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Abstract
Aims/hypothesis We aimed to evaluate associations of multiple recommended dietary patterns (i.e. the alternate Mediterranean
diet [aMED], the Healthy Eating Index [HEI]-2015 and the healthful Plant-based Diet Index [hPDI]) with serum metabolite
profile, and to examine dietary-pattern-associated metabolites in relation to incident diabetes.
Methods We included 2842 adult participants free from diabetes, CVD and cancer during baseline recruitment of the Hispanic
Community Health Study/Study of Latinos. Metabolomics profiling of fasting serum was performed using an untargeted
approach. Dietary pattern scores were derived using information collected by two 24 h dietary recalls. Dietary-pattern-
associated metabolites were identified using multivariable survey linear regressions and their associations with incident diabetes
were assessed using multivariable survey Poisson regressions with adjustment for traditional risk factors.
Results Weidentifiedeightmetabolites (mannose,γ/β-tocopherol,N1-methylinosine,pyrralineandfouraminoacids) thatwere inverse-
ly associatedwith all dietary scores. Thesemetabolites were detrimentally associatedwith various cardiometabolic risk traits, especially
insulinresistance.Ascorecomprisedofthesemetaboliteswasassociatedwithelevatedriskofdiabetes(RRperSD1.54[95%CI1.29,1.83]),
and this detrimental association appeared to be attenuated or eliminated by having a higher score for aMED (pinteraction = 0.0001), HEI-
2015 (pinteraction = 0.020) or hPDI (pinteraction = 0.023). For example, RR (95%CI) of diabetes for each SD increment in the metabolite
score was 1.99 (1.44, 2.37), 1.67 (1.17, 2.38) and 1.08 (0.86, 1.34) across the lowest to the highest tertile of aMED score, respectively.
Conclusions/interpretation Various recommended dietary patterns were inversely related to a group of metabolites that
were associated with elevated risk of diabetes. Adhering to a healthful eating pattern may attenuate or eliminate the
detrimental association between metabolically unhealthy serum metabolites and risk of diabetes.
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Abbreviations
aMED Alternate Mediterranean diet
DBP Diastolic BP
DHA Docosahexaenoic acid
FDR False discovery rate
FPG Fasting plasma glucose
HCHS/SOL Hispanic Community Health

Study/Study of Latinos
HEI Healthy Eating Index
hPDI Healthful Plant-based Diet Index
PC Principal component
SBP Systolic BP

Introduction

The potential importance of dietary factors in the development
of cardiometabolic diseases has been increasingly recognised.
It is estimated that 45.4% of deaths in 2012 from CVD and
diabetes among US adults aged ≥25 years were associated
with suboptimal dietary habits [1]. Epidemiological findings
from both prospective observational studies [2–5] and inter-
vention studies [6, 7] support cardiometabolic benefits of
high-quality diets. As such, the 2015–2020 Dietary
Guidelines for Americans recommend multiple healthful
eating patterns, including the Mediterranean-Style Eating
Pattern, the Vegetarian Eating Pattern and the US-Style
Eating Pattern, for reducing chronic disease risk and improv-
ing health status [8].

Various metabolic and molecular mechanisms that may
underlie the potential cardiometabolic benefits of healthful
dietary pat terns have been proposed [4, 9, 10] .
Metabolomics profiling of habitual diets may hold promise

for providing novel mechanistic insights into the diet–
disease association and discovering the potential therapeutic
targets [11]. While previous studies have uncovered a wide
range of metabolite biomarkers for various dietary intakes,
these studies largely focused on individual foods, food groups
or nutrients that often correlate and may interact with each
other [12–17]. A few studies have identified circulating
metabolites associated with one or more dietary patterns
[18–23] and linked these metabolites to the development of
CVD [22]. However, less is known about how the dietary-
pattern-related metabolites may be associated with risk of
diabetes, especially among US Hispanics/Latinos who have
unique eating habits, poorer cardiometabolic features and
higher diabetes burden as compared with other racial/ethnic
groups in the country [24–26].

Using metabolomics data determined in a broad sample
of US Hispanic/Latino adults [27, 28], we made the
following assessments: (1) the associations of three
recommended dietary patterns (i .e. the alternate
Mediterranean diet [aMED], the Healthy Eating Index
[HEI]-2015 and the healthful Plant-based Diet Index
[hPDI]) with serum metabolite profile; (2) the relationship
between the identified dietary-pattern-related metabolites
and incident diabetes; and (3) the potential effect modifi-
cation of healthful dietary patterns on the metabolite–
diabetes association, since a healthful eating pattern may
attenuate any detrimental association between diet-
dependent metabolites and health risk [29]. Given the
similar inverse associations between these dietary patterns
and risk of chronic diseases [2–5], we hypothesised that
these dietary patterns may share some mechanisms
reflected by metabolite profiles that may underlie their
potential benefits in terms of disease prevention.
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Methods

Study design and population The Hispanic Community
Health Study/Study of Latinos (HCHS/SOL) is a prospective
population-based study of 16,415Hispanic/Latino adults aged
18–74 years who at recruitment were living in four metropol-
itan areas of the USA: Bronx, NY; Chicago, IL; Miami, FL;
and San Diego, CA. Participants were recruited by using a
two-stage probability sample design, as described previously
[27, 28]. A comprehensive battery of interviews and clinical
assessments with fasting blood draws were conducted by
trained, certified and bilingual staff at in-person clinic visits
from March 2008 to June 2011. The second visit period
started in October 2014 and concluded in December 2017.
The study was approved by the institutional review boards at
all participating institutions, and all participants gave written
informed consent.

Diet assessment and calculation of dietary scores Information
on dietary intake was collected by using two 24 h dietary
recalls [24, 30]. The first recall was administered through in-
person interviews conducted at the baseline visit and the
second was performed primarily via telephone approximately
30 days after the first interview. Participants estimated portion
sizes with the use of food models (in-person) or a food-
amount booklet (telephone interviews). Data on foods and
nutrients were collected and analysed using the multiple-
pass methods of the Nutrition Data System for Research soft-
ware (version 11) from the Nutrition Coordinating Center at
University of Minnesota. For our current analysis, we used
mainly the dietary data collected by the first recall to better
capture the diet–metabolite associations, given the quick
response of certain metabolites to dietary intakes [31]. We
used the dietary data from the second recall for a small propor-
tion (<3%) of participants for whom the dietary data from the
first recall were missing, as described previously [31].

Components of the three dietary patterns and standards for
scoring are presented in electronic supplementary material
(ESM) Tables 1–3. Briefly, the aMED score was adapted by
Fung et al [32] to reflect adherence to the Mediterranean diet,
with each of its nine components being assigned a score of 0
or 1 point according to intake median or moderate drinking.
The HEI-2015, which assesses the extent to which an individ-
ual’s diet aligns with the 2015–2020 Dietary Guidelines for
Americans, includes 13 components and the score theoretical-
ly ranges from 0 to 100 [33]. While the aMED and HEI-2015
include both food and nutrient components, the hPDI
comprises solely food groups that were coded based on intake
quintiles [34]. Higher intakes of six ‘healthy plant foods’ (e.g.
whole grains) were awarded points, while intakes of five
animal foods and four ‘less healthy plant foods’ (e.g. sugar-
sweetened beverages and fruit juices) were both reverse-
coded, leading to a range of 15–75 for the total hPDI score.

Sample collection and metabolomics profilingAt both visits 1
and 2, participants were asked to fast for at least 8 h before the
examination, consume only water and necessary medications,
and to refrain from smoking or physical activity. Venous
blood samples were collected, processed and frozen (at
−70°C) on-site toward the beginning of the visit.

A total of 3972 participants randomly selected from the
whole study population constituted the current subsample
for metabolomics profiling. Based on discoveryHD4 platform
at Metabolon (Durham, NC, USA), serum metabolite values
were assessed by using an untargeted LC-MS-based
metabolomic quantification protocol. More detailed experi-
mental information on MS analysis, identification and classi-
fication of metabolites, and quality-control processes has been
reported [35]. The platform captures information for a total of
1136 metabolites, including 782 metabolites with known
structural identities and 354 unknown metabolites. As the
identities for the 354 unknown metabolites are unclear, we
considered only the metabolites with known structural identi-
ties for the current analysis. For a specific metabolite, its value
varied among individual participants and for some partici-
pants this value was too low to be detected by the platform.
When a metabolite could not be detected for 20% or more of
the participants, it was excluded from our analysis to minimise
the impact of missing data. These predefined criteria led to
624 known metabolites with an undetectable rate <20% being
included in the present analysis. For these 624metabolites, the
median per cent undetectable value was 0.15%, and the miss-
ing valueswere imputed using half of the lowest values detect-
ed. A sensitivity analysis was performed to examine the diet–
metabolite associations by excluding individuals with any
metabolite values missing. Because of the skew distribution
of the metabolite values, the values were transformed using a
rank-based inverse normal transformation before all analyses
to approximate a normal distribution [36].

Measurement of cardiometabolic traits Using an automatic
sphygmomanometer, three seated BP measures were
obtained for each participant after a 5 min rest period,
and their means were used to derive systolic BP (SBP)
and diastolic BP (DBP) [37]. Centralised laboratory tests
were performed to determine other cardiometabolic traits
including plasma glucose, insulin, HbA1c, serum triacyl-
glycerols and serum total cholesterol, HDL-cholesterol
and LDL-cholesterol (all were fasting measures except
for HbA1c) [38]. Non-HDL-cholesterol was computed by
subtracting HDL-cholesterol from total cholesterol. For
participants without self-reported diabetes or with fasting
plasma glucose (FPG) ≤8.3 mmol/l (150 mg/dl), measure-
ments of 2 h plasma glucose were also performed follow-
ing a standard OGTT (75 g glucose) [26]. HOMA-IR was
derived using a common equation based on fasting glucose
and insulin [39].
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Assessment of diabetes Participants were classified as
having diabetes if they reported use of glucose-
lowering medications or met one or more of the follow-
ing ADA criteria: (1) FPG ≥7.0 mmol/l (126 mg/dl); (2)
2 h OGTT plasma glucose ≥11.1 mmol/l (200 mg/dl);
and (3) HbA1c ≥48 mmol/mol (6.5%). Based on these
criteria, participants free of diabetes at visit 1 who were
identified as having diabetes at visit 2 were deemed to
be incident cases of diabetes [35].

Assessment of other covariates Information on socioeconom-
ic and demographic characteristics (e.g. Hispanic/Latino
background), lifestyle factors, and medical and family histo-
ries was collected using structured questionnaires [28].
Physical activity was measured using the Global Physical
Activity Questionnaire and data were summarised in metabol-
ic equivalent-hours/day [40]. BMI was calculated as measured
weight divided by measured height squared (kg/m2).

Statistical analysis For the present analysis, we excluded
participants with self-reported prevalent CVD or cancer (n
= 430), or self-reported prevalent diabetes with (n = 509) or
without (n = 120) confirmation by the ADA criteria. We
further excluded participants with missing dietary information
(n = 26) and those with implausible total energy intake
(>25,104 or <2510.4 kJ/day [>6000 or <600 kcal/day] in
men, or >16,736 or <1673.6 kJ/day [>4000 or <400 kcal/
day] in women; n = 45), leaving 2842 participants for further
analyses.

To account for oversampling of specific population
subgroups and/or non-response to the follow-up visit, all anal-
yses incorporated HCHS/SOL complex study design and
sampling weights, as described previously [28]. The three
examined dietary pattern scores differed substantially in terms
of both scale and variation. Thus, all dietary pattern scores
were divided into quintiles and then examined for their asso-
ciations with serum metabolites using survey linear regression
models (quintile ranks of the dietary scores as predictors and
inverse-normally transformed serum metabolites as response
variables). Multivariable adjustment was made to account for
age, sex, field centre, Hispanic/Latino background, education,
annual household income, smoking status, drinking status
(except for the analyses of aMED score), total energy intake,
physical activity, BMI, use of antihypertensive drugs, use of
lipid-lowering drugs and fasting time before blood sample
collection. The yielded p values were corrected for false
discovery rate (FDR) using the Benjamini–Hochberg proce-
dure [41]. We performed a principal component (PC) analysis
on metabolites to evaluate the variations in dietary pattern
scores that could be explained by all metabolites included in
this study and metabolites that were associated with all three
dietary patterns. In addition, using doubly labelled water as an
objective biomarker of total energy intake, we previously

found in a substudy that HCHS/SOL participants with higher
BMI or Dominican heritage underestimated their total energy
intake [42]. Thus, we conducted a sensitivity analysis to assess
the associations of dietary pattern with metabolites by exclud-
ing obese (BMI ≥30 kg/m2) or Dominican individuals.

For metabolites that were significantly associated with the
dietary pattern scores, we calculated metabolite scores
reflecting the direction of dietary pattern–metabolite associa-
tions. For example, metabolites positively associated with all
dietary pattern scores were summed as one metabolite score
(potentially beneficial), and those inversely associated with all
dietary pattern scores were summed as another score (poten-
tially detrimental). We used the same approach to sum unique
metabolites that were inversely/positively associated with
only one of the three dietary pattern scores. Thus, eight metab-
olite scores (four potentially beneficial and four potentially
detrimental) were expected. We then evaluated cross-
sectional relationships between the derived metabolite scores
and various glycaemic traits, serum major lipids and BP by
using partial Spearman correlation analysis after the multivar-
iable adjustment as described above.

We next examined prospective associations of the derived
metabolite scores with incident diabetes among 1966 partici-
pants with follow-up information for diabetes status at visit 2.
We used multivariable survey Poisson regression models to
estimate RR and 95% CI of incident diabetes according to
tertiles of the metabolite scores, offsetting the lag time
between the two study visits. To evaluate the potential effect
modification of diet quality on the metabolite–diabetes asso-
ciation, we further examined the identified metabolite scores
in relation to risk of diabetes within each tertile of the exam-
ined dietary pattern scores and tested the potential interac-
tions. All statistical analyses were performed using R (version
3.3.2; R Foundation, Austria) and Stata (version 15.1;
StataCorp, USA).

Results

Population characteristics Age-adjusted baseline population
characteristics according to quintiles of the three dietary
pattern scores are reported in ESM Table 4. Individuals with
a higher aMED, HEI-2015 or hPDI score were older, had
higher levels of education and family income, and were less
likely to be men or be current smokers. Differences in the
dietary pattern scores across study field centres or Hispanic/
Latino backgrounds were evident. Individual food or nutrient
components of the dietary patterns distributed according to the
dietary pattern scores largely as expected by design (ESM
Table 5).

Dietary patterns and serum metabolites After multivariable
adjustment for demographic and socioeconomic factors, self-
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reported medication uses, lifestyle factors and BMI, 25.2%
(157/624) of the assessed metabolites were significantly asso-
ciated with at least one of the dietary scores (FDR-adjusted
p<0.05). Of the 157 significant metabolites, 40 were associat-
ed with all dietary scores, while 50, 13 and 16 were specifi-
cally associated with aMED index, HEI-2015 and hPDI alone,
respectively (Fig. 1a).

The 157 significant metabolites with at least one dietary
pattern association were largely lipids (32.5%), xenobiotics
(23.6%) and amino acids (22.3%) (Fig. 1b and ESM

Table 6). In contrast, the 40 metabolites that were associated
with all dietary scores had substantially lower representation
of lipids (7.5%), but relatively higher per cent amino acids
(32.5%) and cofactor/vitamin metabolites (17.5%). For the
metabolites associated with a single dietary score, lipids
contributed to 60.0% (30/50) of aMED-only metabolites,
23.1% (3/13) of HEI-2015-only metabolites, and 50.0%
(8/16) of hPDI-only metabolites. Of the 40 dietary-pattern-
shared metabolites, 32 were positively and eight were inverse-
ly associated with all dietary scores.

Fig. 1 Serum metabolites
associated with three dietary
patterns (a) and the corresponding
metabolism pathways (b).
Dietary-pattern-related
metabolites (FDR-adjusted p<
0.05) were identified using survey
linear regressions with
adjustments for age, sex, study
field centre, Hispanic/Latino
background, education, annual
household income, smoking
status, drinking status (not for
aMED-only metabolite score),
total energy intake, physical
activity, BMI, use of
antihypertensive drugs, use of
lipid-lowering drugs and fasting
time before blood sample
collection

Fig. 2 Cross-sectional association between scores of dietary-pattern-
related metabolites and cardiometabolic traits. Metabolites indicated by
green arrowhead were positvely associated with dietary pattern score(s),
and metabolites indicated by yellow arrowhead were inversely associated

with dietary pattern score(s). Results are partial Spearman correlations
with adjustment for covariates listed in Fig. 1 legend. HDL-C, HDL-
cholesterol
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Fig. 3 Cross-sectional
association between 40 individual
metabolites significantly
associated with three dietary
scores and cardiometabolic traits.
Results are partial Spearman
correlations with adjustment for
age, sex, study field centre,
Hispanic/Latino background,
education, annual household
income, smoking status, drinking
status (not for aMED-only
metabolite score), total energy
intake, physical activity, BMI, use
of antihypertensive drugs, use of
lipid-lowering drugs and fasting
time before blood sample
collection. CMPF, 3-carboxy-4-
methyl-5-propyl-2-
furanpropanoic acid; HDL-C,
HDL-cholesterol

Table 1 Multivariable-adjusted association between scores of dietary-pattern-related metabolites and risk of diabetes

Metabolite score No. of metabolites Tertile for metabolite score ptrend

T1 T2 T3

Metabolites positively associated with dietary patterns

aMED only 4 1.00 (Referent) 1.04 (0.70, 1.53) 1.05 (0.67, 1.64) 0.83

HEI-2015 only 6 1.00 (Referent) 1.14 (0.68, 1.90) 1.32 (0.77, 2.28) 0.31

hPDI only 5 1.00 (Referent) 0.83 (0.48, 1.44) 1.63 (1.06, 2.51) 0.021

All dietary patterns 32 1.00 (Referent) 0.99 (0.65, 1.51) 0.69 (0.44, 1.09) 0.11

Metabolites inversely associated with dietary patterns

aMED only 46 1.00 (Referent) 0.95 (0.56, 1.62) 1.16 (0.68, 1.99) 0.59

HEI-2015 only 7 1.00 (Referent) 1.09 (0.65, 1.82) 0.97 (0.57, 1.66) 0.84

hPDI only 11 1.00 (Referent) 1.05 (0.65, 1.68) 1.08 (0.66, 1.79) 0.72

All dietary pattern scores 8 1.00 (Referent) 1.77 (1.06, 2.96) 2.94 (1.87, 4.63) <0.0001

Data are presented as RRs (95% CIs) from survey Poisson regressions with adjustment for age, sex, study field centre, Hispanic/Latino background,
education, annual household income, smoking status, drinking status (not for aMED-only metabolite score), total energy intake, physical activity, BMI,
hypertension, dyslipidaemia and fasting time before blood sample collection

T, tertile
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As suggested by the results of PC analysis, the top five PCs
based on all 624metabolites explained a very small proportion
of the variation in dietary scores (ranging from 1.1% for
aMED to 5.5% for hPDI) (ESM Table 7). When using the
top PCs based on the 40 metabolites that were associated with
all three dietary patterns, there was a clear distinction between
individuals with a higher dietary pattern score (top quintile)
and those with a lower score (bottom quintile) (ESM Fig. 1).
The top five PCs based on the 40 sharedmetabolites explained
16.8% (for hPDI score) to 19.4% (for aMED score) variation
in the dietary pattern scores (ESM Table 7). In sensitivity
analysis, the examined dietary pattern–metabolite associations
among the study sample with imputed metabolites values
were similar regardless of whether or not individuals with
undetectable metabolites were included (ESM Fig. 2). The
associations were also similar after excluding obese individ-
uals or individuals with Dominican heritage who were more
likely to underreport total energy intake (ESM Fig. 3).

Dietary-pattern metabolites and cardiometabolic risk traits
The score of 32 dietary-pattern-positive metabolites showed
modest favourable correlations with various cardiometabolic
traits (Fig. 2). Conversely, the score of eight dietary-
pattern-inverse metabolites was detrimentally correlated
with all glycaemic traits, lipid traits and BP (e.g. corre-
lation with HOMA-IR, r = 0.34). For other scores of
metabolites specific for a single dietary pattern, the
correlations with cardiometabolic traits appeared rela-
tively weak and some were in unexpected directions
(e.g. the score of hPDI-only-positive metabolites was
associated with elevated HOMA-IR and serum non-
HDL-cholesterol and triacylglycerols).

The 40 dietary-pattern-shared metabolites spanned distinct
metabolic pathways (Fig. 3). The 32 dietary-pattern-positive
metabolites were largely amino acids and plant xenobiotics,
with most being modestly and favourably correlated with
glycaemic traits, while a few were evidently correlated with
an unfavourable lipid profile. The remaining eight dietary-
pattern-inverse metabolites, which included mannose, γ/β-
tocopherol,N1-methylinosine, pyrraline and four amino acids,
were correlated with poorer glycaemic and lipid profiles and
higher BP, especially so for mannose, γ/β-tocopherol, proline
and N1-methylinosine.

Dietary patterns, metabolites and incident diabetes During
an average 6 years of follow-up, 207 incident diabetes cases
were identified. After multivariable adjustment, the score of
32 dietary-pattern-positive metabolites was inversely (non-
significantly) associated with risk of diabetes (RRT3 vs T1

0.69 [95% CI 0.44, 1.09]; ptrend = 0.11), while the score of
eight dietary-pattern-inverse metabolites was strongly associ-
ated with elevated risk of diabetes (RRT3 vs T1 2.94 [95% CI
1.87, 4.63]; ptrend<0.0001) (Table 1). There was an unexpect-
ed positive association between the score of hPDI-only-
positive metabolites and risk of diabetes (ptrend = 0.021),
while other scores of single-dietary-pattern metabolites were
not associated with risk of diabetes. Given the unexpected
correlations between dietary-pattern-positive metabolites
and serum lipids (Figs. 2 and 3), we repeated these
analyses after excluding individuals with dislipidaemia
at baseline. After that, only the score of eight dietary-
pattern-positive metabolites remained associated with
risk of diabetes (RRT3 vs T1 3.78 [95% CI 2.18, 6.56];
ptrend<0.0001) (ESM Table 8).

Fig. 4 Association between score
of eight metabolites (inversely
associated with all dietary scores)
and incident diabetes. Results are
shown as RR (95% CI) from
survey Poisson regressions with
adjustment for age, sex, study
field centre, Hispanic/Latino
background, education, annual
household income, smoking
status, drinking status (not for
aMED-only metabolite score),
total energy intake, physical
activity, BMI, hypertension,
dyslipidaemia and fasting time
before blood sample collection.
P-int, pinteraction; T, tertile
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We then examined whether the healthful dietary
patterns may modify the detrimental association between
the score of eight dietary-pattern-inverse metabolites and
risk of diabetes. There were significant interactions
between this metabolite score and aMED (pinteraction =
0.0001), HEI-2015 (pinteraction = 0.020) and hPDI (p-
interaction = 0.023) scores on risk of diabetes (Fig. 4).
The association of the metabolites score with risk of
diabetes was apparently stronger among individuals in
the first or second tertile of a dietary score than among
individuals in the highest tertile of the corresponding
dietary score, with the detrimental association being
fully eliminated among individuals in the highest tertile
of aMED score or HEI-2015 score. For example, RR
(95% CI) of diabetes for each SD increment in the
metabolite score was 1.54 (95% CI 1.29, 1.83) in the
whole study sample, and was 1.99 (1.44, 2.37), 1.67
(1.17, 2.38) and 1.08 (0.86, 1.34) across the lowest to
the highest tertile of aMED score, respectively.

Of the eight component metabolites inversely associated
with all dietary scores, six were positively associated with risk
of diabetes (RRper SD>1.10), and four (γ/β-tocopherol,
mannose, proline, and N-acetyl-cadaverine) metabolite–
diabetes associations were significant (RRper SD 1.20–1.76)
(ESM Table 9). Mannose, pyrraline, N1-methylinosine
showed interactions with one or more dietary scores on risk
of diabetes. For example, mannose was not associated with
risk of diabetes among individuals in the highest tertile of
aMED score (RRper SD 1.00 [95% CI 0.62, 1.61]) but was
associated with substantially elevated risk of diabetes among
those with a lower aMED score (RRper SD 2.48 [95% CI 1.83,
3.37]) (pinteraction = 0.0017).

Discussion

In a population-based study of US Hispanic/Latino adults, our
analyses systematically assessed serum metabolite profiles
associated with three recommended dietary patterns. While
each dietary pattern was associated with a list of metabolites,
32 metabolites were positively associated and eight were
inversely associated with all dietary patterns. A score of the
eight dietary-pattern-inverse metabolites was associated with
worse cardiometabolic traits (especially insulin resistance)
and elevated risk of diabetes. The detrimental association
between this metabolite score and risk of diabetes appeared
to be modified by the degree of adherence to a healthful eating
pattern, with a weaker or no association among individuals
with a higher dietary pattern score. The score of 32 dietary-
pattern-positive metabolites (or other scores of metabolites
specific for a single dietary pattern) was not clearly associated
with risk of diabetes.

A few previous studies have assessed metabolomics of
hypothesis-driven dietary patterns [18–20, 22, 23].
McCullough et al [18] profiled serum metabolites of four
hypothesis-driven dietary patterns (two of which, aMED and
HEI-2015, were also included in our analysis) among 1367
US postmenopausal women. Their analysis highlighted 32
metabolites that distinguished high from low dietary pattern
scores. Of these, several metabolites (e.g. γ/β-tocopherol,
carotene diol-1 and docosahexaenoic acid [DHA]) that over-
lapped multiple dietary patterns were also associated with all
dietary scores examined in our study. In another analysis of
1336 male smokers, Playdon et al [19] performed a metabo-
lomics study of four healthful dietary patterns (aMED, HEI-
2010, Healthy Diet Indicator, and Baltic Sea Diet) and found a
suite of metabolites that were positively associated with multi-
ple dietary patterns, especially those in the lysolipid or plant
xenobiotic metabolism pathways. Using data from multi-
cohorts of US and Spanish populations, Li et al [22] identified
a set of metabolites associated with the Mediterranean diet,
and a score of these metabolites was inversely associated with
risk of major CVD [22].

The three dietary patterns examined in our study are
comparable with regards to their emphases on intakes of mini-
mally processed, nutritionally rich plant foods including
whole grains, fruit, vegetables, nuts and legumes. Such simi-
larities may, at least in part, explain the higher proportion of
xenobiotic and cofactor/vitamin metabolites among the 40
shared metabolites as compared with composition of the 624
assessed metabolites. On the other hand, the three dietary
pattern indices consist of distinctive components and apply
different scoring criteria with regards to intake of animal
foods. For example, while aMED index emphasises lower
consumption of red/processed meat, hPDI assigns equal
weights for red/processed meat and fish, and red/processed
meat consumption is not a specific component of HEI-2015.
Such differences may have led to some unique metabolite
profiles that were associated with a specific dietary pattern
only. Despite the differences, the three examined dietary
patterns concordantly captured a variety of serum metabolites
that were associated with key cardiometabolic risk traits and
risk of diabetes in expected directions. Thus, these data
support our hypothesis that there might be commonmetabolic
pathways underlying the extensively documented associations
between high-quality diets and lower risk of cardiometabolic
diseases.

We identified 32 metabolites positively associated with all
examined dietary patterns. Previous studies have identified and
replicated a number of these dietary-pattern-positive metabo-
lites as potential biomarkers for intake of fruit (β-
cryptoxanthin and methyl glucopyranoside [α/β]), vegetables
(S-methylcysteine sulfoxide), nuts (tryptophan betaine), fish
(DHA and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic
acid) and coffee (theophylline) [14]. Some of these dietary-
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pattern-positivemetabolites identified in our study and/or other
previous studies might be originally from diets, as they occur
naturally in foods (e.g. β-cryptoxanthin in tangerines, red
peppers and pumpkin [43], DHA in fish [44], tryptophan beta-
ine in legumes and nuts [45], and theophylline in coffee beans
[46]). In our study, the 32 dietary-pattern-positive metabolites
were modestly correlated with favourable glycaemic traits
while a few were also correlated with an unfavourable lipid
profile. A score comprised of these metabolites was not signif-
icantly associated with risk of diabetes. These observations
suggest that the dietary-pattern-positive metabolites might be
largely biomarkers of healthful eating patterns rather than
metabolites that biologically underlie the association between
high-quality diets and lower risk of diabetes.

We identified eight metabolites that were inversely related
to all examined dietary patterns. Some of these metabolites
also showed inverse associations with healthful dietary
patterns in previous studies (e.g. mannose and the
Mediterranean diet [47], and γ/β-tocopherol and three dietary
scores including the aMED [18]). A score comprised of these
eight metabolites was associated with elevated risk of diabe-
tes, with the association being largely limited to individuals
with a relatively lower dietary score. Similar differences
according to dietary scores were observed for several compo-
nent metabolites (especially mannose) and risk of diabetes. A
higher level of circulating mannose has been consistently
associated with insulin resistance [48] and elevated risk of
diabetes in our study and several other population studies
[49–51] and suggested to be a novel diabetes risk factor
beyond blood glucose [49, 50]. Mannose is the main mono-
saccharide involved in protein glycosylation, a process
predominantly occurring in the liver [52]. Abnormal glycosyl-
ation could lead to hepatic and whole-body insulin resistance
[53]. Such insulin resistance might be attenuated by adherence
to a healthful eating pattern, as evidence from both observa-
tional [54] and intervention studies [55] has demonstrated that
the Mediterranean diet may improve insulin sensitivity among
individuals with non-alcoholic fatty liver disease. Besides
mannose, several other dietary-pattern-inverse metabolites
(e.g. γ/β-tocopherol) were also detrimentally associated with
risk of diabetes. Collectively, our findings suggest that a
healthful eating pattern might lower risk of diabetes by
decreasing the circulating concentrations and/or attenuating
the adverse health impact of metabolically unhealthy metabo-
lites. In line with our findings, a Mediterranean dietary inter-
vention has been found to mitigate the deleterious association
between plasma ceramides (a diet-dependent metabolite
considered to be a potential novel cardiovascular biomarker
[56]) and risk of major CVD [29]. However, it is also possible
that the alterations in metabolite levels might be a conse-
quence of improved cardiometabolic health due to healthy
diet, since the causal role of these metabolites in human
cardiometabolic health remains unknown.

Strengths of our study include the population-based design,
the longitudinal data on diabetes status, and the representative
sample of US Hispanic/Latino population covering the adult
lifespan rather than a specific age or sex group. Additional
strengths include the availability of the various clinical
measures and other covariates collected using standard proce-
dures, and a broad and unbiased spectrum of serummetabolite
profiling.

Several limitations of our study need to be acknowledged.
First, our findings were derived from an observational study
which cannot make causal inference. Although the dietary-
pattern-associated metabolites could originate from nutrients
or food components, the possibility of these metabolites
being biomarkers of eating behaviours or other related
lifestyle factors remains. Second, as compared with data
derived by other dietary assessment instruments, such as
food frequency questionnaires, dietary information esti-
mated by 24 h recalls may poorly capture rarely
consumed foods or be more reflective of recent intakes
and thus may be more strongly associated with serum
metabolites. In addition, misreporting of diet merits
consideration, as specific individuals (e.g. obese and
Dominican individuals in our study [42]) may underre-
port total energy intake, although the dietary pattern and
metabolite associations were similar after excluding
these individuals. Third, our analyses were based on a
sample of US Hispanics/Latinos, among which some
participants may be following their traditional diet
characterised by a higher content of plant foods (e.g.
grain products, vegetables and legumes) than found in
the mainstream US diet [24]. These populations also
have varying genetic compositions, poorer cardiometa-
bolic features and higher diabetes burden as compared
with other US racial/ethnic groups [25, 26]. As such,
the identified metabolite markers of the dietary patterns
may reflect not only participants’ habitual dietary
intakes and the resultant biological consequences but
also host genetic influences and the ability to digest,
absorb and metabolise food components. Thus, it is
uncertain to what extent our findings are ethnically
specific and population-level generalisation of our find-
ings should be made with caution. Fourth, there is
evidence that metabolomic biomarkers of dietary
patterns may vary by the time spent fasting before
collection of the blood samples [57]. However, most
(99.6%) of the participants in the current study fasted
for at least 8 h and we controlled for fasting time
throughout the analyses. Finally, similar to other studies
of dietary patterns and metabolites [18–20], our study
was based on an untargeted metabolomic method that
was unable to quantify the absolute values of individual
metabolites. To make a direct comparison of metabolite
levels across studies and to establish biomarkers linking
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diet and diseases that could be clinically applied, future
studies using targeted metabolomics are still required.

In summary, this study of US Hispanics/Latinos identified
that various serum metabolites spanning distinct biological
pathways were associated with three recommended healthful
eating patterns. A group of metabolites that were inversely
associated with all dietary patterns were associated with worse
cardiometabolic traits and elevated risk of diabetes. Our find-
ings further highlighted that such a detrimental association
between serum metabolites and risk of diabetes may be atten-
uated or eliminated by adhering to a healthful eating pattern.
Additional studies are needed to confirm our findings and to
verify whether these dietary-pattern-inverse metabolites could
be therapeutic targets in dietary interventions that reduce risk
of metabolic disorders.
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