustment for EA
Figure 1b shows that each mediator was significantly
associated with type 2 diabetes after adjusting for EA.
We excluded PA from our analysis as only two out of
five PA SNPs could be used in MVMR, precluding mean-
ingful analysis using the product of coefficients method.
A 1 kg/m2 higher genetically predicted BMI was associ-
ated with 2.60 times higher odds of type 2 diabetes (95%
CI 2.38, 2.84). A 1 mmHg higher genetically predicted
blood pressure (SBP/DBP) was associated with higher
odds of type 2 diabetes (OR 1.02; 95% CI 1.01, 1.03).
One SD (1.5 h) longer genetically predicted television
watching was associated with 1.70 times higher odds of
type 2 diabetes (95% CI 1.22, 2.37). Compared with
never-smokers, the odds of type 2 diabetes among genet-
ically predicted ever-smokers were 1.20 times higher
(95% CI 1.10, 1.31).

Individual proportion mediated Figure 1c displays the
proportion of the effect of EA on type 2 diabetes explained
by each mediator separately. BMI explained 51.18% (95% CI
46.39%, 55.98%) of the total effect of EA on type 2 diabetes,
while television watching explained 50.79% (95% CI
19.42%, 82.15%). Smoking explained 12.94% (95% CI

Diabetologia (2022) 65:1364–13741368



6.59%, 19.30%) of the total effect. DBP and SBP only subtly
mediated the total effect of EA (2.47% for DBP, 6.41% for
SBP).

Combined proportion mediatedWe examined the proportion
mediated of different combinations of mediating variables.
This was done in an effort to find the combination that
explained the most variation in the EA–type 2 diabetes asso-
ciation, as well as to investigate potential overlap in effects
between mediators (Fig. 2).

Combining any one of the other mediators with BMI was
observed to increase the mediating proportion to around
60–77%. The same trend could be observed when

combining television watching with any of the other medi-
ating variables.

Among the two-mediator combinations, the combination
of BMI + SBP mediated 63.85% (95% CI 52.81%,
74.88%) of the effect of EA on type 2 diabetes. The BMI +
television watching combination showed the highest propor-
tion mediated (77.21%; 95% CI 59.82%, 94.61%). This rela-
tively large combined mediation effect suggests little overlap
between BMI and television watching.

Among the three-mediator combinations, the combina-
tion of BMI + television watching + smoking accounted
for the largest mediation effect (80.18%; 95% CI 61.81%,
98.54%).

BMI

SBP

DBP

TV watching

Smoking
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\
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1.20 (1.10, 1.31)
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0.02 (0.01, 0.03)

0.02 (0.01, 0.03)

0.53 (0.20, 0.86)

0.18 (0.09, 0.27)

Mediatorβ 1 β 2 β 2 (95% CI)β 1 (95% CI)OR (95% CI) OR (95% CI)

Indirect effect (β 1 × β 2)Mediating pathway

Education to T2D via BMI

Education to T2D via SBP

Education to T2D via DBP

Education to T2D via TV watching

Education to T2D via smoking

Proportion mediated Proportion mediated 
(95% CI)

51.18 (46.39, 55.98)

6.41 (4.68, 8.16)

2.47 (1.17, 3.77)

50.79 (19.42, 82.15)

12.94 (6.59, 19.30)

Effect of education on mediator Effect of mediator on T2D after adjusting for education

Individual 
mediating 

effect

a b

c

-0.45 (0.49, -0.42)

1.0-0.5 0.0 0.5 1.5

-1.0 -0.5 0.0 0.5 -20 0 20 40 60 80 100

Fig. 1 (a) MR-estimated effects of EA (per 4.2 years of schooling) on
each mediator separately, presented as β/OR with 95% CI. (b) MR-esti-
mated effects of eachmediator separately on type 2 diabetes afterMVMR
adjustment for education, presented as β/OR with 95% CI. (c) MR-

estimated effects of indirect effects of each mediator separately, by prod-
uct of coefficients method with delta method-estimated 95% CIs. MR-
estimated proportions mediated (%) are presented with 95% CIs. T2D,
type 2 diabetes; TV, television
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As expected, any combination of both SBP and DBP did
not result in a meaningful increase in proportion mediated
compared with a combination with either SBP or DBP.

The four-mediator combination with the largest proportion
mediated was BMI + SBP + smoking + television watching,
accounting for 83.93% (95% CI 70.51%, 96.78%) of the
effect of EA.

No meaningful increase in proportion mediated was
observed for five- and six-mediator combinations compared
with that of the most effective four-mediator group.

MR sensitivity analyses We assessed heterogeneity using
Cochran’s Q statistic. We observed substantial heterogeneity
from genetic instruments for EA to the outcome andmediators

(ESM Table 1), indicating potential pleiotropy of SNP effects.
To evaluate potential directional horizontal pleiotropy, we
performed MR-Egger regression to assess whether the mean
value of the Egger intercept was non-zero, in which case plei-
otropy could be directional [39]. In our study, we found no
significant directional pleiotropy for any of the 2SMR analy-
ses (p > 0.05, ESM Table 2). In addition, MR-weighted medi-
an methods were generally consistent with MR-IVW with
regard to magnitude and direction (ESM Tables 3, 4, ESM
Fig. 3), suggesting that any horizontal pleiotropy did not
greatly bias our results.

To assess the consistency of our main MR product of coef-
ficients estimates of individual mediation, we performed addi-
tional MVMR mediation analysis using the difference in

Three
Four to six

Tw
o

Fig. 2 MR estimates of combined proportions mediated by multiple mediators, presented as percentages with 95% CIs. SI, smoking initiation (ever vs
never); TV, television watching
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regression coefficient method; estimates were highly similar
(ESM Fig. 4). In contrast to the product of coefficients meth-
od, we were able to examine mediation effects of PA using the
difference method; here, PA explained 4.47% (95% CI
0.69%, 8.31%) of the total effect (ESM Fig. 4). The combined
proportion mediated of PA and BMI was not larger than that
of BMI alone, suggesting substantial overlap in mediation
effects between the two (ESM Fig. 4, Fig. 2). Results from
MVMR-Egger sensitivity analyses were highly consistent
with those from MVMR-IVW analysis (ESM Table 5),
suggesting low risk of bias due to horizontal pleiotropy.
There was reasonable instrument strength (F > 10) of SNPs
for EA, BMI, SBP and DBP in all MVMR analyses. However,
conditional instrument strength for television watching,
smoking initiation and PA was low.

In reverse MR analyses, higher BMI suggestively reduced
EA, although this reverse effect was likely driven by horizon-
tal pleiotropy (pEgger intercept = 0.0166). There was no
evidence for a causal effect of SBP, DBP and PA on EA.
Reverse MR suggested that television watching and smoking
reduce EA level (ESM Table 6), indicating that some
bidirectionality exists between these factors and EA, possibly
affecting validity of our mediation model. Therefore, we
constructed a final mediation model including only BMI,
SBP and DBP, while excluding television watching and
smoking. In this mediation model, the combined proportion
explained by BMI, SBP and DBP was 64.35% (95% CI
53.28%, 75.41%) (ESM Figs. 5, 6).

Observational mediation results in NHANES

Descriptive statistics of 1912 participants from the NHANES
2013–2014 are presented in ESM Table 7. In observational
analysis (ESM Table 8), each 4.2 year higher EA was associ-
ated with lower odds of type 2 diabetes (OR 0.64; 95% CI
0.56, 0.73), similar in magnitude and direction to the MR
estimates. Higher EA was associated with lower BMI, less
television watching, lower odds of smoking, lower SBP and
lower DBP. Product of coefficients estimates of individual
proportionmediatedwere 25%, 16%, 7%, 4% and 0%, respec-
tively, while the total combined proportion mediated estimat-
ed by the difference method was 30%.

Discussion

In this two-step MVMR study, we found evidence suggestive
of a causal, protective effect of EA on type 2 diabetes, with up
to 84% mediation by a combination of the modifiable factors
BMI, television watching, blood pressure and smoking.
Observational mediation estimates in the NHANES 2013–
2014 were consistent with the MR mediation estimates with
regard to directionality and priority ranking of mediators, but

overall suggested less pronounced mediation by the risk
factors of interest.

In the present study, the MR-estimated causal effect of a 1
SD (4.2 years of schooling) increase in EA was a 47% reduc-
tion in odds of type 2 diabetes (OR 0.53, similar to previous
MR studies, ORs ranging from 0.39 to 0.61) [20–23].

Previous observational studies of the EA–type 2 diabetes
association reported 31–53% mediation by a range of risk
factors [12, 13]. A previous MR study found that 64% of the
association between EA and type 2 diabetes was mediated by
BMI and smoking [23], similar to the combined mediation
estimate of BMI and smoking in the present study (58%). In
general, observational estimates of mediation are lower than
those derived fromMR. This could be due to underestimation
of associations in observational studies due to confounding or
measurement error. Although MR is less sensitive to
confounding or measurement error, it has been suggested to
yield higher associations given that SNP effects represent an
estimate of lifetime exposure [19].

Up to ~84% of the EA–type 2 diabetes association was
mediated by traditional (i.e. clinical) risk factors, while
~16% remains unexplained. Potential factors that may explain
the remainder of the association include factors such as area
deprivation, income, diet, health literacy, healthcare access
and psychosocial factors. Many of these factors may be not
heritable and therefore not suitable for GWAS and conse-
quently unsuitable for 2SMR. However, these factors are
expected to show high overlap with factors investigated in
the present study, i.e. BMI, television watching, smoking
and blood pressure; we therefore expect that these omitted
factors would not have contributed substantially to explaining
the EA–type 2 diabetes relation. They might however play a
role in intervention strategies to reduce type 2 diabetes risk,
e.g. reducing BMI through improving diet and health literacy.

Estimates generated from MR are generally insensitive to
reverse causation due to the random assignment of alleles at
conception. However, our results suggested a bidirectional
negative relationship of television watching and smoking with
EA, which may imply that EA could also be a mediator of
these two traits, complicating the hypothesised model.
Additionally, given the low instrument strength for these
two traits, results for these two factors should be cautiously
interpreted.

Directly intervening on EA by raising the school-leaving
age has been shown to be effective in improving adult health
(including type 2 diabetes) and reducing mortality in the UK
[40]. Other interventions may involve improving access to
education, and improving quality of (health) education.
However, such interventions are impractical short-term solu-
tions to reducing the burden of type 2 diabetes. In the present
study, we provide evidence of substantial mediation of the
EA–type 2 diabetes relation through several risk factors that
are more easily modifiable than EA. Although population-
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wide intervention strategies on these modifiable mediators are
expected to increase public health, such an approach may
widen the inequality gap of type 2 diabetes risk [41]; a high-
risk prevention approach (i.e. interventions that target media-
tors in those with low EA) may therefore be necessary to
reduce socioeconomic disparities in type 2 diabetes risk. Our
results ranked BMI and television watching to be the strongest
contributing factors in the EA–type 2 diabetes association,
interestingly, with relatively little overlap, thus suggesting
partly independent effects. Interventions on BMI may involve
addressing the obesogenic environment associated with low-
socioeconomic status neighbourhoods [42, 43], e.g. by limit-
ing fast food outlets in these neighbourhoods. Screen time
interventions (television or otherwise) have previously been
successfully implemented to improve diet, weight and PA in
children [44]. Future studies may further investigate the feasi-
bility and potential impact of such interventions on adult type
2 diabetes risk.

The present MR study yields population-averaged causal
estimates of association and mediation. Given the sex differ-
ences in both EA [45] and type 2 diabetes [46], it is likely that
associations and mediators are also different between sexes, as
shown previously [11]. Future MR studies may investigate
this using sex-stratified GWAS data.

The predominance of GWAS, including those used in
the present study, were performed in white European
ancestry populations from high-income countries; gener-
alisation to other ethnicities and low- and medium-
income countries is therefore uncertain. Furthermore, a
strong relation exists among ethnicity/race, socioeco-
nomic status and health [47] in multi-ethnic communi-
ties. Future studies (including GWAS and MR) should
therefore be more inclusive with regard to non-white
community dwellers.

Strengths of the present study include that it uses SNPs
as genetic instruments to minimise bias due to confounding
and reverse causation. We used the most recent large-scale
GWAS data to generate highly precise SNP effect esti-
mates, facilitating precise MR analysis. The mediated
effects estimated were consistent across the two MR medi-
ation approaches and in the statistical sensitivity analyses.
Furthermore, MR estimates were corroborated by observa-
tional mediation analyses in NHANES 2013–2014,
allowing for triangulation [48] and thus improving the
robustness of our findings.

Several limitations must be addressed. First, MR may be
biased by pleiotropic effects of SNPs, i.e. genetic variants
directly influencing both exposure and outcome: a violation of
the exclusion restriction criterion. While sensitivity analyses
(i.e. MR-Egger, weighted median) robust to pleiotropy [49,
50] showed consistent results, we did not adjust for cognitive
ability, which is highly related to EA and a potential confounder
in any EA–outcome relation. However, a recent study showed

that MVMR adjustment of EA for cognitive ability did not
meaningfully affect MR estimates [22]. Second, a potential
limitation of using genetic data on social traits such as EA is
that ‘population phenomena’ play a role. These phenomena
include population stratification, dynastic effects (i.e.
transgenerational effects of non-inherited parental SNP alleles)
and assortative mating (e.g. non-random mating based on
educational level). Whereas population stratification is usually
accounted for in GWAS, dynastic effects and assortativemating
are not; SNP–EA associations might thus be confounded and
therefore may bias MR estimates [51–54]. Future MR studies
might exploit within-family genetic data (e.g. parent–offspring
trios, siblings) that have the potential of accounting for such
phenomena [55]. Third, the present study assumes absence of
exposure × mediator interaction, which currently cannot be
modelled in the present 2SMR setting. Fourth, type 2 diabetes
and smoking were binary traits, requiring the use of log-odds
(as per the original GWAS) inMR analysis for estimating direct
and indirect effects. This is non-ideal as ORs are non-collaps-
ible, i.e. marginal ORs are not directly comparable with condi-
tional ORs [56]. Fifth, SNP effects on blood pressure traits were
adjusted for BMI in the original GWAS, which subjects MR
estimates involving SBP or DBP to potential bias with unpre-
dictable direction [57]. Sixth, sample overlap between GWAS
studies may have biased MR estimates towards observational
association estimates [58].

To conclude, these results support a potentially causal
protective effect of higher EA against type 2 diabetes, with
substantial mediation by the modifiable risk factors BMI, tele-
vision watching and, to a lesser extent, smoking, SBP and
DBP. Interventions on these factors thus have the potential
of substantially reducing the burden of type 2 diabetes attrib-
utable to low EA.
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