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Pharmacoepigenetics in type 2 diabetes: is it clinically relevant?
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Abstract
Data generated over nearly two decades clearly demonstrate the importance of epigenetic modifications and mechanisms in the
pathogenesis of type 2 diabetes. However, the role of pharmacoepigenetics in type 2 diabetes is less well established. The field of
pharmacoepigenetics covers epigenetic biomarkers that predict response to therapy, therapy-induced epigenetic alterations as
well as epigenetic therapies including inhibitors of epigenetic enzymes. Not all individuals with type 2 diabetes respond to
glucose-lowering therapies in the same way, and there is therefore a need for clinically useful biomarkers that discriminate
responders from non-responders. Blood-based epigenetic biomarkers may be useful for this purpose. There is also a need for a
better understanding of whether existing glucose-lowering therapies exert their function partly through therapy-induced epige-
netic alterations. Finally, epigenetic enzymes may be drug targets for type 2 diabetes. Here, I discuss whether
pharmacoepigenetics is clinically relevant for type 2 diabetes based on studies addressing this topic.
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Research studies performed over the last two decades have iden-
tified epigenetic modifications andmechanisms that seem to play
a role in the pathogenesis of type 2 diabetes [1–18]. The epige-
nome includes DNA methylation, histone modifications and
non-coding RNA [1]. There are epigenetic modifications which
are stable over time and those that change due to short-term and/
or long-term environmental exposures such as drugs, diet, exer-
cise or stress, as well as ageing [19–25]. However, more work is
needed before we fully understand the environmental regulation
of the epigenome in all human cell types. Moreover, although
numerous studies have investigated the role of pharmacogenetics
in type 2 diabetes [26–31], the interest in pharmacoepigenetics
has been limited [32]. So, what is the definition of
pharmacoepigenetics and is it clinically relevant for type 2

diabetes? Themeaning of pharmacoepigenetics is not set in stone
but can be divided into: (1) blood-based epigenetic biomarkers
that predict response or tolerance to therapy; (2) individual differ-
ences in response to therapy due to epigenetic mechanisms or
variation in target cells and tissues; (3) therapies that alter the
epigenome or epigenetic mechanisms, which subsequently may
contribute to their effect; and (4) epigenetic therapies (Fig. 1).
Below, I discuss some studies addressing these points in relation
to type 2 diabetes.

It is well established that all individuals do not respond to
therapies in the same way. For example, ~30% of individuals
with type 2 diabetes do not have a glucose-lowering response
to metformin, and ~5% suffer from intolerable side effects,
including gastrointestinal problems [33, 34]. Currently, there
are no clinically useful biomarkers that predict response and
tolerance to metformin. Nevertheless, a recent study supports
the use of blood-based epigenetic biomarkers for prediction of
glycaemic response and intolerance to metformin in newly
diagnosed individuals with type 2 diabetes [32]. Here,
increased DNA methylation of 11 CpG sites in the blood
was associated with a higher risk of not responding to metfor-
min, and increased methylation of four other CpG sites was
associated with a higher risk of not tolerating metformin in
drug-naive newly diagnosed individuals with type 2 diabetes.
Methylation risk scores (MRS) generated based on DNA
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methylation levels of these 11 and four sites could clearly
discriminate glycaemic responders from non-responders, and
tolerant from intolerant patients to metformin therapy in three
different cohorts. These results promote the further develop-
ment and future use of blood-based epigenetic biomarkers for
precision medicine in type 2 diabetes (Fig. 1). Therefore,
pharmacoepigenetics seem to be clinically relevant for type
2 diabetes. Other factors, for example genetic variation, clin-
ical phenotypes and gut microbiota, should further be
explored, and combinations of different phenotypes may ulti-
mately generate scores with the best predictive capacity for
response to glucose-lowering therapies [26–29, 35–37]. Of
note, in the field of cancer, both epigenetic biomarkers in
blood and tissues have proven to be clinically relevant [38].
However, individual differences in response to pharmacother-
apy due to epigenetic mechanisms and modifications in target
tissues are, to my knowledge, not well studied in type 2 diabe-
tes, but could be important (Fig. 1). Such epigenetic mecha-
nisms may include DNA methylation and/or histone modifi-
cations of drug transporters, affecting the levels of these trans-
porters in target cells and hence their ability to take up or
excrete drugs.

Therapy-induced epigenetic alterations may be clinically rele-
vant and may benefit patients (Fig. 1). Pharmacotherapies
currently used for lowering blood glucose and for treatment of
lipid dysregulation can alter the epigenome in tissues and cells
from patients with type 2 diabetes and individuals without diabe-
tes [25, 39–42]. For instance, individuals with type 2 diabetes
who took metformin had altered DNA methylation of genes
encoding the metformin transporters OCT1, OCT3 and
MATE1 in the liver compared with those who did not receive
anymedication [39]. Short-termmetformin exposure also altered
DNA methylation in the blood of individuals without diabetes
[25]. Additionally, incretin drugs, e.g. GLP1R agonists,
prevented glucose-induced reductions in DNA methylation of
NFKB1 and SOD2 in human aortic endothelial cells, which
may affect vascular complications [40]. Incretin treatment was
also shown to reverse epigenetic modifications associated with
diabetes in rodents exposed to an impaired intrauterine environ-
ment [43]. Statin therapywas recently associatedwith differential
DNAmethylation in blood from individuals with type 2 diabetes
as well as in individuals without diabetes [41, 42]. These include
differential methylation of sites annotated to ABCG1, DHCR24
and SC4MOL (also known asMSMO1), which encode proteins
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Fig. 1 Pharmacoepigenetics in
type 2 diabetes. The figure shows
different aspects of
pharmacoepigenetics that could
be applied to type 2 diabetes
prediction, response and
treatment strategies. This figure is
available as a downloadable slide
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involved in the transport and biosynthesis of cholesterol. Causal
mediation analyses further suggest that DNA methylation may
mediate some of statin’s effects on metabolic phenotypes [41,
42]. Overall, pharmacotherapies used for treatment of type 2
diabetes and lipid dysregulation can induce epigenetic modifica-
tions in human cells (Fig. 1). Nevertheless, further work is need-
ed before concluding the clinical benefits or disadvantages of
therapy-induced epigenetic modifications in individuals with
type 2 diabetes.

Finally, can epigenetic therapies be used for treatment of type
2 diabetes (Fig. 1)? Andwhat are epigenetic therapies? Inhibitors
of epigenetic enzymes, such as DNAmethyltransferase (DNMT)
and histone deacetylase (HDAC) inhibitors, fall into the category
of epigenetic therapies, and such drugs are currently in use, or in
clinical trials, for treatment of different cancers [44].
Interestingly, epigenetic enzymes were found to be dysregulated
in cells and tissues from individuals with type 2 diabetes
compared with individuals without type 2 diabetes, as well as
in cells exposed to diabetogenic conditions, suggesting a poten-
tial role for epigenetic therapies also in diabetes [5, 6, 9–11, 45].
For example, individuals with type 2 diabetes had higher
DNMT3B levels in cultured myotubes [5] and decreased TET1
expression in adipose tissue [6] vs tissue from individuals with-
out type 2 diabetes, while palmitate exposure decreased
DNMT3A and DNMT1 expression in human pancreatic islets
[11]. Several studies have further shown that inhibitors of
HDACs and histone demethylases, or silencing and overexpres-
sing those enzymes, impact beta cell function and insulin secre-
tion [9, 46–49]. For example, DNA methylation is decreased,
and expression of HDAC7 increased in pancreatic islets from
donors with type 2 diabetes [49]. Overexpression of Hdac7 in
clonal beta cells and rat islets impaired glucose-stimulated insulin
secretion, while exposure to two different HDAC inhibitors,
trichostatin A (TSA) and MC1568, reversed the negative effect
of Hdac7 overexpression on insulin secretion and mitochondrial
function [9, 49]. MC1568 also increased glucose-stimulated
insulin secretion in pancreatic islets from donors with type 2
diabetes cultured in vitro [49]. Other studies investigating the
impact of the inhibition of epigenetic enzymes inmuscle, adipose
tissue and liver found improved metabolism and cell function
[50–52]. However, the chronic nature of type 2 diabetes results
in long-term use of therapies. It is therefore important to weigh
benefits against risks, and global action of inhibitors of epigenetic
enzymes may lead to intolerable side effects. More selective
inhibitors and/or cell-specific delivery may represent avenues
for future therapeutic purposes.

A l toge the r , ex i s t i ng l i t e r a tu re sugges t s tha t
pharmacoepigenetics may be clinically relevant for type 2
diabetes. But there is still a lot of work needed before
pharmacoepigenetics in any of the research areas mentioned
above may reach the clinic and help individuals with type 2
diabetes receive optimal treatment, reducing their complica-
tions and suffering.

Supplementary Information The online version of this article contains a
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